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Abstract— We present a real-time algorithm for emotion-aware
navigation of a robot among pedestrians. Our approach es-
timates time-varying emotional behaviors of pedestrians from
their faces and trajectories using a combination of Bayesian-
inference, CNN-based learning, and the PAD (Pleasure-Arousal-
Dominance) model from psychology. These PAD characteristics
are used for long-term path prediction and generating proxemic
constraints for each pedestrian. We use a multi-channel model
to classify pedestrian characteristics into four emotion cate-
gories (happy, sad, angry, neutral). In our validation results, we
observe an emotion detection accuracy of 85.33%. We formulate
emotion-based proxemic constraints to perform socially-aware
robot navigation in low- to medium-density environments.
We demonstrate the benefits of our algorithm in simulated
environments with tens of pedestrians as well as in a real-world
setting with Pepper, a social humanoid robot.

I. INTRODUCTION AND OVERVIEW

Recent advances in technology predict that humans will soon
be sharing spaces in public places, sidewalks, and buildings
with mobile, autonomous robots. Recently, mobile robots are
increasingly used for surveillance, delivery and warehousing
applications. It is important that such robots navigate in
socially acceptable ways, meaning that they seamlessly navi-
gate through pedestrian traffic while responding dynamically
– and appropriately – to other pedestrians.

A robot navigating through the world alone is primarily a
physical problem (compute collision-free and efficient paths
that satisfy the kinematics and dynamics constraints of the
robot) because it has to make its way around obstacles. How-
ever, when there are other pedestrians in this environment,
navigation becomes just as much about social navigation
as it does about physical navigation. Humans act as both
dynamic and social obstacles to a robot and have their own
intentions, desires, and goals, which can affect a robot’s
progress. Additionally, a robot’s movement may also affect
humans’ comfort and/or emotional state.

To predict other people’s goals, people use a variety of cues,
including past behavior, speech utterances, and facial expres-
sions [13]. One of the most important predictors of people’s
behavior is their emotions [22], and therefore understanding
people’s emotional states is essential for making your way
through the social world [1]. The ability to understand
people’s emotions is called “emotional intelligence” [32]
and is useful in many social situations, including predicting
behavior and navigation. As more robots are introduced in
social settings, techniques to develop emotional intelligence
of robots become increasingly important in addition to
merely satisfying the physical constraints.
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Fig. 1: The Emotionally Intelligent Robot: We present
a real-time data-driven planning algorithm that learns the
emotion state of the pedestrians to perform socially-aware
navigation. (Top) The robot learns pedestrians’ emotions and
their proxemic constraints to improve both social comfort
and navigation. (Bottom) The robot extracts facial expres-
sions using an onboard camera and combines it with the
trajectory information from the camera in (Top) to efficiently
compute the overall emotions of the pedestrians and perform
socially-aware navigation.

However, understanding the emotions of pedestrians is a
challenging problem for a robot. There has been considerable
research on using non-verbal cues such as facial expressions
to perceive and model emotions [8]. However, recent studies
in the psychology literature question the communicative
purpose of facial expressions and doubt the reliability of
emotions perceived only from these expressions [31]. There
are many situations where facial data is only partially
available or where facial cues are difficult to obtain. For
example, a pedestrian may not be directly facing the robot
or may be far away from the robot. Therefore, combining
facial expressions with a more implicit channel of expression
such as trajectories is vital for more accurate prediction of
humans’ emotional states.

Main Results: We present a real-time data-driven
planning algorithm that takes the emotional state of the
pedestrians into account to perform socially-aware naviga-
tion (Figure 1). We predict pedestrians’ emotions based



Fig. 2: Overview: Our method takes a streaming video as input from two channels, 1) fixed, overhead camera and 2) onboard
robot camera. We perform a large scale Mechanical Turk study on a crowd dataset to precompute a data-driven mapping
between a motion model and their emotions. At runtime, we use this mapping along with the trajectory to compute emotion,
~Et, for the pedestrians. Using 2) we use a fully-convolutional neural network (which has been trained on the FER-2013

emotion dataset [12]) to compute the emotion based on facial cues, ~Ef . We combine these multi-channel emotions with
proxemic constraints and a collision-avoidance algorithm to perform socially-aware robot navigation through pedestrians.

on the Pleasure-Arousal-Dominance (PAD) model, a 3-
dimensional measure of emotional state used as a frame-
work for describing individual differences in emotional
traits/temperament [23], using information from two different
channels of expression: faces and trajectories. We extract
the trajectory of each pedestrian from a video stream and
use Bayesian learning algorithms to compute their motion
model and emotional characteristics. This trajectory-based
computation is based on the results of a perception user
study that provides emotion labels for a dataset of walking
videos. In our validation studies, we observe an accuracy of
85.33% using 10-fold cross-validation. We also compute the
facial expression-based emotion using a convolution-neural
network (CNN) classifier trained on the FER-2013 emotion
dataset [12]. We combine these results into a multi-channel
model to classify emotion into four categories (happy, sad,
angry, neutral).

We combine the time-varying emotion estimates of each
pedestrian with path prediction for collision-free, socially
normative robot navigation. We present a new data-driven
mapping, TEM (Trajectory-based Emotion Model), which
maps learned emotions to proxemic constraints relating to
the comfort and reachability distances [30]. These distances
restrict the robot motion and navigation to avoid intruding
through pedestrian’s peripersonal and interpersonal social
spaces. The combination of emotional and proxemic con-
straints improves both social comfort and navigation. We
have evaluated the performance of our algorithm:
• quantitatively on a dataset of real-world videos consisting
of tens of pedestrians, including dense scenarios, where
we measured the number of proxemic intrusions our robot
avoided, and
• qualitatively in a lab setting with a Pepper humanoid robot
and a total of 11 pedestrians with real-world intentions. Our
subjects felt comfortable in the environment, and they could
perceive the robot’s subtle reaction to their emotion.

II. RELATED WORK

In this section, we discuss previous robot navigation algo-
rithms that focus on physical and social constraints. We
also review related work on emotion detection from facial
expressions and trajectories.

A. Physical Navigation

Prior work on robot navigation in pedestrian environments
mainly focused on solving physical constraints such as
collision avoidance. Many systems for robot navigation in
urban environments implemented robots that autonomously
navigated previously-mapped urban paths in the presence of
crowds [25], [17]. Bauer et al. [2] created a robot for navi-
gating urban environments without GPS data or prior knowl-
edge. Fan et al. [10] proposed a navigation framework that
handles the robot freezing, and the navigation lost problems.
The collision-avoidance approaches used by these naviga-
tion algorithms include potential-based approaches for robot
path planning in dynamic environments [28], probabilistic
methods or Bayesian velocity-obstacles methods [11], [14]
for pedestrian trajectory prediction. Other methods include
a partially-closed loop receding horizon control [6] for non-
conservatively avoiding collisions with dynamic obstacles.
Faisal et al. [9] tuned fuzzy logic controllers with four
different methods to identify which algorithm minimizes the
travel time to a goal destination.

B. Socially-aware Robot Navigation

Humans navigating among crowds follow social norms relat-
ing to the speed of movement or personal space. In particular,
we tend to observe the emotions displayed by others and
adjust our paths in response. Correspondingly, there is much
prior work on having mobile robots navigate among humans
in a socially-aware manner [27], [15]. Some navigation algo-
rithms generate socially compliant trajectories by predicting



the pedestrian movement and forthcoming interactions [16]
or use modified interacting Gaussian processes to develop
a probabilistic model of robot-human cooperative collision
avoidance [33]. Vemula et al. [35] proposed a trajectory
prediction model that captures the relative importance of each
pedestrian in a crowd during navigation.

C. Emotion Characteristics from Faces

In recent years, research in computer vision and AI has
focused on emotion identification from facial expressions.
Most of these methods use neural-network based approaches
to identify emotions trained on popular datasets such as
FER [12]. Liu et al. [18] presented a novel Boosted Deep
Belief Network (BDBN) based three-stage training model
for facial expression recognition. An annotation method,
EmotioNet, predicted action units and their intensities as well
as emotion category for a million facial expressions in the
wild [8].

D. Emotion Characteristics from Trajectory

The direction and speed with which people move help to
predict future behavior, including both pedestrians’ behavior
and their emotional reactions [20]. For example, people
likely walk slower when they feel depressed, walk in a less
direct path if they are distracted, and may change both speed
and direction if they are uncertain or ambivalent about their
path [26]. A clear benefit in using trajectory tracking as a way
of predicting future behavior is that it is a relatively implicit
measure. People are not generally aware of the information
that their trajectory may be conveying, so this channel tends
to have relatively high fidelity across settings and can be used
for behavior or emotional classification. There is minimal
work on modeling emotions from trajectories. Our work
is the first approach that combines information from the
trajectory channel with facial expressions to predict emotions
and use them for socially-aware robot navigation.

III. EMOTION LEARNING

We propose a joint pedestrian emotion-model from trajec-
tories and faces. In this section, we first define an emotion
state, then introduce our notation, and give an overview of
our approach.

A. Emotion State

Most of the previous literature has modeled emotions as
either discrete categories or as points in a continuous space
of emotion dimensions. Discrete categories include basic
emotions such as anger, disgust, fear, joy, sadness, and
surprise as well as other emotions such as pride, depres-
sion, etc. On the other hand, Ekman and Wallace [7] used
“affects” to represent emotions. Affect is a key characteristic
of emotion and is defined as a 2-dimensional space of (1)
valence, the pleasure-displeasure dimension; and (2) arousal,
the excited-sleep dimension. All discrete emotions can be
represented by points in this 2D affect space (Fig 3). In
this paper, we use the pleasure and arousal dimensions from
the PAD model and use four basic emotions (happy, angry,
sad, neutral) representing emotional states that last for an
extended period and are more abundant during walking [21].

Fig. 3: Affect Space and Discrete Emotions: All discrete
emotions can be represented by points on a 2D affect space
of Valence and Arousal from the PAD model [19], [7].

These four emotions capture the spectrum of the emotion
space, and a combination of them can be used to represent
other emotions [24].

B. Notation

We introduce the terminology and symbols used in the rest of
the paper. We refer to an agent in the crowd as the pedestrian
whose state includes his/her emotion characteristics. This
state, denoted by the symbol ~xp, governs the pedestrian’s
position on the ground plane and facial features:

~xp = [~pp ~v
c
p
~f ~vpredp

~Ef ~Et]T; (1)

where ~p ∈ R
2 is the pedestrian’s position which is used to

compute emotion from the trajectory; ~vc ∈ R
2 is his/her

current velocity; and ~vpred ∈ R
2 is the predicted velocity on

a 2D ground plane. A pedestrian’s current velocity ~vc tends
to be different from their optimal velocity (defined as the
predicted velocity ~vpred) that they would take in the absence
of other pedestrians or obstacles in the scene to achieve their

intermediate goal. ~f is their face pixels re-aligned to 48×48
which is used to compute the facial emotion. ~Ef ∈ R

3 and
~Et ∈ R

3 are their facial and trajectory emotion vectors. The
union of the states of all the other pedestrians and the current
positions of the obstacles in the scene is the current state of
the environment denoted by the symbol X.

We do not explicitly model or capture pairwise interactions
between pedestrians. However, the difference between ~vpred

and ~vc provides partial information about the local interac-
tions between a pedestrian and the rest of the environment.
Similarly, we define the robot’s state, ~xr, as

~xr = [~pr ~v
c
r ~v

pref
r ]T; (2)

where ~vpref is the preferred velocity of the robot, defined as
the velocity the robot would take based on the present and
predicted position of the pedestrians and the obstacles in the
scene.

We represent the emotional state of a pedestrian by a vector
~Et = [h, a, s], where h, a, and s correspond to a scalar
value of happy, angry, and sad emotions (normalized to

[0, 1]), respectively. Using the ~Et, we can also obtain a single



emotion label e as follows:

e =















happy, if (h > a) ∧ (h > s) ∧ (h > θ)

angry, if (a > h) ∧ (a > s) ∧ (a > θ)

sad, if (s > h) ∧ (s > a) ∧ (s > θ)

neutral, otherwise

(3)

where θ is a scalar threshold. In this paper, we use an
experimentally determined value of θ = 0.55.

C. Overview

We present an overview of our approach in Figure 2. Our
method takes a streaming video as input from two camera
channels, a fixed, overhead camera, and an onboard robot
camera. We perform a large-scale Mechanical Turk study on
a crowd dataset to establish a linear mapping (TEM) between
the motion model parameters and pedestrian emotion using
multiple linear regressions after we obtained the labels using
a perception user study. Later we use this mapping and
compute trajectory-based emotions for the pedestrians. We
also use a fully-convolutional neural network (which has
been trained on the FER-2013 emotion dataset [12]) to com-
pute the facial expression based-emotions. We combine these
multi-channel emotions along with proxemic constraints and
a collision-avoidance algorithm to perform socially-aware
robot navigation.

IV. EMOTION LEARNING

In this Section, we describe our joint pedestrian emotion
model that combines emotion learning from trajectories and
facial features.

A. Emotion Learning from Trajectories (TEM)

Our goal is to model the levels of perceived emotion from
pedestrian trajectories. We use a data-driven approach to
model pedestrians’ emotions. We present the details of our
perception study in this section and derive the trajectory-
based pedestrian emotion model (TEM) from the study
results.

1) Study Goals: This web-based study is aimed at obtaining
the emotion labels for a dataset of pedestrian videos. We
use a 2D motion model [34] based on reciprocal velocity
obstacles (RVO) to model the motion of pedestrians. We
obtained scalar values of perceived emotions for different
sets of motion model parameters.

2) Participants: We recruited 100 participants (77 male, 23
female, x̄age = 33.24, sage = 7.81) from Amazon MTurk to
answer questions about a dataset of simulated videos.

3) Dataset: We collected 23 videos of pedestrians walk-
ing in a corridor. In each video, a single pedestrian was
highlighted by a circle and his/her trajectory (Figure 4). We
computed the motion model parameters of the pedestrians
using a Bayesian learning approach [14]. The motion model
corresponds to the local navigation rule or scheme that each
pedestrian uses to avoid collisions with other pedestrians or
obstacles. In particular, we consider the following motion
parameters for each pedestrian:

• Planning Horizon (how far ahead of the agent plans),

Fig. 4: To compute a data-driven emotion mapping, we
collected 23 videos of pedestrians walking in a corridor for
our Mechanical Turk perceptual user study. Users were asked
to label the emotion of one pedestrian (marked in blue).

• Effective Radius (how far away an agent stays from
other agents), and

• Preferred Speed.

We represent these motion model parameters as a vector

(~P ∈ R
3): Planning Horiz, Radius, Pref Speed. Table I shows

the range of the values of the parameters used. These values
cover the range of values observed in the real world. We will
release this dataset and the motion model parameters.

Parameter (unit) Min Max Average Variance
Planning Horiz (s) 0.09 2.21 1.25 0.57
Radius (m) 0.30 0.92 0.61 0.05
Pref Speed (m/s) 0.93 2.33 1.39 0.11

TABLE I: Values of Motion Parameters: We present the
range and average values of motion parameters obtained
from the dataset.

4) Procedure: In the web-based study, participants were
asked to watch a random subset of 8 videos from the dataset.
Participants then answered whether the highlighted agent was
experiencing one of the basic emotions (happy, angry, or
sad) on a 5-point Likert scale from strongly disagree (1) -
strongly agree (5). Participants were presented the videos in a
randomized order and could watch the videos multiple times
if they wished. Before completing the study, participants also
provided demographic information about their gender and
age.

5) Analysis: We average the participant responses to each
video to obtain a mean value corresponding to each basic
emotion: Vh, Vs, Va (normalized to [0, 1]). Using these val-

ues, we obtain the emotion vector ~E = [Vh, Vs, Va] and the
emotion label e using Equation 3.

We obtain emotion vectors ~Et
i corresponding to each varia-

tion of the motion model parameters ~Pi for the 23 data points
corresponding to 23 videos in the simulated dataset. We use
this labeled data to fit a model for emotion computation using
multiple linear regression. We chose linear regression be-
cause it is computationally inexpensive and easily invertible.
Other forms of regressions can also be employed. TEM takes
the following form:

~E
t
=

(

−0.15 0.00 −0.12
0.24 −0.61 0.20
−0.02 0.79 0.11

)

∗
~P . (4)

We can make several inferences from the values of the
coefficients of the mapping between perceived emotion and



the motion model parameters. The radius of the pedestrian
representation affects the perception of anger negatively and
the perception of sadness positively, whereas it doesn’t affect
the perception of happiness significantly. Therefore, increas-
ing the radius makes pedestrians appear sad and decreasing
it makes them appear angry. Similarly, we can control the
value of the planning horizon to control the perception of
happiness and anger. Increasing the planning horizon makes
pedestrians appear angrier whereas decreasing it makes them
appear happier. The preferred speed affects the perception of
happiness positively and the perception of anger and sadness
negatively.

We use the linear model to predict the value of a pedestrian’s
emotion label given the motion model parameters. We com-
pute the accuracy of TEM using 10-fold cross-validation on
our labeled dataset. We perform 100 iterations of the cross-
validation and obtain an average accuracy of 85.33% using
the actual and predicted emotion values.

B. Emotion Learning from Facial Features

In this section, we discuss the architecture of the neural
network used to detect faces from a video stream captured
by the robot and to classify the emotions for those faces. We
leverage a CNN based on the Xception [5] architecture to

predict the emotions, ~Ef , from faces. Our network is fully-
convolutional and contains 4 residual depth-wise separable
convolutions where a batch normalization operation and a
ReLU activation function follows each convolution. The final
layer of our network is followed by a global average pooling
and a soft-max activation function. The network has been
trained on the FER-2013 dataset, which contains 35, 887
grayscale images. We choose images that belong to one of
the following classes: angry, happy, sad, neutral.

We use a fully-convolutional network because each face is
localized to a roughly square part of the video frame and
detecting its emotion does not require knowledge of the
“global” information about other faces in the frame. We
use depth-wise separable convolutions since they need fewer
numerical computations on images with a depth of more than
1 - here, we are dealing with RGB video, so it has three input
channels. For more details, we refer the readers to [5].

C. Joint Pedestrian Emotion Model

We combine the computed emotions ( ~Et and ~Ef ) using a
reliability weighted average. Since facial features are more
unreliable (faces are partially visible or far away from the
camera), we define the joint pedestrian emotion as:

~E =
α ~Et +

⌊

max(Ef ) + 1/2
⌋ ~Ef

α+ ⌊max(Ef ) + 1/2⌋
(5)

where α ∈ [0, 1] is the pedestrian tracking confidence
metric based on [3]. Based on the unreliability in the facial
features, Equation 5 computes a weighted average of the
emotions predicted from faces and trajectories. Whenever

facial emotion is unavailable, we use ~E = ~Et. We also
compute the emotion label e using Equation 3 from ~E.

D. Socially-Aware Robot Navigation

We present an extension to Generalized Velocity Obsta-
cles (GVO) [36], [4] that takes into account the comfort
(cde) and reachability (rde) distances and enables socially-
aware collision-free robot navigation through a crowd of
pedestrians. The GVO algorithm uses a combination of
local and global methods, where the global metric is based
on a roadmap of the environment, and the local method
computes a new velocity for the robot. We compute the
comfort and reachability distances using the emotional labels
e (Section IV-C) and use them in the computation of the
new velocity for the robot (i.e., the local method of the
GVO algorithm). In this novel formulation, we also take into
account the dynamic constraints of the robot. Even though
our socially-aware navigation algorithm is illustrated with
GVO, our approach is agnostic to the underlying navigation
algorithm and can be combined with other methods like
potential field methods.

V. PERFORMANCE AND ANALYSIS

We have implemented our algorithm on a semi-humanoid
robot, Pepper. It is about 1.2m tall with a top speed of
0.83m/s and an on-board camera with 2592x1944 Active
Pixels. We conducted experiments in a lab setting (Fig. 1).
We recruited 11 participants and asked them to assume that
they are experiencing a certain emotion and walk accord-
ingly. Previous studies show that non-actors and actors are
both equally good at walking with different emotions [29].
We do not make any assumptions about how accurately the
subjects acted or depicted the emotions. The participants
reported being comfortable with the robot in the scene.
Participants with sad emotions reported being given a wider
space to walk by the robot. Participants with angry emotions
reported that the robot made way for the pedestrian more
swiftly. Participants with happy and neutral emotions didn’t
report significant changes, but some noticed a minor slow
down in the robot’s speed.

We also quantitatively evaluate the performance of our
socially-aware navigation algorithm with GVO [36], which
does not take into account proxemic or emotional constraints.
We compute the number of times the non-social robot
intrudes on the peripersonal and the interpersonal spaces of
the pedestrians, thereby resulting in emotional discomfort.
We also measure the additional time a robot with our
algorithm takes to reach the goal position without any intru-
sions on pedestrians’ comfort distances (hard constraint) and
reachability distances (soft constraint). Our results (Table II)
demonstrate that our robot can reach its goal with < 25%
time overhead while ensuring that the proxemic spaces of
the pedestrians aren’t violated.

VI. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

We present a real-time data-driven planning algorithm that
takes the emotional state of the pedestrians into account to
perform socially-aware navigation. We predict pedestrians’
emotions based on the PAD model using information from
two different channels of expression: faces and trajectories.
We extract the trajectory of each pedestrian from a video
stream and use Bayesian learning algorithms to compute
his/her motion model and emotional characteristics. The
computation of this trajectory-based emotion model (TEM)
is based on the results of a perception user study that provides



Dataset Additional Time Performance Intrusions Avoided
NDLS-1 19.44% 2.89E-04 ms 31
NDLS-2 21.08% 2.12E-04 ms 26
NPLC-1 16.71% 2.29E-04 ms 30
NPLC-3 18.93% 3.09E-04 ms 22

UCSD-Peds1 24.89% 3.51E-04 ms 11
Students 9.12% 0.78E-04 ms 16
seq hotel 11.89% 1.07E-04 ms 9

Street 11.09% 1.27E-04 ms 13

TABLE II: Navigation Performance: A robot using our
socially-aware navigation algorithm can reach its goal posi-
tion (within 1̃m accuracy), while ensuring that the periper-
sonal/interpersonal space of any pedestrian is not intruded
on with < 25% overhead. We evaluated this performance in
a simulated environment, though the pedestrian trajectories
were extracted from the original video.

emotion labels for a dataset of walking videos. We also
compute the facial expression-based emotion using a CNN
classifier trained on the FER-2013 emotion dataset [12]. Our
work is the first approach that combines information from the
trajectory channel with facial expressions to predict emotions
and use them for socially-aware robot navigation.
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