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Abstract

Combining multiple information streams has shown ob-

vious improvements in video action recognition. Most ex-

isting works handle each stream independently or perform

a simple combination on temporally simultaneous samples

in multi-streams, which fails to make full use of the stream-

wise complementary property due to the negligence of the

temporal pattern gaps among streams. In this paper, we

propose a cross-stream selective network (CSN) to properly

integrate and evaluate information in multi-streams. The

proposed CSN first introduces a local selective-sampling

module (LSM), which can find asynchronous correspon-

dences among streams and construct high-correlated sam-

ple groups across multiple information streams. This LSM

can effectively deal with the temporal dis-alignment among

different streams, leading to a better integration of cross-

stream information. We further introduce a global adaptive-

weighting module (GAM). It adaptively evaluates the im-

portance weights for each cross-stream sample group and

selects temporally more important ones in action recogni-

tion. With the integration of cross-stream information, our

GAM can obtain more reasonable importance than the ex-

isting single-stream weighting schemes. Extensive exper-

iments on benchmark datasets of UCF101 and HMDB51

demonstrate the effectiveness of our approach over previ-

ous state-of-the-art methods.

1. Introduction

Video action recognition has attracted much attention

due to its importance in many applications. Combining

multiple information streams (e.g., RGB frames, optical

flow, RGB differences) with Convolutional Neural Net-

works (CNNs) has shown superior performances and be-
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comes a popular framework in action recognition [11, 5, 18,

24, 9].

These information streams capture different aspects of

an input video and exhibit different temporal variation pat-

terns (cf. Fig. 1). Therefore, one major challenge in ac-

tion recognition is how to properly evaluate and integrate

information in multi streams, such that the complementary

information among streams can be fully utilized. How-

ever, this issue is not fully studied. Most existing works

combine multi-streams in a relatively simple way, which ei-

ther handle each stream independently or perform a simple

combination on temporally simultaneous samples in multi

streams [18, 11]. They have limitations in making full use

of the stream-wise complementary property due to the neg-

ligence of the temporal pattern gaps among streams.

In this paper, we argue that a proper multi-stream infor-

mation integration method should be able to boost action

recognition in two aspects:

(1) Dealing with temporal dis-alignment among streams.

For example, in Fig. 1, the most discriminative sample for

action long jump is around time t1 in RGB stream when the

person is jumping in the air (most indicative of long jump

in appearance aspect), while the most discriminative one in

optical flow stream is around time t2 when the person is

just jumping out (with most indicative ‘long jump’ motion

pattern). This temporal dis-alignment would affect the ac-

tion recognition accuracy. Therefore, it is expected to es-

tablish a correspondence between two streams (cf. Fig. 2b),

which is able to align RGB and optical flow locally and

adaptively, thus reducing the stream-wise asynchrony and

selecting more discriminative sample groups (i.e. groups of

RGB and flow).

(2) Obtaining more reasonable global importance

weights. As samples in each single stream have different

discriminative capability in recognizing actions, it is non-

trivial to evaluate the importance of each sample such that

more discriminative samples can have larger weights when

determining the action label. Most existing works perform

importance evaluation for each stream independently [17],



which may create some improper weights due to the lim-

itation of information sources. For example, for action

long jump in Fig. 2a, when only considering a single RGB

stream, the single-stream-based weighting method may im-

properly assign higher weights on early samples when the

athlete is running, rather than more discriminative samples

when the athlete is in the air. Comparatively, if we jointly

consider multi-streams during importance evaluation, we

are able to have more information sources and obtain more

reasonable importance weighting results (cf. Fig. 2b).

To meet the above requirements, this paper proposes

a cross-stream selective network (CSN) to properly inte-

grate and evaluate multi-stream information. The pro-

posed CSN first introduces a local selective sampling mod-

ule (LSM), which can find asynchronous correspondences

among streams and construct high-correlated sample groups

across multiple information streams. This LSM can effec-

tively deal with the temporal dis-alignment problem among

streams, leading to a better integration of cross-stream in-

formation. We further introduce a global adaptive weight-

ing module (GAM). It automatically evaluates the impor-

tance weights for each cross-stream sample group and high-

lights more important ones in action recognition. Based

on the integration of cross-stream information, our GAM

can obtain more reasonable importance weights than the ex-

isting single-stream weighting schemes. Extensive exper-

iments on benchmark datasets demonstrates the effective-

ness of our approach.

1.1. Related Work

Video Action Recognition Largely driven by image

recognition methods with Convolutional Networks (CNN),

video action recognition research has benefited greatly

from advancements in deep CNN-based representations

[16, 23]. Existing popular benchmarks like UCF101 [12]

or HMDB51 [8] are used for action recognition in trimmed

clips. There are many previous work [10, 6, 14, 7] for

this task. [24] present the Structured Segment Network

(SSN) which models the temporal structure of each action

instance. [17] propose UntrimmedNet which couples the

classification module and the selection module to learn the

action models and reasons about the temporal duration of

action instances. [25] introduce the Temporal Relation Net-

work (TRN) module to learn and reason about temporal de-

pendencies between video frames at multiple time scales.

CNN-based action recognition methods have broadly fol-

lowed two main paradigms: multi-stream method and 3D

CNNs. ST-GCN [21] automatically learns both the spatial

and temporal patterns for video action recognition. Some

works [1, 19] also try to use pre-trained features on large

dataset like Kinetics or a more complex backbone network

such as resnet. Tran et al. [15] show that factorizing the

3D convolutional filters into separate spatial and temporal

components yields significantly gains in accuracy.

Stream-wise Fusion Since the traditional multi-stream

methods handle each stream independently, some methods

further consider the fusion of multi-stream information to

boost action recognition. For example, simultaneous fu-

sion [5], sequence and video level fusion [20]. Since these

methods do not consider the temporal pattern gap among

different streams, they still have low efficiency in utiliz-

ing stream-wise information. Recently, [9] introduce an

asynchronous fusion network to fuse information at differ-

ent time points. However, our approach differs from this

work in two aspects: (1) The method in [9] simply fuses a

sample in one stream with all temporally neighboring ones

in another stream while not differentiating their correspon-

dence relationship. Comparatively, our approach aims to

find a precise correspondence among cross-stream samples,

thus can handle the temporal pattern gap among streams in

a more effective way. (2) The method in [9] does not differ-

entiate the importance of different samples. Comparatively,

our approach also introduce a global adaptive-weighting

module to evaluate the importance of cross-stream sample

groups.

2. Cross-stream Selective Networks

2.1. Architecture

The architecture of the proposed cross-stream selec-

tive network (CSN) is shown in Fig. 3. Assuming that

we have two information streams for an input video

V , we first clip it into N segments with equal du-

ration. For each segment, we randomly sample an

RGB image, thus obtaining an RGB image sequence

{It1 , It2 , · · · , ItN } for the entire video. We then input

this RGB sequence into the Local Selective-sampling Mod-

ule (LSM) (detailed in Sec. 2.2), which will output a

correspondence strength sequence {Rt1 ,Rt2 , · · · ,RtN },

where Rti = {rti,ti−τ , · · · , rti,ti+τ} represents the

correspondence strengths between an RGB image Iti
at time ti and optical flow stacks {Oti−τ , · · · , Oti+τ}
within a temporal interval centered at ti (cf. Fig. 4a).

Then, we select M most correlated optical flow stacks

{Om1

i
, Om2

i
, · · · , OmM

i
} for each RGB image Iti accord-

ing to Ri and construct a set of high-correlated sam-

ple groups: G1 = {I1, Om1

1

, · · · , OmM
1

}, · · · , GN =

{IN , Om1

N
, · · · , OmM

N
}. These temporally-aligned groups

of RGB images and optical flow stacks are the selected

cross-stream samples which will be used for recognizing

action.

When recognizing actions, we input the selected cross-

stream sample groups (i.e., RGB images and optical flow

stacks in the high-correlated sample groups) into two-

stream CNNs to calculate deep features and predict action
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Figure 1: Illustration of a stream-wise temporal dis-alignment for a long jump action. Our CSN finds correspondences among

samples locally and adaptively in the two streams. In addition, our CSN also learns a global importance weight based on

the detected discriminative sample groups, where thicker line represents larger weights.
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(a) Single-stream importance weighting
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(b) Cross-stream importance weighting

Figure 2: Comparison of weighting scheme based on samples from each single stream and sample groups from two streams

for a long jump action instance. Red indicates larger importance weights.

labels of the input video. At the same time, a global adap-

tive weighting module (GAM) is applied to evaluate im-

portance weights of the selected sample groups (detailed

in Sec. 2.3). These importance weights are combined (by

weighted pooling) with the deep features of the selected

cross-stream samples to yield the final recognition results.

Note that in order to make the step of selecting most

correlated optical flow stack differentiable in training, we

also introduce a Softmax Normalize Warping Unit (SNW)

in our CSN framework. The SNW combines each optical

flow stack sequence {Om1

i
, Om2

i
, · · · , OmM

i
} with corre-

spondence strength Rti and outputs a tensor Tti which has

same size with O
m

j

i
(detailed in Sec. 2.2).

2.2. Local Selective­sampling Module

In this section, we describe the details of Local Selective-

sampling Module. This module is devised to deal with the

video modality temporal dis-alignment at the local scale.

Given sampled RGB frames, we stack its adjacent RGB im-

ages to make up a local snippet {Iti−1, Iti , Iti+1}, which

depicts both appearance and local motion information. To

capture the temporal motion information from RGB frames,

we input this local snippet to a Bi-directional LSTM. Com-

pared with the naı̈ve LSTMs, Bi-directional LSTMs can uti-

lize both the forward and backward direction context infor-

mation with two separate hidden layers. The specific for-

mulation is defined as follows:














h
f
t = tanh(W f

x xt +W
f
h h

f
t−1 + b

f
h)

hb
t = tanh(W b

xxt +W b
hh

b
t+1 + bbh)

yt = W f
y h

f
t−1 +W b

yh
b
t+1 + by

, (1)

where h
f
t represents the forward hidden sequence, hb

t is the

backward hidden sequence and yt is the output sequence.

Bidirectional-LSTM computes h
f
t , hb

t , yt by iterating the

backward layer at time t.

Outputs of Bi-LSTM selector are three fixed-dimension

vectors {y1, y2, y3}, and we choose y2 ∈ R2τ as the

strength vector Rti . We choose y2 as the strength vector
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Figure 3: The entire architecture of Cross-stream Selective Networks.

since we use BiLSTM, intuitively y2 can get the informa-

tion from both directions. Traditionally, sampling optical

flow images from a strength vector is a non-differentiable

function with respect to the strength vector. In training, we

choose 9 flow images for the flow CNN. Thus, we introduce

a Softmax Normalize Warping Unit to deal with this issue.

It takes an optical flow stack sequence and strength vector

Rti as input and outputs a tensor Tti .

Softmax Normalize Warping Units. Suppose Rti ∈
R2τ is the strength vector of local RGB sequence. During

the training phase, SNW units first sample M optical flow

stacks around ti, which corresponds to the top M highest

score on Rti , that is {Om1

i
, Om2

i
, · · · , OmM

i
}, where m

j
i is

the coordinate of the optical flow stack that corresponds to

jth high score on the Rti . We then input these M high

scores to a softmax layer to obtain the weight vector Sti and

weighted pooling these M optical flow stacks to get Tt1 ,i.e.

Tti =

N
∑

k=1

exp(Sti(k))
∑M

j=1
exp(Sti(j))

Omk
i
. (2)

S represents weight vector which is consist of M high

scores in Rti . We prove that SNW unit makes CSN dif-

ferentiable during training. Suppose loss function is L, the

whole network is N , thus,

∂L(It1 , It2 , · · · , ItN |N )

∂W l
=

N
∑

i=1

∂L

∂Tti

∂Tti

∂Rti

∂Rti

∂W l
. (3)

According to Eq. 2, we can derive that:

∂Tti

∂Rti

= (Bj −
M
∑

q=1

BjBq)Om
j

i

if j ∈ {1, 2, · · · ,M} else 0,

(4)

where,

Bj =
exp(Sti(j))

∑M

q=1
exp(Sti(q))

. (5)

During testing, we simply use the optical flow stack corre-

sponding to the max value in Rt1 , as:

Tti = Om1

i
. (6)

Only one frame is sampled while testing since sampling N

optical flow stacks tends to be slow. We will show that such

a strategy produce similar results as N sampling during in-

ference.

2.3. Global Adaptive­weighting Module

To measure the discriminative capacity of the selected

sample groups {Gt1 , Gt2 , · · · , GtN }, we introduce the

Global Adaptive-weighting Module. fti is the concatena-

tion of features representing both RGB images and optical

flow of a selected sample group Gti . We learn an attention

weight with a linear transformation:

Aw = W g[fTt1 , fTt2 , · · · , fTtN ]T , (7)

where W g ∈ RN×ND, fti ∈ RD and Aw ∈ RN . D is the

dimension of fti . With this adaptive weight, we obtain the
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Figure 4: Figure (a) demonstrates the configuration of SNW

unit. Figure (b) shows weighting pyramid process and the

yellow block in figure (b) can be expressed in Eq. 7 and

Eq. 8.

final representation and prediction as:

fc =

N
∑

j=1

exp(Aw(j))
∑N

i=1
exp(Aw(i))

ftj , (8)

y = W cfc, (9)

here W c is the parameter of linear transformation of con-

sensus feature fc to final prediction results y.

3. Experimental Results

3.1. Evaluation on Cross­stream Selective Networks

In order to evaluate our model, we compare nine meth-

ods: (1) The standard two-stream baseline [11]. (2) Two-

stream model equipped with asynchronous fusion network

proposed by [9]. (3) Two-stream model equipped with our

local selective-sampling module. (4) Temporal Segment

Networks (TSN) baseline [18] with fixed interval during

evaluation. (5) TSN with a single-stream selective mech-

anism (cf. Fig. 2a). (6) Our CSN with local selective-

sampling module. (7) Our CSN with global adaptive-

weighting module. (8) Our CSN with both LSM and GAM

(using scaling factor 2). (9) Our CSN with both LSM and

GAM (using scaling factor 4). Results on UCF101 and

HMDB51 are shown in Tables 1-3.

Evaluation of LSM. We first validate the effectiveness

of our local selective-sampling module. In Table 1, we com-

pare our LSM and Asyn-Fusion Network. It can be seen

Table 1: Compare LSM with Asyn-Fusion

Network [9] (Scaling factor=2).

Methods UCF101 HMDB51

Two-stream baseline 86.9% 58.0%

Asyn-fusion network 91.0% 60.9%

Two-stream + LSM 92.1% 62.3%

Table 2: Ablation study of Global Adaptive-weighting

Module.

Methods UCF101 HMDB51

TSN baseline (avg) 94.0% 68.5%

TSN + GAM 94.2% 69.8%

Table 3: Compare LSM with Single-stream

Selection method. (Scaling factor=2)

Methods UCF101 HMDB51

TSN baseline (avg) 94.0% 68.5%

TSN + Single-stream

seletion
93.8% 69.5%

TSN + LSM 94.5% 70.0%

Table 4: Comparison with other state-of-the-art methods.

Methods UCF101 HMDB51

C3D (3 nets) [14] 85.2% -

Two-stream model [11] 88.0% 59.4%

ST-VLMPF [2] 93.6% 69.5%

Lattice LSTM [13] 93.6% 66.2%

TSN (2 modalities) [18] 94.0% 68.5%

TSN (3 modalities) [18] 94.2% 69.4%

CO2FI+ASYN [9] 94.3% 69.0%

TVNet [3] 94.5% 71.0%

ST-ResNet [4] 94.2% 68.9%

Our approach 94.6% 71.1%

that our LSM is well-designed for that it outperforms Aysn-

Fusion Networks [9] which has a little common insights

with us. And in Table 3, we prove the necessity of cross-

stream selection. In some datasets, single-stream selection

would even cause loss in performance. Since there is no

existing method to do single-stream selection, we imple-

ment it by adopting a similar pipeline in [22]. More details

of this implementation will be revealed in code we release

once our paper is accepted. Also, some intermediate results

show that LSM has really learned some temporal pattern

difference between two streams (cf. Fig. 5).

Evaluation of GAM. Then, we turn to discuss our

global adaptive-weighting module. Consensus the infor-
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Figure 5: Visualization of of some results of Local Selective-sampling Module and Global Adaptive-weighting Module.

Upper part: the intermediate results inside the LSM. It shows that for each RGB image, LSM is able to select out the most

match optical flow stack. The heatbar here represents the intensity distribution of strength vector Rti introduced in Sec. 2.1.

Lower part: the weight output by Global Adaptive-weighting Module. Thicker line indicates a larger weight.

mation from Table 2 and Table 3, we find that our GAM

is able to generally improve the recognition accuracy and

is easy to be extend to most existing networks. It enables

temporal weighting for the importance weight of different

RGB&Flow pairs and it is shown in Fig. 5 that different

pairs contribute variantly to discriminate the video.

We also evaluated our CSN on Something-something-

v1 dataset (it is updated to v2 now) before the submission.

Since there is no formal two-stream baseline on Something-

something-v1 to be referred before the submission, we just

produced it by ourselves. We used the TRN backbone. The

top1 accuracy of TRN is 33.01%. And the two-stream ver-

sion is 38.76%. Equipped with our CSN, the top1 accuracy

can be obviously improved to 42.34%.

4. Conclusions

We have proposed a cross-stream selective network

(CSN) for action recognition by leveraging the correla-

tion and complementarity of different input streams. Our

framework consists of three key ingredients: 1) a Local

Selective-sampling Module, which can select most discrim-

inative temporal frames aligned to spatial frames. 2) a

Global Adaptive-weighting Module which learns to endow

different weights for sample RGB&Flow groups. 3) Soft-

max Normalize Warping Units, which makes the index-to-



feature process to be differentiable. With this framework,

we achieve significant performance gain over state-of-the-

art methods on both UCF101 and HMDB51, which demon-

strates the effectiveness of joint and selective modeling over

two streams.
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