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Abstract

Binaural audio provides a listener with 3D sound sen-

sation, allowing a rich perceptual experience of the scene.

However, binaural recordings are scarcely available and

require nontrivial expertise and equipment to obtain. We

propose to convert common monaural audio into binau-

ral audio by leveraging video. The key idea is that visual

frames reveal significant spatial cues that, while explic-

itly lacking in the accompanying single-channel audio, are

strongly linked to it. Our multi-modal approach recovers

this link from unlabeled video. We devise a deep convo-

lutional neural network that learns to decode the monaural

(single-channel) soundtrack into its binaural counterpart by

injecting visual information about object and scene configu-

rations. We call the resulting output 2.5D visual sound—the

visual stream helps “lift” the flat single channel audio into

spatialized sound. In addition to sound generation, we show

the self-supervised representation learned by our network

benefits audio-visual source separation. This paper sum-

marizes our key ideas and results of our recent conference

paper1 [1]. Our video results: http://vision.cs.

utexas.edu/projects/2.5D_visual_sound/

1. Introduction

Multi-modal perception is essential to capture the rich-

ness of real-world sensory data and environments. People

perceive the world by combining a number of simultaneous

sensory streams, among which the visual and audio streams

often carry paramount information. In particular, both au-

dio and visual data convey significant spatial information.

We see where objects are and how the room is laid out. We

also hear these things: sound-emitting objects indicate their

location, and sound reverberations reveal the room’s main

surfaces, materials, and dimensions. Similarly, as in the fa-

mous cocktail party scenario, while having a conversation
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Figure 1: Binaural audio creates a 3D soundscape for lis-

teners, but such recordings remain rare. The proposed ap-

proach infers 2.5D visual sound by injecting the spatial in-

formation contained in the video frames accompanying a

typical monaural audio stream.

at a noisy party, one can hear another voice calling out and

turn to face it. The two senses naturally work in concert to

interpret spatial signals.

The key insight of this work is that video accompanying

monaural audio has the potential to unlock spatial sound,

lifting a flat audio signal into what we call “2.5D visual

sound”. Although a single channel audio track alone does

not encode any spatial information, its accompanying vi-

sual frames do contain object and scene configurations. For

example, as shown in Fig. 1, we observe from the video

frame that a man is playing the piano on the left and a

man is playing the cello on the right. Although we can-

not sense the locations of the sound sources by listening to

the mono recording, we can nonetheless anticipate what we

would hear if we were personally in the scene by inference

from the visual frames.

We introduce an approach to realize this intuition.

Given unlabeled video as training data, we devise a

MONO2BINAURAL deep convolutional neural network to

convert monaural audio to binaural audio by injecting the

spatial cues embedded in the visual frames. Our encoder-

decoder style network takes a mixed single-channel audio

and its accompanying visual frames as input to perform

joint audio-visual analysis, and attempts to predict a two-

channel binaural audio that agrees with the spatial configu-
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FAIR-Play REC-STREET YT-CLEAN YT-MUSIC

STFT ENV STFT ENV STFT ENV STFT ENV

Ambisonics [4] - - 0.744 0.126 1.435 0.155 1.885 0.183

Audio-Only 0.966 0.141 0.590 0.114 1.065 0.131 1.553 0.167

Flipped-Visual 1.145 0.149 0.658 0.123 1.095 0.132 1.590 0.165

Mono-Mono 1.155 0.153 0.774 0.136 1.369 0.153 1.853 0.184

MONO2BINAURAL (Ours) 0.836 0.132 0.565 0.109 1.027 0.130 1.451 0.156

Table 1: Quantitative results of binaural audio prediction on four diverse datasets. Lower is better.

rations in the video. When listening to the predicted binau-

ral audio, listeners can then feel the locations of the sound

sources as they are displayed in the video. Moreover, we

show that the MONO2BINAURAL conversion process also

benefits audio-visual source separation, a key challenge in

audio-visual analysis.

2. Overview of Proposed Approach

We denote the signal received at the left and right ears

by xL(t) and xR(t), respectively. If we mix the two channels

into a single channel xM(t) = xL(t)+ xR(t), then all spatial

information collapses. We can formulate a self-supervised

task to take the mixed monaural signal xM(t) as input and

split it into two separate channels x̃L(t) and x̃R(t), using the

original xL(t), xR(t) as ground-truth during training. How-

ever, this is a highly under-constrained problem, as xM(t)
lacks the necessary information to recover both channels.

Our key idea is to guide the MONO2BINAURAL process with

the accompanying video frames, from which visual spatial

information can serve as supervision.

Instead of directly predicting the two channels, we pre-

dict the difference of the two channels:

xD(t) = xL(t)− xR(t). (1)

More specifically, we operate on the frequency domain

and perform short-time Fourier transform (STFT) [2] on

xM(t) to obtain the complex-valued spectrogram XM , and

the objective is to predict the complex-valued spectrogram

XD for xD(t):

XM = {XM
t, f }

T,F
t=1, f=1, XD = {XD

t, f }
T,F
t=1, f=1, (2)

where t and f are the time frame and frequency bin indices,

respectively, and T and F are the numbers of bins. Then we

obtain the predicted difference signal x̃D(t) by the inverse

short-time Fourier transform (ISTFT) [2] of XD. Finally,

we recover both channels—the binaural audio output:

x̃L(t) =
xM(t)+ x̃D(t)

2
, x̃R(t) =

xM(t)− x̃D(t)

2
. (3)

We devise a MONO2BINAURAL deep network that per-

forms audio spatialization. The network takes the mono au-

dio xM(t) and visual frames as input and predicts xD(t). We

extract visual features from the center frame of the audio

segment using ResNet-18 [3], which is pre-trained on Im-

ageNet. On the audio side, we adopt a U-NET [5] style

architecture to extract audio feature, combined with the vi-

sual features to perform binaural audio prediction. We train

our MONO2BINAURAL network using L2 loss to minimize

the distance between the ground-truth complex spectrogram

and the predicted one. Finally, using ISTFT, we obtain the

predicted difference signal x̃D(t), through which we recover

the two channels x̃L(t) and x̃R(t) as defined in Eq. 3.

3. Example Results

We validate our approach for generation and separa-

tion. We use four challenging datasets: FAIR-Play, REC-

STREET, YT-CLEAN and YT-MUSIC [4]. FAIR-Play

dataset2 collected by us is the first dataset of its kind that

contains videos of professional recorded binaural audio.

REC-STREET is a dataset of outdoor street scenes, and

YT-CLEAN and YT-MUSIC contain ∼1,000 “in the wild”

videos from YouTube. These videos contain diverse scenes

such as meeting rooms, travel, sports, etc.

We evaluate the quality of our predicted binaural au-

dio by comparing to the following baselines: 1) Ambison-

ics [4]: predicting ambisonics using the pre-trained models

provided by [4]; 2) Audio-Only: a baseline that removes

the visual stream and uses only audio as input; 3) Flipped-

Visual: flipping visual frames to perform prediction using

the wrong visual information; 4) Mono-Mono: a straight-

forward baseline that copies the mixed monaural audio onto

both channels to create a fake binaural audio.

Table 1 shows the binaural generation results. Our

method outperforms all baselines consistently on all four

datasets. Our MONO2BINAURAL approach performs better

than the Audio-Only baseline, indicating the visual stream

is essential to guide conversion. Note that the Audio-Only

baseline uses the same network design as our method, so it

has reasonably good performance as well. Flipped-Visual

performs much worse, demonstrating that the network re-

quires the correct visual spatial information in order to pre-

dict binaural audio correctly. The Ambisonics [4] approach

also does not do as well. Please see our video results3.

2https://github.com/facebookresearch/FAIR-Play
3http://vision.cs.utexas.edu/projects/2.5D_

visual_sound/
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