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Abstract

Melanoma is the deadliest form of skin cancer. Au-

tomated skin lesion analysis plays an important role for

early detection. Nowadays, the ISIC Archive and the At-

las of Dermoscopy dataset are the most employed skin le-

sion sources to benchmark deep-learning based tools. How-

ever, all datasets contain biases, often unintentional, due to

how they were acquired and annotated. Those biases dis-

tort the performance of machine-learning models, creating

spurious correlations that the models can unfairly exploit,

or, contrarily destroying cogent correlations that the mod-

els could learn. In this paper, we propose a set of exper-

iments that reveal both types of biases, positive and neg-

ative, in existing skin lesion datasets. Our results show

that models can correctly classify skin lesion images with-

out clinically-meaningful information: disturbingly, the

machine-learning model learned over images where no in-

formation about the lesion remains, presents an accuracy

above the AI benchmark curated with dermatologists’ per-

formances. That strongly suggests spurious correlations

guiding the models. We fed models with additional clini-

cally meaningful information, which failed to improve the

results even slightly, suggesting the destruction of cogent

correlations. Our main findings raise awareness of the lim-

itations of models trained and evaluated in small datasets

such as the ones we evaluated, and may suggest future

guidelines for models intended for real-world deployment.

1. Introduction

The amount of people diagnosed with melanoma is

rapidly increasing in the past decades. Today, it is already

treated as a public health challenge, especially in high sun

exposition areas with Caucasian populations1. Melanoma

is the deadliest form of skin cancer, and early detection

is crucial [3] for good prognosis, creating a need for effi-

cient early-detection techniques, and thus an incentive for

research on automated detection.

1http://www.cancer.net/cancer-types/melanoma/

statistics

Deep learning methods are the state-of-the-art on skin

cancer classification [11, 13]. That task is challenging due

to the vast visual variability of skin lesions, and the subtlety

of the cues that differentiate benign and malignant cases.

To compound the difficulty, datasets to train the data-hungry

models are small, when compared with general-purpose im-

age datasets (e.g., ImageNet, MSCOCO, LabelMe).

Due to the scarcity of good-quality, annotated skin lesion

images, two datasets dominate research on automated skin

lesion analysis: the Interactive Atlas of Dermoscopy [5] and

the ISIC Archive [1]. The Atlas is an educational medical

resource, with many standardized metadata over the cases it

contains, while the ISIC Archive is a much larger, but also

less controlled dataset, with images of different sources.

Nowadays nearly every reproducible work in the field re-

fer to these datasets for training, evaluating or comparing

its models [6–8, 23], and the ISIC Archive deserves spe-

cial mention as the source of the images used in the ISIC

Challenge [9,10,15], an annual event where different teams

compare the performance of their algorithms under the con-

trolled supervision of the organizers.

The problem of having so few, relatively small datasets

dominating much of research in automated skin analysis,

is the risk of datasets biases. Indeed, the (re)use of rela-

tively small datasets by a research community poses certain

risks for research on Machine Learning [18]. Dataset bi-

ases may both inflate the performance of models (present-

ing them features that are not truthful to real-world data),

or play down their performance (by destroying correlations

that occur in real-world data, and thus preventing models

from exploiting them). If we think of general datasets, there

can be bias over the scenes (rural or urban), acquisition

methods (professional or amateur), amount of objects in the

scene, angles of views, among other factors [22].

If bias is present even in bigger and more diverse

datasets [22] like ImageNet [20], it is naive to think it is

not present in the smaller and harder to obtain skin can-

cer datasets, where we lack works identifying the possi-

ble sources of dataset bias. We know, however, that there

are visible artifacts introduced during the image acquisition

process (e.g., dark corners, marker ink, gel bubbles, color



charts, ruler marks, skin hair) [16] that could inflate models

performances due to spurious correlations.

Despite being impossible to wholly eliminate, it is im-

portant to understand bias and its sources to further improve

our image acquisition processes and deep learning models.

A useful way to measure the first possible effect of a

dataset bias (undue inflation of performances due to spuri-

ous correlations in the dataset), is a counterfactual exper-

iment, which destroys the cogent information in the data,

and measures how much the performance of models drops.

Therefore, our first set of experiments follows that proce-

dure, gradually removing information from skin lesion im-

ages, and measuring the network performance. We perform

single- (training and testing on the same dataset) and cross-

dataset (training on ISIC and testing on Atlas) experiments,

and find that in both cases, the networks are able to main-

tain a surprising amount of accuracy, even after almost all

cogent information has been destroyed.

Measuring the second possible effect (inability to pro-

vide useful correlations for learning) is much harder, since

we cannot, a priori prove those correlations exist in the real-

world, neither that the machine-learning model would learn

from them if they were correctly represented in the dataset.

The best we can do is to provide additional evidence for the

models that we expect would be useful for a human, and

measure if that makes any difference.

Thus, in our second experiment set, we add progressively

more features, based upon fine-grained dermoscopic at-

tributes (pigment network, negative network, streaks, milia-

like cysts, and globules) spatially located on the lesions.

In order to provide those features, we employ the annota-

tions available for the Task 2 (Lesion Attribute Detection)

of the ISIC Challenge. We expected that such clinically-

meaningful skin lesion information would improve the net-

work learning process, but in fact, the performance fails to

improve in all scenarios we tested, even when we feed the

network with all the image’s pixels with an additional chan-

nel containing extra clinically-meaningful information.

Summarizing, the main contributions in this work are:

• We assess whether the models’ performance are in-

flated due to dataset bias by performing a counterfac-

tual experiment, where we gradually destroy meaning-

ful information in the data, and measure the perfor-

mance of our models.

• We evaluate whether the dataset is providing useful

correlations for learning, by gradually feeding the net-

work with extra clinically-meaningful information.

• We provide a discussion to raise awareness of bias in

the automated skin lesion analysis community to im-

prove the next generation of solutions for classifying

skin lesions in the real world.

We organized the text as follows. We introduce our mo-

tivation and related works in Section 1. We present our

methodology, materials and goals in Section 2. We detail

our experiment to gradually destroy clinically-meaningful

information in skin lesion images and evaluate the net-

work’s responses in Section 3. We detail our experi-

ment where we try to guide the network’s learning process

through additional clinical information in Section 4. Fi-

nally, we review and discuss our findings in Section 5.

2. Materials and Methods

2.1. Datasets

We employ two of the most important skin lesion

datasets: the Interactive Atlas of Dermoscopy (Atlas) [5]

and the International Skin Imaging Collaboration (ISIC)

Archive [1]. While Atlas excels for having rich metadata

associated with each lesion image, ISIC excels for being

diverse. Since both are publicly available, most of the re-

cent works in skin lesion analysis rely on these datasets.

When exploring reproducible works on lesion segmenta-

tion [8, 24], dermoscopic attribute segmentation [14], skin

lesion classification [7, 19, 23], or skin lesion synthesis [6]

those two datasets are almost certain to be included. Next

we describe their individual characteristics, and discuss how

they differ.

The Atlas [5] is a medical educational dataset composed

of +1, 000 cases of pigmented skin lesions. Each case is as-

sociated with clinical and dermoscopic images. Each skin

lesion has clinical data (e.g., location, diameter, elevation),

histopathological results, diagnosis, and the presence or ab-

sence of dermoscopic attributes. The presence of those rich

metadata correspond to the pedagogical objectives of the

Atlas of teaching dermoscopy through reliable and under-

standable medical algorithms (e.g., the 7-point checklist).

The Atlas also groups the lesions according to their level of

diagnostic difficulty (low, medium or high), which indicates

how difficult it is to identify the medical attributes (e.g., net-

works, dots-and-globules, etc.) in the lesions. The difficulty

relies on the morphological variability of a given criterion,

which explains the sometimes low intra- and interobserver

agreement of such medical algorithm.

Since it is a dataset for medical education purposes, the

statistics of its metadata do not necessarily reflect their oc-

currences in any real-world population. In this work, we

are especially interested in the dermoscopic attributes an-

notation. Lesions’ dermoscopic attributes analysis (through

pattern-based medical algorithms) is crucial for dermatolo-

gists to diagnose skin cancer. This information enable us

to verify bias by comparing the medical algorithm perfor-

mance, the network performance, and an Artificial Intelli-

gence benchmark for melanoma classification [7]. Segmen-

tation masks, which is also relevant to this discussion are



not available, but we employ computational methods to ob-

tain them.

For our experiments, we select only the dermoscopic

samples, remove “duplicates” (some medical cases have

multiple images), and include only the classes present in

the dataset of task 2 of 2018 ISIC Challenge (melanoma,

nevus, and seborrheic keratosis). Those alterations result in

a dataset containing 872 images.

The ISIC Archive (ISIC) dataset [1] is a bigger and

more generic dataset, composed of more than 23, 000 im-

ages collected from different leading clinical centers inter-

nationally, using a variety of devices for acquisition. Since

the first ISIC Challenge in 2016 [15], this dataset is in-

creasing in size and in the amount of information avail-

able for each lesion. Segmentation masks and maps over

five dermoscopic attributes (pigment network, negative net-

work, streaks, milia-like cysts, and globules) are available

for smaller subsets of the dataset.

It is import to note that the dermoscopic attributes an-

notations in ISIC and Atlas differ in two ways. First, in

ISIC the annotation is a mask that maps the dermoscopic

attributes in the original images. In the Atlas dataset, we

only have the information about the presence or absence of

each dermoscopic attribute. Second, the two datasets an-

notated information about different dermoscopic attributes,

with different levels of detail. Unfortunately, only the pat-

terns present in the Atlas dataset allow to apply (and evalu-

ate) the medical pattern-based algorithms .

For all of this work’s experiments, we use only the data

from the second task of the ISIC 2018 Challenge [10] for

dermoscopic attribute detection. This subset contain 2, 594

lesions’ dermoscopic attributes information.

For both datasets, the class frequencies (types of skin

lesions, e.g., melanomas, nevi, keratoses) do not reflect

any real-world population. That, however, is a necessity

for training and evaluating machine-learning models, since

in real-world populations, the proportion of melanomas to

nevi, for example, is extremely small, generating huge im-

balances that most models would not tolerate. The need to

“rebalance” the classes for machine-learning, however, can

generate models biased towards some classes, and inflate

the rate of false positive for melanomas, for example.

2.2. Methodology

To evaluate the presence and effect of dataset bias in At-

las and ISIC, we propose to:

• Perform destructive actions (see Figure 1) in the

dataset to analyze if the network can still learn pat-

terns to correctly classify skin lesions, even without

clinically-meaningful information available.

• Apply the 7-point checklist algorithm [4] to the Atlas

dataset, and analyze the result comparing it with the re-

cent melanoma classification benchmark for AI [7] to

verify how biased it is due to its educational purposes

and acquisition methods.

• Perform constructive actions (see Figure 5) in the

dataset, building from clinically-meaningful informa-

tion to guide the network’s learning, to analyze if the

result improves.

To accomplish our goals, we propose destructive and

constructive actions in the target datasets. We present the

details of each destructive action and the result data in Sec-

tion 3, and the details of each constructive action and the

result data in Section 4. Next, we introduce our ideas to

exploit the deep neural network learning capabilities.

Destructing Atlas-dataset: We employ the Atlas

dataset with our disruptive actions for both training and test-

ing the network in the destruction of information approach.

We use 10 splits that we keep the same throughout all sets

of images (Traditional, Only Skin, Bounding Box, Bounding

Box 70%) to make comparisons fair. To compose each train-

ing split, we randomly select 70% of the images of each di-

agnostic difficulty present in the Atlas dataset (low, medium

and high). We compose the corresponding test split using

the 30% that is left. Following this procedure, we reduce

the possibility of biasing our results with a split that is es-

pecially good for a given set of images. Since the training

and test sets come from the same data distribution (same

dataset), we expect these results to be optimistic, and that

motivates our three next designs.

Destructing ISIC-dataset: We also apply the destruc-

tion of information approach to the ISIC dataset.We do that

to confirm the behavior verified in Atlas in a more generic

dataset, with fewer effects of human bias. We apply the

same 10 split generation procedure we described for this

experiment, except for the diagnostic difficulty stratification

(the information is not present for the ISIC dataset).

Destructing Cross-dataset: We increase the difficulty

by experimenting with a cross-dataset fashion. We train

with all 2, 594 samples from the ISIC dataset and evaluate

on the complete 872 images set from Atlas. The differences

between the statistics between those two datasets make this

task harder, and better reflect a real-world setting [22]. We

repeat that experiment 10 times, for statistical significance.

Constructing ISIC-dataset: We attempt to guide the

network’s learning using the dermoscopic attribute informa-

tion available for the ISIC dataset. We create three sets of

images (e.g., Grayscale Attributes, RGB Attributes, Tradi-

tional + Grayscale Attributes), where the amount of infor-

mation is gradually increased (see Section 4). We keep the

same training procedure and splits from Destructing ISIC-

dataset.

2.3. Training and Evaluation Setup

We use the same network architecture and hyperparame-

ters for all experiments. We employ an Inceptionv4 network



(a) Traditional images

(b) Only Skin images

(c) Bbox images

(d) Bbox70 images

Figure 1: Samples from each of our disrupted datasets. We gradually remove cogent information, until there is no information

left to apply any aspect of medical score algorithms [4, 12]. Next, we use those sets to evaluate if the network can still learn

patterns with the information left to correctly classify skin lesions. Best seen in digital format.

[21], widely used for computer vision, and well-established

for skin lesion analysis. To train each network, we use

Stochastic Gradient Descent (SGD) with momentum 0.9,

weight decay 0.001 and learning rate 1e-3, which we reduce

to 1e-4 after epoch 25. We use a batch size of 32, shuffling

the data before each epoch.

We fine-tune the ImageNet [20] pre-trained network to

the target dataset. We resize the input images to 299× 299

to fit the input size of Inceptionv4. To augment the dataset

[19], we apply random horizontal and vertical flips, random

resized crops that contain from 75% to 100% of the original

image, random rotations between −45 and 45 degrees, and

random hue changes between −20% to 20% We apply the

same augmentations on both train and test. For the evalua-

tion, we average the predictions over 50 augmented versions

of each image. We normalize the input using the z-score,

computed on ImageNet’s training set mean and standard de-

viation. For all experiments, we report the Area Under the

ROC Curve (AUC).

We limit our datasets to contain lesions’ dermoscopic

attributes for every sample, shrinking ISIC considerably.

Since both our datasets are relatively small, we choose not

to use a validation set, using the weights after the 60th epoch

for test evaluation2.

3. Information Destruction Experiments

In this section, we detail our information destruction ex-

periments. We intend to investigate the presence of dataset

bias by gradually removing cogent information. First, we

introduce the disrupted datasets used and proceed to show

and discuss our results.

3.1. Data

Next, we present the different datasets modifications

made for our first experiments and our motivations behind

each one. In Figure 1 we show examples of each varia-

tion. We point that we keep the same modifications for both

training and testing our networks.

2All our source code is readily available on https://github.

com/alceubissoto/deconstructing-bias-skin-lesion.



Traditional: This dataset contains the usual information

used for training and evaluating skin lesion analysis net-

works. The images contain all pixels’ information and we

expect it to have the highest scores in our tests, being our

upper bound baseline.

Only Skin: To create this dataset, we take advantage

of segmentation masks. We apply the mask in the samples

from the Traditional dataset, removing the pixels’ informa-

tion (they turn black) inside the actual lesion. We keep

only the silhouette of the lesion and the skin of the image.

Our intention when creating this dataset is to destroy the le-

sion information while verifying if the network could still

make sense of the remained pixels to classify the samples

correctly. Unlike the ISIC dataset, the Atlas dataset does

not provide the lesions’ ground truth segmentation masks.

To obtain them, we choose to use the SeGAN model [24],

which placed 4th on the segmentation task at the 2018 ISIC

Challenge making use of a generative approach for skin le-

sion segmentation.

Bounding Box (Bbox): The lesion border is an essential

feature to diagnose skin lesions. The classic ABCD medical

algorithm [17] consider this feature, which accounts border

symmetry and border regularity. To destroy this information

from the dataset, we cover the silhouette of the lesion with a

black bounding box. At this point, we already removed the

lesion and its borders information. Only healthy skin and

artifacts reminiscent from the image acquisition process are

available for the network to learn.

Bounding Box 70% (Bbox70): The diameter (size) of

the lesion is considered by dermatologists to diagnose skin

lesions since melanomas are usually bigger (start with a di-

ameter of more than 6mm [12] than benign lesions.The di-

ameter is the last clinical feature we attempt to remove from

the network’s learning possibilities. For this purpose, we

define that every bounding box must at least have the size

of a 250× 250 square (note that images are 299× 299). We

keep intact bounding boxes that need to be bigger to cover

the lesion. The 250× 250 square is sufficient to cover 70%

of the pixels. We place this square at the center of the lesion.

If the lesion is not in the center of the image, part of the box

is not visible. In these specific cases, it is possible that the

bounding boxes cover less than 70% of the pixels. At this

point, there is no information left to apply any of the factors

from the ABCD [12, 17], ABCDE [2] or any pattern-based

algorithm [4].

3.2. Results and Discussion

We employ the melanoma classification benchmark [7]

to measure the expected performance for dermatologists,

in an unbiased scenario. This benchmark is the result of

a study with 157 German dermatologists to be a reliable

benchmark for artificial intelligence algorithms. Brinker

et al.’s procedure were to send an electronic question-

naire to dermatologists containing 100 dermoscopic images

(80 nevi and 20 biopsy-verified melanoma) randomly cho-

sen from the ISIC Archive, asking for their evaluation. The

AUC achieved by dermatologists for dermoscopic images

(which is the case for our Atlas set) is 67%.

We employ 7-point checklist [4], a score-based medical

algorithm, to verify bias in the Atlas dataset. This way we

can isolate the neural network’s learning capabilities. Der-

matologists use attribution pattern analysis to diagnose ma-

lignant cases. The 7-point medical algorithm assigns a score

to each of the dermoscopic attributes. The medical prac-

titioner needs to accumulate the scores over the detected

present attributes. If this score surpasses a threshold, the

lesion is assigned as a melanoma. Dermatologists use this

information in addition to clinical information (if the lesion

is growing, if it itches, if it bleeds, if it hurts, its location

and patient’s age and sex), to diagnose skin lesions. We use

the 7-points checklist score available as metadata of the At-

las dataset3. It achieves 91.7% AUC over all selected Atlas

samples (see Figure 2).

The huge gap between the 7-point checklist performance

with the melanoma classification benchmark reveals it is bi-

ased due to the characteristics and educational objectives of

the Atlas dataset. Low and medium difficulty cases selected

to compose the dataset are probably hand-picked to be good

examples to teach new medical practitioners to identify and

classify dermoscopic attributes, while hard cases are excep-

tions to the pattern-based analysis.

Next, we try to find the source of bias, by gradually de-

structing clinical-meaningful information from the images,

and assessing the network’s performance on them. Fig-

ures 3 and 4 show the network’s performance for the differ-

ent sets in the Atlas, Cross-dataset, and ISIC experiments

respectively.

High difficulty lesions classification seem to be a very

hard and specific task to the network, as it is for dermatol-

ogists. It could not learn clinical patterns properly with the

training set, and destroying information do not influence the

results. We understand that the network is probably exploit-

ing image acquisition artifacts and dataset bias.

When experimenting in a cross-dataset fashion, the per-

formance drops as expected, because of the differences be-

tween the statistics of Atlas and ISIC. The behavior of the

network is similar in all experiments, and the following

analysis can be generalized.

Traditional has the best overall performance, as ex-

pected. The network results follow the annotation of dif-

ficulty to diagnose by dermatologists. The results start to

drop in Only Skin, where we start to deconstruct the infor-

mation. When we remove the pixel information inside the

lesion, we are removing all the information about dermo-

scopic attributes. The only clinically-meaningful informa-

3http://derm.cs.sfu.ca
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Figure 2: Performance of the 7-point checklist algorithm on

the Atlas dataset. It shows a huge gap to the performance of

dermatologists evaluated in 100 random dermoscopic sam-

ples from the ISIC Archive, which is 67% [7]. The results

for 7-point checklist applied on Atlas is optimistic consid-

ering the dataset’s bias towards its educational aspects.
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Figure 3: Models’ performance over the disturbed datasets.

We first remove all the pixel colors inside the lesion (only

skin), proceeding to remove border information (bbox), and

finally, removing the size (diameter) of the lesion (bbox70).

Surprisingly, even when we destruct all clinical-meaningful

information, the network finds a way to learn to classify skin

lesion images much better than chance.

tion present is the border of the lesion, that could be used to

verify its symmetry and irregularity, and skin features, such

as vascularization.

When we remove the information of the borders, on

Bbox, the performance lower, even more, revealing that we

removed an essential feature for classification. An expla-

nation, referring to medical algorithms like ABCD [17], is

that the diameter of the box contains the information on the

size of the lesion, which is also relevant information when

diagnosing skin lesions.

At Bbox70, we remove 70% of all pixels in the image

and all medical relevant features that could aid the clas-

sification. Still, surprisingly, the network can make sense

of visual features to make decisions that are much better

than chance. There is a pattern within the available pix-

els that contain information that leads to the correct label.

This is shocking. The numbers achieved by the network

at this point even surpass the AUC achieved by dermatolo-

gists on the melanoma classification benchmark. As sanity

check, we performed an experiment hiding all image infor-

mation, feeding the network (for training and testing) only

zero-filled images. We achieved an AUC of 50%, which is

expected since AUC is insensitive to class balance.

We believe that dataset bias is the culprit for inflating the

network’s performance in our destructive experiments, in-

troducing artifacts [16] that undesirably can deviate the net-

work’s attention from more critical features. We also ver-

ify that bias is not only present in the smaller educational

purpose Atlas dataset, but also the most diversified ISIC

dataset. Even performing the experiments in a cross-dataset

fashion (the network is trained on ISIC, and tested on At-

las), the unnatural behavior persists, attesting to the fact that

these two datasets may also share the same bias. We will

address the exact causes and artifacts in future works.

Another possibility is that there is meaningful informa-

tion at the borders of the images (parts that were not affected

by the destruction procedures). This is unlikely because ac-

cording to medical algorithms [2, 4, 17], there is no infor-

mation left to account.

4. Information Construction Experiments

Since we have masks that maps the dermoscopic at-

tributes in the lesion, we want to verify if we can simplify

and guide the learning process by feeding the network with

that detailed clinically-meaningful information. We gradu-

ally increase the amount of information fed to the network,

building from only the attributes information. We describe

each set of data in the next subsection.

4.1. Data

We introduce further modifications that are only possible

with the dermoscopic attributes masks available on the ISIC

dataset. Please refer to examples in Figure 5.

Grayscale Attributes: To compose each image in this

set, we use a lesion’s masks from ISIC that show the lo-

cation of five dermoscopic attributes and the same lesions’

segmentation masks. The skin without lesion, the lesion

without markers, and each dermoscopic attribute are as-

signed a different value, equally spaced from each other.

Dermatologists look for this information to diagnose skin

lesions, and it is the basis for different medical algorithms,

therefore being one of the most critical parts of the image.

RGB Attributes: This dataset only shows the RGB val-

ues of the regions of the image that belongs to an annotated

dermoscopic attribute, and mask the others. This way, the
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Figure 4: We show the differences over the disturbed datasets, stratifying the performance into the different diagnostic

difficulties. High difficulty diagnostic present resilience to the removal of cogent information. Despite not presenting as high

numbers as the other difficulties, they are still much better than chance, revealing the patterns learned are not clinical. Other

difficulties are more affected by the disturbances, but the overall result for bbox, and even bbox70, shockingly surpasses

melanoma classification benchmark [7] of 67%. This result suggests that dataset bias inflates our model’s results.

network does not know in principle what are the skin pat-

terns in the image or how many of them are present, but it

gain access to their RGB values. We keep the segmentation

mask information from Grayscale Attributes in this set to

display some information for cases that do not present any

skin patterns. ISIC’s annotation over the dermoscopic at-

tributes is not as detailed as Atlas’. By letting the network

analyze the RGB pixels that belong to a dermoscopic at-

tribute, we are forcing the network to focus on the attributes,

to discover more details about them (e.g. typical or atypical,

regular or irregular, etc.), and to rely the classification on

this information.

Traditional+Grayscale Attributes: Here we aim to

guide the learning process by giving to the network extra

information that is very relevant to dermatologists. We con-

catenate a fourth channel to the Traditional image, contain-

ing the information described in the Grayscale Attributes.

We need to adapt the network to receive the extra channel

in the input. We add an extra convolutional layer at the be-

ginning of the network, initialized to prioritize receiving in-

formation from the RGB channels, and progressively learn

to make use of the mask provided. We expected the results

to be better than Traditional since we are adding clinically-

meaningful information to guide the network to a better un-

derstanding of the process according to human knowledge.

4.2. Results and Discussion

We show in Figure 6 our results evaluating all different

sets on the ISIC dataset.

Our attempt to guide the network’s learning process did

not yield better results. Starting from Grayscale Attributes,

we are feeding the network with enough information to ver-

ify global patterns present in the lesion, and location of

some local features (pigment network, globules, streaks,

negative network, and milia-like cysts). We note that the

dermoscopic attributes information is not as detailed as the

one present in Atlas, and this may affect the capability of

the network to make correct predictions.

In RGB Attributes, we add pixel information to the im-

ages. That enables the network to learn details about each

different dermoscopic attribute and improve classification.

However, we did not observe that behavior. The extra infor-

mation did not help the network to improve its understand-

ing of the problem.

In Traditional+Grayscale Attributes, where we are add-

ing clinical relevant information to the usual classification

procedure to guide the learning process, the result did not

improve as well in comparison to the Traditional baseline.

5. Conclusion

If we hide the same lesion information from the net-

works, can it still learn patterns that help differentiate be-

nign from malignant lesions? We believe that when a model

learns to classify malignant lesions by analyzing only the

skin —without information on the borders, biological mark-

ers or lesions’ diameter— it strongly relies on patterns in-

troduced during image acquisition and general dataset bias.



(a) Traditional images

(b) Grayscale Attributes images

(c) RGB Attributes images

(d) Traditional+Grayscale Attributes images

Figure 5: Samples from each of the variations created for the information construction experiment. We build from the

dermoscopic attribute and segmentation information, gradually adding information until the samples contain all image’s

pixels plus an additional channel containing extra dermoscopic attribute and segmentation information.
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Figure 6: Performance comparison of the different sets of

images with the ISIC dataset. Surprisingly, when we try to

simplify the learning process, feeding the network with der-

moscopic attributes that are clinically-meaningful, the result

does not improve.

Surprisingly, the result when feeding the network with

clinically-meaningful information from the dermoscopic at-

tribute maps (Grayscale Attributes and RGB Attributes sets)

is worse than feeding it only with healthy skin information

(Only Skin and Bounding Box sets). That leads us to be-

lieve that also our networks’ results towards both datasets is

optimistic, not only the performance of 7-points over Atlas

(which is expected).

That problem is critical for deploying automated skin le-

sion analysis. When performing in the real world, we want

the network to be as unbiased as possible to make decisions

based on clinical features. Therefore, it is urgent to under-

stand the current bias in the datasets used to train and eval-

uate our works.
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