
Co-compressing and Unifying Deep CNN Models for Efficient Human Face and

Speaker Recognition

Timmy S.T. Wan1,2, Jia-Hong Lee1,2, Yi-Ming Chan1,2, and Chu-Song Chen1,2

1Institute of Information Science, Academia Sinica, Taipei, Taiwan,

Email: {timmywan, honghenry.lee, yiming, song}@iis.sinica.edu.tw
2MOST Joint Research Center for AI Technology and All Vista Healthcare

Abstract

Deep CNN models have become state-of-the-art tech-

niques in many application, e.g., face recognition, speaker

recognition, and image classification. Although many stud-

ies address on speedup or compression of individual mod-

els, very few studies focus on co-compressing and unifying

models from different modalities. In this work, to joint and

compress face and speaker recognition models, a shared-

codebook approach is adopted to reduce the redundancy of

the combined model. Despite the modality of the inputs

of these two CNN models are quite different, the shared

codebook can support two CNN models of sound and im-

age for speaker and face recognition. Experiments show

the promising results of unified and co-compressing hetero-

geneous models for efficient inference.

1. Introduction

Face recognition (FR) and speaker recognition (SR) are

both important modules for applications such as access con-

trol, human/robotic interaction, and multimedia systems.

Deep learning techniques have been shown promising to

improve the FR and SR performance in recent years. How-

ever, most deep learning models are developed for either FR

or SR tasks. In this paper, we present a deep convolutional

neural network (CNN) approach that can jointly perform FR

and SR in a single neural-network model. Besides, with our

approach, both FR and SR tasks can be realized in one com-

pressed neural network, and thus the storage and execution

time required for the multimodal inference can be reduced.

To train a multi-task model in deep learning, a typical

approach is to construct a CNN architecture with multi-task

outputs in the final classification layer at first and then train

this model with the union of training data from all tasks.

However, such an approach requires a tedious trial-and-

error procedure because the architecture chosen could be

inappropriate in the beginning and multiple re-training pro-

cesses are needed in every trial. Even if neural network

architecture search (NAS) [29] techniques can find appro-

priate architectures, it still requires taking a long time and

consuming a lot of computational resources to generate sat-

isfiable multi-task models.

One possible approach is to leverage on existing deep

CNN models already trained for an individual FR or SR

task. For example, with fast-growing deep CNNs, FR has

gotten great performance improvement nowadays. Schroff

et al. [20] propose triplet loss and design a network struc-

ture for FR. Liu et al. [12] introduce additive angular mar-

gin loss and redesign the network structure for FR. These

models are publicly available with high accuracy on large

face datasets (such as the LFW dataset [10]). Leveraging

on well-performed single-task models has the advantage of

preserving the recognition accuracy of one modality more

easily. Nevertheless, it is still non-trivial to merge two well-

performed models without compromising the performance

of the individual task.

In this paper, we present an approach that leverages

on well-trained individual models of both FR and SR. We

then merge the two single-modality models into a unified

one while keeping the compactness of the merged model

for multi-modal inference. When deep CNN models are

learned, they often have much redundancy in the network

weights, and thus the models can be compressed before de-

ployment for inference [5, 27, 7]. In our work, we not only

merge the two models but also “co-compress” them into a

single model, and thus the resulted model is compact (with

a smaller model size) and more suitable for efficient multi-

modal inference.

Our approach follows the principle of NeuralMerger [2].

In this technique, two merged layers share a common code-

book consisting of a set of codewords; the individual-task



weights are obtained by looking up the codebook, where its

codewords are differentiable and can be fine-tuned through

back-propagation algorithm in an end-to-end manner. In

our study, although the modalities are different (one is face

image and the other is human voice), we find that there

are still join-redundancy among their model weights. The

codeword-sharing ratio is getting increased when the convo-

lutional layer is deeper. It reveals that, despite the two signal

sources (image and sound) differ larger in early layers, after

processing them with several previous layers, the obtained

middle representations become more common and thus can

be processed with a higher ratio of shared weights in later

deeper convolutional layers. The final merged model still

maintains comparable performance to that of the original

models on both FR and SR tasks. The model is compact

(with only 40% of the individual-task model size), and thus

more suitable for inference on resource-limited devices.

The rest of this paper is organized as follows. In Sec-

tion 2, we briefly review recent FR, SR, and multi-modal

learning approaches. In Section 3, we introduce our ap-

proach that includes the CNN model construction and learn-

ing for FR and SR, as well as co-compressing the two mod-

els and unifying them into a single model. Experimental

results are presented in Section 4. Finally, a conclusion is

given in Section 5.

2. Related Work

In this section, we briefly review face recognition,

speaker verification, and multimodal learning.

2.1. Face Verification

To discriminate whether two faces are the same, re-

cent approaches concentrate on two directions. The first

is to improve the loss function to extract better facial fea-

tures [13] [25]. Liu et al. [13] propose a generalized large-

margin softmax (L-Softmax) loss function. It can enhance

intra-class compactness and inter-class separability between

facial features by adjusting the desired margin.

The other direction is to redesign the structure of con-

volutional neural networks with innovative loss functions

to enhance the discriminability, such as Centerloss [26],

FaceNet [20], and SphereFace [12]. In Centerloss [26], the

network structure is composed of three convolutional lay-

ers, three local convolutional layers, PReLU [6] activations,

and one fully-connected layer. They utilize center-loss and

softmax loss to enhance the discriminability. The center

loss function focuses on the center for facial feature vector

distribution of each class and minimizes the distances be-

tween facial feature vectors and their corresponding class

center. In FaceNet [20], their network structure is com-

posed of eleven Inception blocks and one fully-connected

layer. They use triplet loss to optimize the face embedding

by keeping positive pairs closer and negative pairs far from

each other. However, the triplet picking procedure is time-

consuming. In SphereFace [12], the network structure is

composed of twenty convolutional layers with shortcuts and

PReLU activations. They leverage the angular softmax (A-

Softmax) loss function to amplify the margin between the

target identity and the non-target identity.

We refer to SphereFace [12] as our baseline network ar-

chitecture due to its good performance and ease of imple-

mentation.

2.2. Speaker Verification

Before emerging of deep learning applications, i-vector

technique [3] was widely used in speaker verification task.

After that, researchers devoted to learning a speaker em-

bedding with deep neural networks in an end-to-end man-

ner. A deep neural network approach, D-vector [21], learns

a frame-level embedding from the average of outputs of

last hidden layer as a target speaker model. Various new

network architectures have been proposed recently. Most

works [15] [9] convert each frame to a spectrogram as an

image feeding to a 2-D convolutional neural network. In

contrast, [16] constructs a 1-D convolutional neural net-

work to train directly with the raw audio signals. Besides,

similar to the progress of face recognition, two works [9, 11]

introduce revised loss criteria to learn deep speaker fea-

tures. To keep the speaker embedding robust to noise, the

work in [9] combines triplet loss with an intra-class loss to

minimize intra-class variations. To achieve a stronger dis-

criminability, Li et al. [11] learn angularly discriminative

features using A-Softmax [12]; the results are as good as

A-Softmax loss function in the face verification task.

We also build a 2-D convolutional network for SR, which

is the same as the one we use in the FR task. Similarly, we

optimize the network with A-Softmax loss criteria as well.

2.3. Multimodal learning

Multimodal learning can be summarized into two

branches of study. The first one is the fusion-based ap-

proach. In [14], the authors construct a multimodal

CNN through concatenating two heterogeneous features at

feature-level. In Vegrad [22], they train two distinct mod-

els and fuse the output of those at decision-level. To deter-

mine the best fusion scheme, Vielzeuf et al. [23] propose an

easy modification to most existing neural network models

and the parameters used in fusion become learnable. Al-

though the mentioned approaches are easy to implement,

the complexity of the neural network model is increased and

requires double or more memory space for inference.

The other direction is to build a cross-domain multi-

tasking model. An intuition way is to construct a single

network to handle different domains. To achieve this goal,

a unified model is designed in [8] to handle multiple tasks

across domain using universal data representation. How-
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Figure 1. The network architecture of CNN-20. The workflow is

from left to right, top to bottom. Conv1.x, Conv2.x, Con3.x, and

Conv4.x contain the convolution units. Square brackets represent

residual blocks. FC1 is the fully connected layer.

ever, it may require strenuous trial-and-error in the model

selection process, given a huge amount of combined train-

ing data.

To tackle the model size and time-consuming issues, our

approach merges well-trained FR and SR models through

joint compression. We not only remove the co-redundancy

between models but also avoid the difficulty of the model

selection and trial-and-error process.

3. Method

In this paper, we use the CNN-20 architecture [12] to

construct both our FR and SR deep-CNN models. Figure 1

gives an architecture description of it, which consists of

four blocks (20 layers) of convolutional layers and a fully

connected layer. The squared brackets express the residual

block structure with shortcut connections.

3.1. FR Model Construction

In this work, we train the CNN-20 network with A-

softmax loss on VGGFace2 dataset to construct our FR

model. VGGFace2 dataset is larger than CASIA-WebFace

dataset employed in [12]. Each input RGB image is pre-

processed by using a face detector, MTCNN [28], to crop

the face region inside the image. The cropped region is then

resized to 112× 112 for both training and testing.

On standard face verification benchmark, LFW, our

implemented FR model of the CNN-20 architecture can

achieve 99.42% accuracy (higher is better), which is the

same as that reported in [12] with a deeper architecture (64

layers).

3.2. SR Model Construction

As A-softmax loss is capable of learning more angularly

discriminating feature embedding and has demonstrated

its effectiveness in FR, this idea is recently employed in

SR [11] for learning speaker embedding from deep CNNs

as well. In our work, we use the CNN-20 architecture with

A-softmax loss to train the SR model too. The dataset em-

ployed for SR training is Voxforge dataset1, an open source

speech corpus collected transcribed speech data from volun-

teer speakers. Each sample is converted to log-power mel-

scaled spectrogram, with the length of the FFT window be-

1http://www.voxforge.org/

ing 2048, the number of samples between successive frames

being 69. The spectrogram is then cropped to 112× 112.

On the evaluation data of Voxforge dataset, our SR

model can achieve the half total error rate (HTER) of

1.86% (lower is better). Our model outperforms the i-vector

(cosine distance) and i-vector (PLDA) approaches, which

achieve 2.82% and 5.87% HTERs, respectively.

Although [16] is slightly better than our baseline model

(1.2% HTER), the performance is evaluated on the set-

ting that every speaker has his (or her) own CNN model.

This one-CNN-per-person setting can increase the perfor-

mance, but needs multiple CNN models for multiple speak-

ers; whereas a new model is required to be built for a newly

registered speaker. Our approach uses a single CNN model

that extracts the feature embedding per speaker. Speaker

verification and identification can be easily performed by

comparing the distance between the embedding of speak-

ers and nearest-neighbor-search in the embedding space, re-

spectively. Speaker verification or recognition can thus be

performed more efficiently than that in [16] when the num-

ber of users is increased.

3.3. Merging FR and SR Models

The FR and SR models are co-compressed and merged

to form a unified F&SR model in our work. This is unlike

previous approaches [19] often combining two models with

newly added structures, such as bridging layers or common

embedding between the hidden layers of two networks, so

that two modalities can be simultaneously executed in a sin-

gle network. Despite the performance could be improved by

combining the two modalities with newly added structures,

the resulted network architecture is often more complex and

thus cannot be realized in edge devices easily. Our approach

employs the joint redundancy between the two well-learned

networks, so that they are co-compressed to form a more

compact model, which is more suitable to serve for infer-

ence on resource-limited devices.

Some approach (e.g., Liu et al. [14]) assumes that the

signal sources of the two modalities are received syn-

chronously. That is, the human face images and their voices

should be gotten simultaneously and are co-used for hu-

man identification. The two modalities are helpful to each

other and can be used to jointly validate the results so that

the recognition accuracy can be boosted. However, some-

times only one type of signal is received in real applications.

For example, in a home-robot system, we would demand to

identify a person’s voice when he (or she) stands behind

the robot, i.e., out of sight of the camera; we could also

need to identify the human face when he (or she) doesn’t

utter a sound. Our approach supports both the synchronous

and asynchronous modes, which does not assume the avail-

ability of both modalities for person identification. We fo-

cus on co-compressing the two well-trained models so that
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Figure 2. The merged model of the face and speaker recognition.

Both image and voice share the same codebooks to reduce the re-

dundancy. Two assignment mapping tables manage each mode

independently.

their performance can be preserved and flexibly applicable

for both asynchronous and synchronous modes on resource-

limited devices. In the asynchronous mode, the input from

each mode is processed independently. On the other hand,

in the synchronous mode, our approach obtains the recog-

nition results from both modalities. They could be further

refined with a post-fusion (e.g. soft voting on either embed-

ding or classification layers) to obtain a better final result

for the synchronous mode, but this is out of the main focus

of this work.

Given the FR and SR models of the same architecture

(CNN-20) that contains 20 convolutional layers and 1 fully

connected layer as shown in Figure 2, we merge the corre-

sponding layers between them into a single layer. In the fol-

lowing, we present the approach of merging a pair of convo-

lutional layers, one from the FR model and the other from

the SR model. The same principle is then followed when

merging fully connected layers.

Let LF and L
S be a pair of the convolutional layers to be

merged, where LF is from the FR model and L
S is from the

SR model, respectively. Assume that the input and output

tensors of the respective layer is of dimension M ×N ×D
and M ×N × P , respectively, where M,N are the spatial

size, D is the depth (or number of channels) of the input ten-

sor, and P is the depth of the output tensor. The convolution

kernel applied to this layer is of size m×n×D×P , where

m,n are the spatial size, D is the depth, and P is the num-

ber of the kernel. Without loss of generality, assume that

m,n are odd numbers with m = 2w + 1 and n = 2h+ 1.

In the principle of NeuralMerger [2], convolution ker-

nels of the two layers to be merged are jointly represented

by fewer codewords, so that the two layers can be merged

to form a more compactly represented layer. The merged

model can take advantage of these fewer codewords to con-

struct lookup tables for efficient inference with negligible

accuracy drop. We briefly review NeuralMerger as follows.

The convolution kernel is divided into 1×1×r-dimensional

subspaces, where r is along the depth direction. There are

K such subspaces for one model, where K = ⌈D/r⌉. In

each subspace, there are T = mnP kernel segments of di-

mension r for one model. Because we have two models,

FR and SR, there are 2T kernel segments of dimension r in

each subspace.

For each dim-r subspace, NeuralMerger finds C code-

words to jointly encode the 2T kernel segments of the two

models, C < T . The codewords are initially found via vec-

tor quantization using K-means algorithm. Denote the C
clustering centers (i.e., codewords) found for the k-th sub-

space to be {bc,k ∈ Rr|c = 1 · · ·C, k = 1 · · ·K}. Each

of the 2T kernel segments is then assigned to one of the C
clustering centers. These fewer codewords are used to form

lookup tables for efficient inference.

Here, how to use these codewords to reconstruct the

original convolution operation is explained. We define

the codeword assignment mapping of clustering to be

πF (i0, j0, p, k) and πS(i0, j0, p, k) for the FR and SR mod-

els, respectively, where −w ≤ i0 ≤ w and −h ≤ j0 ≤ h
represent the (i0, j0)-th spatial elements of kernel, p ∈
{1 · · ·P} represents the p-th kernel, and k ∈ {1 · · ·K} rep-

resents the k-th subspace. The convolution operation in the

layer of the FR model can then be approximated as

yFi,j;p =
K∑

k=1

w∑

i0=−w

h∑

j0=−h

〈xF
i+i0,j+j0;k, bπF (i0,j0,p,k);k〉,

(1)

where 〈·, ·〉 denotes the inner-product of r-dimensional vec-

tors, yFi,j;p is the output at the spatial location (i, j) of the

p-th channel, xF
i,j;k is the input of spatial location (i, j) of

the k-th subspace, 1 ≤ i ≤ M and 1 ≤ j ≤ N . Please note

that the inner-product is conducted with fewer codewords to

form lookup tables. Then the convolution is done by sum

up values in the lookup tables using (1). Likewise, for the

SR model, the convolution-layer operation is approximated

as

ySi,j;p =

K∑

k=1

w∑

i0=−w

h∑

j0=−h

〈xS
i+i0,j+j0;k, bπS(i0,j0,p,k);k〉.

(2)

In the convolutional layer, inner products (or 1× 1× r con-

volutions) of the input and the codewords are performed in

a subspace. Because C, the number of codewords jointly

representing the kernel coefficients of the FR and SR mod-

els, is often significantly smaller than that of the kernel

segments T in that subspace of one model, the number of

inner-product operations is reduced in the mutually encoded

convolutional layer. Hence, the layers can be jointly com-

pressed with a smaller size and faster inference speed.

The codewords co-used in NeuralMerger removes the

joint redundancy of the two well-trained models. Although

the codewords {bc,k|c = 1 · · ·C, k = 1 · · ·K} are initial-

ized via vector quantization of the original models, Chou et

al. [2] show that the codewords are differentiable and thus

can be fine-tuned from data through back-propagation pro-

cedure (referred to as calibration training in [2]). In the



calibration training of Neural Merger, the codewords are

re-trained with two combined error terms. One is the loss

functions utilized in the original FR and SR models, which

fulfill the goals of high FR and SR accuracy. The other is the

layer-wise output mismatch error, which follows the princi-

ple of student-teacher network of distilling training, where

the co-compressed model approximates the outputs of the

original well-trained FR and SR models at every layer.

In the above, co-compression of convolutional layers by

joint encoding is depicted. Merging fully-connected lay-

ers follows the same principle in NeuralMerger, where the

weights are divided into dim-r subspaces. The codewords

are found to jointly represent the weights in each sub-

space and fine-tuned with calibration training in the fully-

connected layers as well.

To realize our approach, we use GPUs (Nvidia) to train

the individual FR and SR models, and also for the calibra-

tion training of the merged model. We use CPU in the infer-

ence stage so that the results are more generalizable to edge

devices that may not contain GPUs.

4. Experiments

In this section, we firstly introduce datasets with eval-

uation metrics for each respective task and then describe

the preprocessing procedure with implementation details as

well as our baseline. Next, we present the different settings

of our merged model and make a comparison between ours

and baseline in terms of accuracy, speed and compression

ratio.

4.1. Dataset and Metrics

In the face verification task, we train on VGGFace2 [1]

and evaluate the performance on LFW dataset. The details

of both are as follows:

VGGFace2 dataset [1] is a large facial image dataset

consisting of 3.31 millions images of 9,131 identities

collected from online search engine and the images exhibit

large variations in pose, race, age, occlusion, gender. In

this setup, we use the official training set of 8,631 identities

as our training data.

LFW dataset [10] contains more than 13,233 images of

faces and 5,749 subjects collected from the web. In order

to test the effectiveness of the learned model, the images

are arranged as a 6,000-pair verification task and we can

follow the ten-folds cross-validation protocol to evaluate it.

In the speaker verification task, we perform an experi-

ment on 300 speakers chosen from VoxForge. The descrip-

tion of the dataset is as follows:

VoxForge2 is an open source speech corpus collected tran-

scribed speech data from volunteer speakers. We follow

2http://www.voxforge.org/

the same settings from [16] to select 300 speakers from

the database. Each speaker contains at least 20 utterances

recorded at 16 bit, 16kHz in a clean environment. From

chosen speakers, the dataset is further divided into three

subsets: the training set, the development set, and the eval-

uation set and each of them contains 100 speakers respec-

tively. To evaluate the performance of the learned model, a

single threshold value is predetermined to meet an Equal Er-

ror Rate (EER) in the development set. Then, we calculate

the Half Total Error Rate (HTER) using the chosen thresh-

old. As compared to the results in [16], we also present the

performance in terms of the HTER.

4.2. Data Preprocessing

In the face verification task, we first detect the face us-

ing MTCNN [28], which can generate location of the face

and five facial landmarks, including right eye, left eye, nose,

right mouth corner and left mouth corner. Then, We apply

the affine transform to align the face based on the standard

location of five facial landmarks and resize the facial images

to become 112×112. For data augmentation, we apply nor-

malization with a mean of 0.5 and a standard deviation of

0.5 in the testing phase. In the training phase, we further

apply random horizontal flip as well as normalization men-

tioned before.

In the speaker verification task, The incoming speech

data is split into several small chunks of 510ms with 50%

overlap. For each small chunk, we compute the log-mel

spectrogram using librosa audio processing library, with the

FFT window length of 2048, hop length of 69, and 112 mel-

bands. Then, we crop the generated log-mel spectrogram

into 112 × 112 and then copy it thrice as a kind of three-

channel image. In addition, we also apply normalization

with a mean of 0.5 and a standard deviation of 0.5 for data

augmentation in both training and testing phase.

4.3. Implementation Details

Baseline. For both tasks, we obtain two pretrained net-

works as our baseline using A-Softmax loss. Each network

architecture we adopt is CNN-20 trained over 40 epochs

with the batch size of 256 and the network parameters are

optimized using stochastic gradient descent with an initial

learning rate of 0.01, a momentum of 0.9 and a weight de-

cay of 5 · e−4. Furthermore, the learning rate scheduling is

also applied to decrease the learning rate by 0.1 at epoch 20,

30, 36 respectively. In the face verification task, we train on

the images of top-4001 class over the 40 epochs. Then, we

finetune on the remaining images over the 40 epochs. In

the speaker verification task, we train on the whole training

set over 40 epochs. Before merged, CNN-20 can achieve

99.42 accuracy on LFW benchmark and 1.86% HTER on

the evaluation set on VoxForge.

To address the approach about embedding calculation,



the embedding can be easily obtained from the fully con-

nected layer activation using different input modalities.

However, to construct a single speaker embedding, post-

processing is required due to numbers of input data from

the target speaker. To handle this, we extract the mean em-

bedding from log-mel spectrograms of the target speaker.

As a result, we are able to measure the similarity between a

pair of embeddings using cosine similarity in both verifica-

tion tasks.

Merging Face and Speaker CNN. We define two parame-

ters to control the size of the merged model. The first one

is the dimension of the subspace, r, and the other one is the

number of codewords in a subspace, C. The following set-

tings are shown in Table 1. By default, we set the number

of codewords to be C = 256 for all layers.

After seeking a set of representative codewords to merge,

we recover the accuracy of the separately well-trained mod-

els into a merged quantized one using end-to-end calibra-

tion training. We finetune the codewords using a combina-

tion of A-Softmax (Lang) and distilling loss (Ldistilling), as

shown in (3), where λ is the combination coefficient.

Ltotal = Lang + λ · Ldistilling. (3)

The distilling loss defined in (4) computes the one-norm dif-

ferences of the block-wised outputs, where xl is the input,

y(xl) is the output of merged model, f(xl) is the output of

the well-trained model and l indexes the blocks in CNN-20.

Ldistilling =
∑

l

|f(xl)− y(xl)|, l ∈ [1, 5]. (4)

The coefficient for the loss term in Eq. (3) is set to λ =
10. We train the model in an alternative manner over 60

epochs with the batch size of 256 via PyTorch [17].

4.4. Results

After finding the codewords for joint representation of

the two models via vector quantization, we use 20% train-

ing data for the calibration training. The model merging

results are summarized in Tables 2 and 3. In the tables, five

configurations of different settings of subspace dimensions

(MergerA-E in Table 1) achieve model-size compression

ratios from 1.5x to 5.2x as shown in Table 3. When the sub-

space dimensions become larger, the merged model size is

getting smaller, thus resulting in a higher compression ratio.

Compared to the performance of the original FR model

(99.42% accuracy) and SR model (1.86% HTER), the per-

formance of the merged models drops only a little (from

0.17% to 0.59% for FR and 0.58% to 0.68% for SR), and

quite satisfiable results can still be obtained by our ap-

proach. Compared to the previous individual approaches

on FR and SR, our merged models achieve an overall ac-

curacy from 98.83% to 99.25% for FR and HTER 2.44%
to 2.54% for SR, respectively. The performance is roughly
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Figure 3. Codeword-sharing ratio of each layer in our all merged

models.

comparable to that of the previous FR and SR approaches

when a compact and unified model is utilized in our ap-

proach. Although 1-D CNN [16] can obtain higher perfor-

mance, multiple speaker-dependent models are used, which

is impractical for real applications as discussed in Section

1.

Figure 3 shows the layer-wise codeword-sharing ratio in

the merged model, which computes how frequent the code-

words are shared by both FR and SR in the inference stage

of the merged model. It can be seen that, for all configura-

tions A-E, the codeword-sharing ratio is very small in the

starting layer. This would be because that image and voice

are heterogeneous signal sources, the convolution weights

able to be shared are few in the beginning. Nevertheless,

after forwarding several layers, the ratio of sharing is in-

creased. In the end, the ratio remains roughly stable in

deeper layers. This phenomenon reveals that the merged

model can find feature representations commonly useful for

both FR and SR in several layers, despite the modalities are

quite different. The deeper layers can then jointly handle

the remaining inference based on the common representa-

tions found. Hence, the obtained middle representations in

our merged model become more common and can be pro-

cessed with a higher ratio of shared weights in later deeper

layers. The final merged model still maintains comparable

performance to that of the original FR and SR models.

Besides reporting the accuracy as compared to the exist-

ing approach, we also provide an overall performance anal-

ysis in compression ratio and speedup. As shown in Ta-

ble 3, the single merged model size can be compressed up

to five times with only a negligible accuracy drop among

different parameter settings. When comparing with Merg-

erB and MergerC, we observe the subspace dimension (r) in

the fully connected layer has a large influence on the com-

pression ratio. In addition, we find that higher compression



Table 1. The settings of r in each layer.

Para Conv1.x Conv2.x Conv3.x Conv4.x FC1

MergerA 3 8 8 8 16 16 16 16 16 32 32 32 32 32 32 32 32 32 64 64 64

MergerB 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

MergerC 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 4

MergerD 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

MergerE 3 16 16 32 32 32 32 32 32 32 32 32 32 32 32 32 32 64 64 64 64

Table 2. The accuracy of each method in our experiment.

Methods
Face Speaker

LFW

Acc.(%)
HTER

UBM-GMM [18] 3.05

i-vector+cosine distance [4] 2.82

ISV [24] 2.4

CNN-20 (Ours) 1.86

1-D CNN [16] 1.2

FaceNet [20] 99.55

CNN-20 (Ours) 99.42

MergerA 98.83 2.54

MergerB 99.18 2.44

MergerC 99.1 2.49

MergerD 99.25 2.51

MergerE 98.85 2.5

Table 3. The overall performance of our merged model.

Param. Compr.
Accuracy Drop (%)

Face Speaker

MergerA 5x 0.59 0.68

MergerB 2.48x 0.24 0.58

MergerC 1.87x 0.32 0.63

MergerD 1.5x 0.17 0.65

MergerE 5.2x 0.57 0.64

ratio does not directly reflect the higher accuracy drop i.e.

0.24% drop in MergerB vs. 0.32% in MergerC. Therefore,

using a proper r to reduce co-redundancy perhaps bring a

good improvement in accuracy and model size. On the other

hand, we further examine the inference speed of MergerE.

Instead of estimating our model speedup with theoretical

FLOPS ratio, we verify the speedup ratio using CPU with

C++ implementation and BLAS library. In the Intel CPU

i5-4570 system in single thread mode, the speedup ratio of

the merged system is up to 1.50. In a single thread mode

of ARM A57 CPU, the speedup ratio of the integrated sys-

tem is about 2.08 times faster. We argue that it is due to the

memory access cost is higher in ARM than the x86 system

since we have compressed the model 5.2 times smaller.

5. Conclusion

In this paper, we present a unified deep-learning model

for multimodal FR and SR. Well-trained individual mod-

els are incorporated to produce the co-compressed merged

model, and the performance can be restored with part of

the training set. The experiments show that even the inputs

are from different modalities, the merged model maintains

the performance of FR and SR well, and is more compact

and suitable for the inference on resource-limited devices.

We also show that the merged model can enforce the com-

mon feature representations of FR and SR in the early lay-

ers and gradually increases the codeword-sharing ratio in

the merged model. The future work will be integrating and

co-compressing convolutional networks and recurrent net-

works for video-based FR and SR.
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