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Abstract

This paper describes the customization of the camera

processing pipeline of a machine vision camera that has

been integrated into a hand-held dermatological imaging

device. The device uses a combination of visible and non-

visible spectral LEDs to allow capture of visible RGB im-

agery as well as selected non-visible wavelengths. Our cus-

tomization involves two components. The first component

is a color calibration procedure that ensures the captured

images are colorimetrically more accurate than those ob-

tained through the machine vision camera’s native API. The

need for color calibration is a critical component that is

often overlooked or poorly understood by computer vision

engineers. Our second component is a fast method to in-

tegrate the narrow band spectral images (some of which

are outside the visible range) into the visible RGB image

for enhanced visualization. This component of our pipeline

involves evaluating several algorithms capable of multiple

image fusion to determine the most suitable one for our ap-

plication. Quantitative and subject results, including feed-

back from clinicians, demonstrate the effectiveness of our

customization procedure.

1. Introduction

This paper describes a custom imaging device for der-

matological inspection constructed with an integrated ma-

chine vision camera. Machine vision cameras offer sev-

eral advantages over consumer-oriented cameras, such as

DSLR and mobile phone cameras. These advantages in-

clude: (1) a larger sensor offering improved signal-to-noise

performance; (2) the lack of an near-infrared (NIR) filter

that allows non-visible spectral data to be captured; and

(3) supporting software and APIs that allow low-level con-

trol over camera settings and the ability to perform external

event triggering for image capture. One crucial disadvan-

tage of machine vision cameras, often overlooked by com-

puter vision researchers, is that these cameras are typically

not colorimetrically calibrated. Moreover, their supporting

APIs often do not provide any mechanism for color correc-
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Figure 1. (A) Image directly obtained using the machine vision

camera’s API. (B) Result from our customized camera processing

pipeline after color calibration and photo-finishing. (C) Enhance-

ment of the visible imaging using a selected spectral band to high-

light melanin pigmentation. The narrow band image is shown as

an inset.

tion beyond simple per-channel gain manipulation. In addi-

tion, machine vision cameras lack onboard photo-finishing

that allows consumer-oriented cameras to produce percep-

tually pleasing images. When machine vision cameras’ im-

ages are used in applications where the image content needs

to be displayed to users (especially non-vision experts), the

perceived quality of the machine vision imagery often ap-

pears lower than consumer-camera imagery – even though

the overall sensor performance of the machine vision cam-

era is better (see Figure 1).

In addition, for applications that benefit from images

within specific spectral bands – for example NIR spectral

bands – there are a range of different options regarding how

to use this information to enhance a visible three-channel

RGB image. In this paper, we explore these options within

the context of dermatological imaging.

Contribution This paper describes how to customize a ma-

chine vision camera image pipeline to produce high-quality

perceptual images for dermatological applications. As part

of this work, we describe the features provided by a typ-

ical machine vision camera and discuss why they are not

suitable to produce high-quality perceptual images. Our

primary contribution is to overview a calibration procedure

that not only colorimetrically calibrates the machine vision

camera but also allows it to mimic the photo-finishing ap-

plied on consumer cameras. Our dermatological imaging
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Figure 2. Our device: (A) Schematic diagram of our imaging

device. A machine vision camera is integrated inside a closed

housing with a ring of LEDs. The LEDs emit a range of visible

and non-visible spectra targeting different bio-markers for derma-

tological disorders. (B) Image of the current prototype device.

system also has the ability to capture images from select

narrow spectral bands in both the visible and NIR range. As

part of this case study, our secondary contribution is to de-

scribe how select spectral images can be incorporated into

the visible RGB image to provide enhanced imagery. To

this end, we gathered feedback from clinicians to under-

stand their preference regarding which bands and integra-

tion methods are preferred.

2. Imaging Device and Application

The customization described in this paper is for a derma-

tological imaging device that is undergoing clinical evalu-

ation. Figure 2-(A) shows a diagram of the device’s con-

struction. A machine vision camera using a Sony IMX172

12MP RGB sensor is integrated into a closed housing with

an LED light ring. The light ring is composed for eight (8)

LEDs that emitted selected visible and NIR wavelengths,

each targeting different biomarkers (e.g., eumelanin and

hemoglobin). The corresponding LED wavelengths range

between 400-1100 nm. An additional LED that emits

broadband visible light is included. The sensor lacks a hot

mirror that is typically found on consumer cameras to block

NIR light. By triggering image capture with the LED emis-

sion, a visible RGB image in addition to the multiple spec-

tral bands can be captured in a single image capture session.

Figure 2-(B) shows an image of the actual device.

The visible and non-visible images obtained from this

device are used with a proprietary deep-learning module

that provides dermatologists with objective data to decide if

a biopsy is needed for further investigation of a skin lesion.

In addition, the doctors can use the device for magnification

of the target and their own visual inspection. When used

manually, our device can serve as a potential replacement,

or auxiliary device, for existing hand-held dermatoscopes

that use a magnifying lens with an illumination source. We

note that this paper does not discuss the associated deep-

learning system. Instead our focus is on the calibration of

the imaging rig, with emphasis on processing the machine

vision data for perceptual output.

3. Related Work

Related work is discussed in two areas: (1) camera color

calibration and (2) spectral image fusion.

Camera calibration and customization RGB camera sen-

sors have their own spectral sensitivity for each color chan-

nel. As a result, images captured by a camera are in a

sensor-specific RGB color space. An insightful analysis

of the diversity of spectral sensitivities and sensor-specific

color spaces for a wide range of cameras can be found

in [15]. A minimally processed camera image is typically

referred to as a raw-RGB image. Most machine vision cam-

eras and consumer cameras now allow access to the raw-

RGB image. A desirable property of raw-RGB images for

many computer vision tasks is that their response is linear

with respect to scene irradiance.

Colorimetric calibration of a camera sensor is the pro-

cess of computing the mapping of the raw-RGB color space

to a canonical perceptual color space, generally the CIE

1931 XYZ color space or one of its derivatives. Calibra-

tion is generally performed using a color rendition chart

(e.g., an X-Rite Color Chart) that has color patches that

have known CIE XYZ values. By imaging a color chart,

simple linear regression can be used to estimate 3 × 3
matrix transforms based on raw-RGB and CIE XYZ color

correspondences. Early work by Hong et al. [13] suggested

a color space transform based on higher-order polynomial

terms could be used to provide a more accurate mapping.

Recent methods, such as Funt and Bastani [3] and Finlayson

et al. [8, 9], have developed approaches to estimate the col-

orimetric transform when the color rendition chart is non-

uniformly illuminated. Finlayson et al. [11] introduced the

polynomial color correction by using a root polynomial that

makes the high-order transform invariant to camera expo-

sure. Karaimer and Brown [17] and Bianco et al. [5] pro-

posed various weighting schemes for the color space trans-

form that also consider the scene illumination. These afore-

mentioned approaches all target cameras used in standard

imaging scenarios.

There is significantly less work published on customized

color calibration of applied imaging rigs for specific tasks.

Notable examples include Berman et al. [4], who developed

an imaging pipeline for underwater imaging. This work

considered the spectral attenuation that occurs in water me-

dia. Work by Karaimer and Brown [16] introduced a camera

imaging software pipeline that allowed camera emulation

starting with a raw-RGB image input. While their work did

not target a specific application, the software allows easy

customization of the overall camera pipeline for any task.

The lack of a concrete example that details how to calibrate

a machine vision camera beyond simple color mapping is

one impetus for this paper.

Spectral image fusion There are a number of methods suit-

able to perform image fusion. Early work typically re-
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Figure 3. (A) A typical camera imaging pipeline overviews the common steps applied onboard a machine vision camera. (B) A typical

camera imaging pipeline overviews the common steps applied onboard a consumer camera.

lied on copying data from frequency decompositions be-

tween images and then reconstructing a new image (e.g., [7,

20]). More modern methods involve joint-image filter-

ing (e.g., [21, 22]). While these methods are generic in na-

ture, they are suitable for transferring narrow band spectral

data to RGB images.

There are several works focused directly on processing

visible images with the help of non-visible data. For ex-

ample, Krishnan and Fergus [19] showed how noisy low-

light images could be denoised using a corresponding high-

quality NIR image. Similar work by Wu et al. [24] removed

light glows for low dynamic range web cameras using NIR

imagery. Fredembach et al. [12] and Süsstrunk et al. [23]

proposed methods that used NIR images to remove skin im-

perfections like freckles, pores, warts, and wrinkles from

RGB images. Zhang et al. [25] showed how to combine

NIR images to create high-dynamic-range RGB images.

These methods employed variations on joint-image filtering

as discussed above. Recent work by Connah et al. [6] and

Finlayson et al. [10] proposed gradient domain approaches

that avoid both filtering and frequency decomposition.

In this paper, we evaluate several of the methods above

to test their suitability for our application for dermatological

evaluation.

4. Machine Vision versus Consumer Camera

Pipelines

Here we describe the processing steps found on machine

vision cameras and consumer cameras. This section helps

to reveal why machine vision cameras’ images appear vi-

sually different from consumer cameras. The section also

concludes with a short discussion on common issues that

arise when working with machine vision cameras.

Machine vision camera pipeline Figure 3-(A) shows a di-

agram of a machine vision camera pipeline. Although ma-

chine vision cameras are generally more expensive than

consumer cameras, the onboard processing is typically

much simpler. The following steps are typical of most ma-

chine vision cameras.

Step 1: Raw-RGB capture. The raw image is obtained

from the camera sensor in a mosaiced Bayer pattern format.

The data is typically 10–16 bits per channel.

Step 2: Pre-processing. The raw image is linearized to

transform its values to range between 0 and 1. This includes

a black-level offset correction based on the camera’s current

sensor readings.

Step 3: Demosaicing. The image is demosaiced into three

full-sized channels.

Step 4: White balance. An optional white balance can be

applied. This is typically applied as an independent gain on

the red and blue channels only. Most machine vision cam-

eras will provide an auto white balance function or allow

this to be manually set via software API calls. Note that

most APIs do not call this white-balance.

Step 5: Gamma. Most machine vision cameras will al-

low an optional gamma function to be applied to the RGB

image.

Step 6: Output. The final output image can be optionally

quantized to 8-bit, but is typically not compressed.

It is important to note that the machine vision camera

image is still in the sensor-specific RGB space. As a result,

the image is not suitable for display on monitors which as-

sume a standard RGB (sRGB) display-referred color space.

Figure 1-(A) shows an example of a gamma. Although the

image may appear correct, the colors are being incorrectly

interpreted as sRGB.

Consumer camera pipeline This section provides a brief

overview of a consumer camera imaging pipeline; for more

details, readers are encouraged to have a look at [16, 1]. Fig-

ure 3-(B) shows a diagram of a consumer camera pipeline.

Consumer cameras aim for perceptually pleasing images.

Steps 1 and 2 are the same as a machine vision camera and

are not discussed here. Note that some of the steps may be

applied in different orders.



Step 3: A flat-field correction. A spatially varying gain is

applied to correct for uneven light fall on the sensor due to

the camera’s form factor and lens characteristics.

Step 4: Demosaicing. This is applied similarly to the ma-

chine vision camera. Often edge sharpen may be included

to enhance the appearance of the image.

Step 5: Denoising. Many consumer cameras, especially

smartphone cameras, incorporate some type of image de-

noising.

Step 6: White balance. Unlike machine vision cameras,

this is not optional. All consumer cameras apply a white-

balance step. White-balance compensates for the scene il-

lumination and prepares the image for a subsequent color

space transform to map the sensor-specific raw-RGB to a

device-independent perceptual color space.

Step 7: Color space transform. Consumer cameras con-

vert the raw-RGB color space to a perceptual color space

based on CIE XYZ, such as a linear standard RGB (sRGB).

This transform is reliant on the quality of the previous

white-balance step and does have limitations (for more de-

tails see recent work by Karaimer and Brown [17]); how-

ever, in general, the color transform step serves as a reason-

able colorimetric conversion of the raw-RGB image.

Step 8: Photo-finishing. Consumer cameras apply propri-

etary color manipulation to improve the appearance of the

image. While this is shown as a single step in Figure 3-(B),

photo-finishing often involves multiple substeps depending

on the camera. These steps include per channel tone-curves,

application of 3D look up tables (LUT), and selective color

manipulation. Spatially varying photo-finishing can also

be applied. The photo-finishing step generally imparts a

unique look and feel to the final output image that is asso-

ciated with a particular make and model of a camera (e.g.,

Nikon, Canon, iPhone, Samsung).

Step 9: Compression and output. Consumer cameras ap-

ply JPEG compression to the output image. The image is

encoded in a display-referred color space, typically sRGB.

These images are suitable for display.

Remarks Many computer vision researchers are not aware

of the differences between a machine vision and consumer

camera pipeline. Often the API documentation provided

with machine vision cameras does not help to clarify these

issues. The machine vision camera based on the Sony

IMX172 sensor provided additional API calls that allowed

manipulation of the captured image in the Hue, Satura-

tion, Value (HSV) space. While HSV can be used to re-

parameterize an arbitrary RGB color space, it is most of-

ten associated with a gamma-encoded sRGB color space.

The Sony IMX172 documentation failed to mention that the

HSV is in the camera’s raw-RGB color space. Only by call-

ing the manufacturer were we able to assess this. In fact,

the camera’s documentation never specified if a colorimet-

ric conversion was performed onboard the camera.

Not understanding the color space images are saved in

can have serious consequences. For example, when display-

ing sensor-specific RGB images, the observer is not seeing

an image that is correctly calibrated for a display. Another

serious consequence is when the imagery is used to train

machine learning modules. If a deep-learning module is

trained using a sensor-specific RGB input, it may not gen-

eralize well to other input color spaces – as a result, an ap-

plication can be restricted to work with only a particular

make and model of a camera. The following section dis-

cusses how this can be avoided by customizing the camera’s

pipeline of a device.

5. Custom Camera Pipeline and Results

This section describes our customized camera pipeline

for our dermatological imaging device. Further, given the

availability of the narrow band spectral data (including non-

visible bands), we provide a mechanism to use this infor-

mation to enhance our RGB image. Figure 4 shows an

overview of our customized pipeline.

Flat-field correction Because our LED lights are at differ-

ent positions, we need to compute a flat-field correction for

each LED. We can do this by imaging one of the achromatic

patches on a color rendition chart with each LED turned

on. This patch has a uniform reflection and therefore any

deviation in the captured image is assumed to be due to a

combination of light position and lens. To correct the non-

uniform response, we construct a map that inversely scales

each pixel’s intensity to the intensity level in the middle of

the image that the lens focuses on best.

Figure 5 shows the vignetting maps computed for each

nine LEDs. Due to slight misalignment of the camera’s

optical axis with the 3D printed housing of our prototype

device, the flat-field distortion maps are all dominated by

strong fall near the lower region of the imaging field. Such

issues should be resolved with proper industrial design of

the production-level device.

Color calibration Our sensor needs to be colorimetrically

calibrated as discussed in the previous section. We tested

both a 3×3 and a 3×11 matrix color space transform (CST) to

map our raw-RGB values to the CIE XYZ color space. The

3×11 matrix is based on the polynomial equations proposed

by Hong et al. [13]. Since we have a fixed light source in our

imaging device, we do not need to compute a white-balance

matrix. Instead we can directly compute a transform from

the raw-RGB to our target color space. In our case, we map

to linear-sRGB. To compute our CST, we place our device

over each of the color patches in a Macbeth chart and take a

reading with the visible band LED light turned on. Flat-field

correction is applied to the captured images before extract-

ing the raw-RGB color values of each patch.

We use iteratively re-weighted least squares [14] to com-

pute the mapping functions based on the color correspon-
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Our customized camera imaging pipeline

Figure 4. This �gure shows the customized pipeline design which allows the machine vision camera to behave more similarly to a consumer
camera pipeline. A noticeable difference is that we do not need to perform a white-balance step since we will always be imaging under the
same lighting conditions. This means the white-balance can be absorbed into the color space transform. We include additional tone curve
processing and optional color manipulation (3D LUT) to mimic the appearance of consumer cameras. Our pipeline also includes a select
spectral band image pipeline that processes the narrow band spectral image and then integrates it with the RGB image.

dence. To examine the quality of our mapping, we can vi-
sualize the angular error between the target patch colors and
our mapped colors. Angular error is computed as follows:
assuming a target color patch isI t = [ r t; gt; bt]T and the
mapped RGB value isI u = [ r u; gu; bu]T , the angular error
Eang (in degrees) between the two colors is:

Eang =
180
�

cos� 1
�

I gt � I u

kI gtkkI uk

�
; (1)

whereT is the transpose operator and� is the dot product.

Figure 5. Flat �eld correction maps corresponding to the nine dif-
ferent LED lights.

Angular error is often used to measure color differences to
account for potential intensity differences between the two
measurements [17].

We also examine our estimated CSTs on a different set
of color patches consisting of 128 skin colors obtained from
theMunsell Book of Color. TheMunsell Book of Colorpro-
vides patches that are indicative of skin tones. We also com-
pare the results of applying white balance to the raw-RGB
image. The white-balance gains are computed by measur-
ing an achromatic patch with the device and then adjusting
the camera's red and blue gain such thatR = G = B for all
pixel intensities in that patch. The angular RGB errors for
each of these methods are shown in Figure 6. We can see
that colorimetric calibration drastically improves the accu-
racy of mapping to a perceptual space.
Photo-�nishing After colorimetric conversion, we can send
the linear-sRGB images off to our AI module for image
analysis. However, for visualization, we still need to ap-
ply an additional non-linear mapping. The sRGB standard
speci�es a2:2� 1 gamma encoding to brighten the image.
However, all cameras apply a proprietary tone-curve to pro-
cess the image instead of the2:2� 1 gamma encoding. These
tone curves can often be extracted from metadata saved in
the Adobe DNG �le format [16]. Additionally, many cam-
eras, especially DSLRs, include a more complicated color
manipulation based on a 3D LUT. The LUTs are associ-
ated with different picture styles settings on the camera
(see [18]).

For our customization pipeline we are able to do both.
Figure 7 shows an example. Figure 7-(A) shows the stan-










