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Abstract

The prediction of human shifts of attention is a widely-

studied question in both behavioral and computer vision,

especially in the context of a free viewing task. However,

search behavior, where the fixation scanpaths are highly de-

pendent on the viewer’s goals, has received far less atten-

tion, even though visual search constitutes much of a per-

son’s everyday behavior. One reason for this is the absence

of real-world image datasets on which search models can

be trained. In this paper we present a carefully created

dataset for two target categories, microwaves and clocks,

curated from the COCO2014 dataset. A total of 2183 im-

ages were presented to multiple participants, who were

tasked to search for one of the two categories. This yields

a total of 16184 validated fixations used for training, mak-

ing our microwave-clock dataset currently one of the largest

datasets of eye fixations in categorical search. We also

present a 40-image testing dataset, where images depict

both a microwave and a clock target. Distinct fixation pat-

terns emerged depending on whether participants searched

for a microwave (n=30) or a clock (n=30) in the same im-

ages, meaning that models need to predict different search

scanpaths from the same pixel inputs. We report the results

of several state-of-the-art deep network models that were

trained and evaluated on these datasets. Collectively, these

datasets and our protocol for evaluation provide what we

hope will be a useful test-bed for the development of new

methods for predicting category-specific visual search be-

havior.

1. Introduction

How humans allocate their spatial attention, overtly mea-

sured by changes in eye gaze, is a question having clear

benefits to both computer and behavioral vision. For behav-

ioral vision, a model that can predict the sequence of gaze

Figure 1: A viewer’s scanpath while searching for a mi-

crowave. Note the clear preference for fixating locations

on the kitchen countertop, a behavior that would not be re-

liably captured by saliency maps from bottom-up models.

Can computational models predict the priority maps under-

lying such search scanpaths? In this paper, we propose a

behavioral dataset that provides a useful test-bed for quali-

tative and quantitative evaluation of this important task.

fixations made in response to an image would be a source

of innumerable hypotheses for behavioral testing that would

accelerate our understanding of human attention. For com-

puter vision, an ability to predict fixation locations would

similarly drive the development of next-generation systems

that could intelligently anticipate a user’s needs or desires.

In one sense this mutual benefit has already been realized.

The goal of predicting fixation behavior in a free-viewing

task has fueled the development of saliency models, so

much so that there is an active competition for best per-

formance1, and these methods are increasingly being used

in computer vision applications ranging from object detec-

tion [27] to intelligent image editing/re-targeting [10]

However, it is important to realize the distinction be-

1http://saliency.mit.edu/results_mit300.html
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tween “saliency” and “priority”. Priority, as the term is used

in the fixation prediction literature [38], refers to a general

prioritization of image locations for the purpose of predict-

ing gaze, with the term “saliency” referring to a specific

type of prioritization–one based on information solely in

the image input (e.g., feature contrast, as in the saliency

model by Itti et al. [15]). For this reason, saliency mod-

els are often described as “bottom up”; they will produce

the same output for an image regardless of the goals of the

person. Bottom-up saliency models have historically been

contrasted with “top-down” models of attention control, al-

though this dichotomy has become strained both in theory

[29] and by recent saliency models explicitly or implicitly

incorporating limited top-down information in their predic-

tions [17, 18]. In general, “top-down” models of attention

control recognize that the vast majority of meaningful gaze

behavior is made in the service of specific tasks and goals.

Moreover, these tasks or goals can be entirely arbitrary. If

a person walks into an unfamiliar kitchen with the task of

warming a cup of tea, their goal might be to find a mi-

crowave oven. To mediate this goal, priority should there-

fore be assigned to the locations in the kitchen input having

features offering the most information about microwaves.

But if this person’s task was to check the time, their goal

would be to find a clock and these features should be prior-

itized in the input instead. These different microwave and

clock prioritizations would both be considered top-down,

and different from bottom-up prioritization in that the same

visual input would lead to potentially very different fixation

behavior. Perhaps more useful than a bottom-up/top-down

dichotomy would be to consider a set of possible priority

maps equalling a set of tasks that might be engaged given

an image input, with the prioritization output by a saliency

model being specific to the relatively minimal task of free-

viewing.

The present study focuses on goal-directed behavior, and

specifically on a visual search task. Visual search, the hu-

man analog to object detection in computer vision, is ar-

guably the simplest of goal-directed behaviors—there is an

object goal, called the “target”, and the task is to determine

the location of this target goal in an image (or to conclude

that it is absent). This goal-specific prioritization is mea-

sured behaviorally by an increase in the probability of fixat-

ing image locations having target features, with this pref-

erential direction of attention referred to as “target guid-

ance”. Target guidance during search was first quantified

using very simple targets having simple features that were

known to the searcher (e.g., [34]). This work was followed

by computational models that used more complex images

as inputs, but still assumed perfect knowledge of the tar-

get’s features (e.g., [37]). Most recently, search guidance

has been shown to targets defined only by their object class

[21, 22, 28, 31, 32, 35, 36, 39, 40], making the question

more aligned with efforts in computer vision. The study

presented in this paper used a categorical search task, and

specifically asked people to search for either microwave or

clock categorical targets in kitchen scenes, as in the exam-

ple shown in Figure 1.

A model’s success in predicting fixation behavior de-

pends on the availability of data that can be used for train-

ing. Saliency models are again an excellent example of this,

with the currently best performing models all being deep

neural networks trained on the fixations of people viewing

large image datasets [2, 16, 17, 33]. Here we attempt to

do the same for visual search. The prediction of fixation

behavior during categorical search is currently limited by

the availability of training data. The few datasets that could

be used to train a search model are either relatively small

and limited to people [8] or large and including more tar-

get categories (six classes of animals) but from a task in

which participants were instructed to ”find all animals in

the scene” [11] rather than a more standard search task hav-

ing target-present and target-absent trials. There is also the

POET dataset [24], which contains fixation data from 28

people viewing 6270 images from VOC2012 [9] depicting

ten target classes (cat, dog, boat, aeroplane, horse, cow, bi-

cycle, motorbike, sofa and dining table), but the task was

two-alternative forced-choice object discrimination and not

visual search. Our microwave-clock-search dataset (MCS)

was collected using a categorical visual search task with in-

terleaved target-present and target-absent trials. It contains

high-quality fixations obtained under well controlled labo-

ratory conditions, and is large enough to train deep network

models. Additional effort was expended in collecting a test

set of images that depicted both microwaves and clocks, and

in the use of these images to evaluate the success of state-of-

the-art deep learning models in predicting search scanpaths

for these two target categories.

2. Behavioral Methods and Data

Two behavioral data collection efforts were conducted

for this study. The first involved collecting eye move-

ment data from people searching for targets from either

the microwave or clock categories (not both). This was

done for a large number of images with the goal be-

ing to create a dataset of fixation-labeled images large

enough for model training. The second effort again in-

volved collecting gaze fixation data for the same target

categories, but this time for a smaller and more con-

trolled dataset and using a larger number of participants.

Here our goal was to obtain a valid ground truth for

search behavior against which models could be evaluated.

Both the training and testing images were selected from

COCO2014 [20]. The training and testing datasets are

available at https://www3.cs.stonybrook.edu/

˜cvl/projects/coco_search/index.html, and
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Figure 2: Representative images and scanpaths from our dataset for viewers searching for a clock. Each image was seen by

multiple viewers, and their gaze scanpaths were collected. Note the clear difference in behavior relative to the scanpath in

Figure 1.

some example images and scanpaths are shown in Figure 2.

2.1. Training data

Given the practical costs and limits associated with the

collection of high-quality fixation behavior (200 search im-

ages ≈ 1 hour of a participant’s time in the laboratory),

our current effort was restricted to just two target cate-

gories: microwaves and clocks. The microwave category

in COCO2014 [20] has 1089 images in their training set

and 512 images for validation. The clock category has 3159

training images and 1704 validation images. However, sev-

eral criteria were imposed on the selection of training im-

ages: (1) images were selected only from the training sets

for the microwave and clock categories and images overlap-

ping with the testing data were excluded. (2) Images were

excluded if they were labeled as containing people or ani-

mals. This was done to avoid the known strong biases to

these categories that might skew our predictions of atten-

tion control [3, 17]. (3) Only images of analog clocks were

selected. This latter constraint, which was implemented by

manual exclusion of images having digital clocks, was in-

troduced because the features of analog and digital clocks

are very different and this would be expected to create vari-

ability in the search behavior and reduce data quality. As

a result of these exclusion criteria, the microwave-clock

dataset used for training in this study consisted of 689 im-

ages containing microwaves and 1494 images containing

clocks.

Because a search task requires participants to judge for

each image whether the target is present or absent, the

target-present (TP) images were balanced against an equal

number of target-absent images (TA). TA images were se-

lected randomly from the COCO2014 training images2 such

that: (1) none depicted an instance of the target, and (2) all

depicted at least two instances of the target’s siblings, where

a microwave sibling was defined as an oven, a toaster, a re-

frigerator, or a sink object under the parent category of ap-

pliance, and a clock sibling was defined as a book, a vase,

scissors, a hairdryer, a toothbrush, and a teddy bear under

the parent category of indoor. This was done to discourage

TA responses from being based on scene type (e.g., a city

street scene would be unlikely to depict a microwave).

The large size of the dataset required that the search im-

ages for each target category be distributed over groups of

searchers. For the microwave dataset, images were divided

into 8 sub-groups and each sub-group was viewed by a sin-

2In the released dataset, there are more TA images than TP due to ad-

ditional criteria being imposed on the selection of TP images for analysis.
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Figure 3: Example images from the training (top row) and testing (bottom row) datasets. From left to right: a hard-to-�nd
microwave, an easy-to-�nd microwave, a hard-to-�nd clock, an easy-to-�nd clock.

gle participant. Eight participants, at minimum, were there-
fore needed to view the entire microwave dataset. Given a
�nal total of 27 participants in the microwave search task,
each TP/TA image was searched by 3-4 different partici-
pants. For the clock dataset, images were divided into 20
sub-groups, resulting in each of the TP/TA images being
searched by 1-2 different viewers based on a total of 26 par-
ticipants.

Participants were verbally instructed to search for the
designated target category and to make a target present
or absent judgment for each image. Speci�cally, they
pressed the “yes” button to indicate that they found the
target, and the “no” button to indicate their judgment that
the target does not appear in the image. Sound feed-
back was provided after incorrect responses. Participants
viewed the images at a distance of 47cm from the monitor
(resolution:1280� 800), �xed by chin rest, and they were
asked to �xate a central point before the display of each
search image. The location of this �xation point corre-
sponded to the center of the following search image, thereby
forcing each search to begin near the image's center. The
range of the search display visual angles were 12� -28.3� in
width and 8� -28.3� in height. Eye position was sampled
during the entire experiment at a rate of 1000 Hz using an
EyeLink 1000 eye tracker (SR Research) in tower-mount
con�guration. Average tracker spatial error was less than
0.5� and maximum spatial error was less than 1.9� , based
on calibration. Viewing was binocular, but movements of
only the right eye were recorded. After removing incor-
rect trials and target-present trials in which the target was
not �xated, 16184 search �xations remain for the images in
the training dataset. Table 1 provides descriptive statistics
for average number of �xations, grouped by target type and
TP/TA condition. Figure 3 shows examples of easy-to-�nd
and hard-to-�nd microwave and clock targets.

2.2. Testing data

A total of 40 images from COCO2014 were selected for
testing, none of which overlapped with the set of training
images. In addition to the criteria imposed on the selection
of the training images, three more criteria were used in se-
lecting the test set: (1) each of these images contained both
a single instance of a microwave and an analog clock, (2)
the size of the target was less than 10% of the image, and
(3) the target could not appear at the image's center, as im-
plemented by selecting images to avoid the center of a 5x5
grid. In our own subjective opinion, these additional criteria
created what we consider to be a set of moderately-dif�cult
images requiring active searches for the target goals, with
an exemplar of each goal being in each image. Among the
40 TP test images, 27 images were from the COCO2014
training set and 13 were from the COCO2014 validation
set. Similar to the TA images described for training, 40 TA
images were selected from the COCO2014 validation set
using the same selection criteria already described for the
training dataset.

The apparatus used for behavioral data collection (Eye-
Link 1000), the experimental paradigm (microwave and
clock categorical search tasks), and the procedural details,
were all identical to what was described for the training
dataset, with two exceptions: an ”analog clock” was specif-
ically mentioned in the instructions to participants tasked
with searching for a clock, and there was no accuracy feed-
back following an incorrect response. The image stimuli
were padded and resized to best �ll a1680� 1050 pixel
monitor (without changing image orientation), resulting in
a visual angle of54� � 35� . A group of 30 participants
searched for a microwave target and another group of 30
participants searched for a analog clock target. None of
these people participated in data collection for the training
dataset.
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