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Abstract

Zero-Shot Learning (ZSL) has attracted huge research

attention over the past few years; it aims to learn the new

concepts that have never been seen before. Each concept

(class) is embedded in two or more modalities, e.g., the im-

age features and semantic embeddings. Attributes are in-

troduced as the intermediate semantic representation to re-

alize the knowledge transfer from seen to unseen classes.

Previous ZSL algorithms are tested on several benchmark

datasets, which are defective in terms of the image distribu-

tion and attribute diversity. In addition, we argue that the

“co-occurrence bias problem” of existing datasets, which

is caused by the biased co-occurrence of objects, signifi-

cantly hinders models from correctly learning the concept.

To overcome these problems, we propose a Large-scale At-

tribute Dataset (LAD) with 78,017 images of 230 classes.

359 attributes of visual, semantic and subjective properties

are defined and annotated in instance-level. Seven state-of-

the-art ZSL algorithms are tested on this new dataset. The

experimental results reveal the challenge of implementing

ZSL on our dataset. Based on the proposed dataset, Zero-

shot Learning Competition of AI Challenger (> 110 teams

attended) has been organized for promoting ZSL research.

1. Introduction

Humans can distinguish more than 30,000 basic level

concepts and many more subordinate ones [3], while ex-

isting deep neural networks [33, 34, 12] can only clas-

sify thousands of objects. It is expensive to collect the la-

belled data sufficiently to train deep neural networks for all

classes. Human beings, in contrast, can leverage the se-

mantic knowledge (e.g., textual descriptions) to learn the

novel concepts that ones have never seen before. Such the

“learning to learn” ability inspires the recent study of zero-

shot learning (ZSL) [25], which targets at identifying novel

classes without any training examples. In practice, the ZSL

is achieved via inferring the intermediate semantic repre-

sentations that may be shared both by the seen and unseen

concepts. In particular, the middle-level semantic represen-

tations (e.g. attributes) are utilized to make connections be-

tween the low-level visual features and high-level class con-

cepts.

Many different semantic representations have been in-

vestigated, such as semantic attributes [17], word vectors

[20] and gaze embeddings [15]. Though they have to

be manually labeled, semantic attributes have been most

widely used due to the good merits of “name-ability” and

“discriminativeness”. Additionally, the attributes can also

facilitate the zero-shot generation (ZSG) [41, 30, 43, 19],

which aims to generate the images of unseen classes with

novel semantic representations.

The image datasets annotated with attributes such as

Caltech-UCSD Birds-200-2011 (CUB) [37], SUN At-

tributes (SUN) [40], aPascal&aYahoo (aP&aY) [7] and An-

imals with Attributes (AwA) [7], are widely used as the

testbed for ZSL algorithms. However, the total number of

images and attributes of these dataset are too limited to train

from the scratch the state-of-the-art deep models namely,

VGGs [5], ResNets [13] and DenseNets [14].

Furthermore, there exist several additional issues with

these attribute datasets. (1) The categories and images of

these datasets may be highly related to ImageNet dataset

(used in ILSVRC 2010/2012). In ZSL scenario, it is thus

less desirable to directly utilize the deep models pre-trained

on ILSVRC 2010/2012 as the feature extractors, which

may include the images of novel unseen classes from these

datasets [39]. (2) These datasets (CUB and SUN) may fo-

cus on each specific visual domain; and yet the datasets for

the common object (aP/aY) and animal (AwA) domains do

not really have sufficient fine-grained classes to validate the

knowledge transfer in zero-shot scenario.

Additionally, there exists serious “co-occurrence bias”
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Bear
Color: is white: True

Limb: has short legs:   True

Behaviour: can swim:    True

Habit: lives in groups:    False

Lychee
Size: is big: False

Shape: is globular:                 True

Edibility: has nutlets:             True

Medicinal property: is mild:  True

Fighter
Parts: has a jet engine:  True

Color: is green :             False

Safety: is dangerous :    True

Power consumes: wind 

power :                           False

Mobile Phone
Parts: has a battery:               True

Shape: is flat:                         True

Function: can photograph:     True

Aim: is for cleaning:              False

Bob Hair
Color: is brown: True

Color: is black:                               False

Fitness: fits people with earring:    False

Feeling: is cute:                           True

Animals
Fruits

Vehicles
Electronics

Hairstyles LAD

Figure 1. The overview of the proposed LAD dataset. It includes

230 classes belonging to five super-classes (domains). Labels,

bounding boxes and attributions are annotated. The upper two at-

tributes are visual attributes, while the bottom two are semantic

attributes.

in these datasets. For example, the “person” objects oc-

cur in some AwA classes (e.g. “ox” and “horse”) with

a high frequency (> 35%). Although the co-occurrence

of objects may be interesting in some multi-object detec-

tion/segmentation tasks, it is not suitable for the single-

object learning (classification) task, and it will cause the

mis-learning of a particular concept. Such correlation may

be implicitly learned and utilized as the cues of identifying

zero-shot classes. Specifically, suppose we want to identify

two unseen classes – lion and dog. Essentially, these two

classes share many common attributes, such as “four legs”,

“has fur” and so on. Actually, even visually some kind of

dog (e.g., Tibetan mastiff) is very similar to lion. However,

the zero-shot algorithms may easily identify the dog class

by only detecting whether “person” objects are present in

the image since high proportion of “person” and ”dog” ob-

jects are co-occurrence in the dog class of this dataset. Such

“co-occurrence” is caused by the way of how we construct

the dataset; and thus can be taken as one type of bias. The

algorithms implicitly utilize this correlation may be limited

to generalize to other domains which do not have such type

of correlation.

To alleviate these problems of existing datasets, we are

making efforts of contributing the new attribute dataset —

Large-scale Attribute Dataset (LAD) to the community. We

design a novel label list and collect images from differ-

ent sources, in order to get more new classes and images

different from existing datasets. Except for low-level vi-

sual attributes (e.g. colors, sizes, shapes), we also provide

many attributes about semantic and subject visual proper-

ties [9]. For example, as illustrated in Fig. 1, we anno-

tate attributes of diets and habits for “animals”; edibility

and medicinal property for “fruits”; safety and usage sce-

narios for “vehicles”; functions and usage mode for “elec-

tronics”; human feelings for “hairstyles”. We cluster classes

into several super-classes. Each super-class can be viewed

as a fine-grained subset, and the attributes are designed for

each super-class. Then, the knowledge transfer between

fine-grained classes are feasible.

To break the co-occurrence among objects, we collect

the images with only single (foreground) object. Over-

all, we constructed a new attribute dataset which contains

78,017 images from 230 classes. These classes are from

5 different visual domains (super-class), including animals,

fruits, vehicles, electronics, and hairstyles. 359 visual, se-

mantic and subjective attributes are annotated for randomly

selected 20 images per class.

There are three main contributions of our paper:

1) Present a big dataset: More than 10,000 person-hour

time is devoted to the construction of this dataset , which

is the larger than the sum of the four most popular datasets

in ZSL. Without big data, deep learning models cannot be

trained independently on the dataset. The use of pre-trained

feature extractors may lead to an impure or unfair competi-

tion of different methods.

2) Raise a new problem: The co-occurrence bias problem

of existing ZSL datasets is proposed, and its influence on the

learning of a concept is well investigated by extensive ex-

periments. The co-occurrence bias may cause the problem

of the mis-learning of a concept, which should be prevented

during the dataset construction.

3) Provide a better testbed: We provide the re-

implementation of seven state-of-the-art methods on our

dataset. These results are good baselines for comparison.

In addition, Zero-shot Learning Competition of AI Chal-

lenger1, has been organized for promoting ZSL research

based on this dataset. More than 110 teams attended this

competition. The code and data are provided in Github2.

2. Related Work

2.1. Zero­shot Learning

In this paper we focus on two zero-shot learning tasks,

namely, zero-shot recognition and zero-shot generation.

Please refer to [11] for a more detailed review.

Zero-shot Recognition (ZSR). ZSR has attracted signifi-

cant research attention in the past few years. Extensive ef-

forts and previous works can be roughly divided into three

groups. (1) Direct embedding from visual space to seman-

tic space (or reverse embedding) [25, 17]. It learns a map-

ping function from the visual feature space to the seman-

tic embedding space by auxiliary training data; the learned

mapping function is directly applied to project the unseen

testing images into semantic space and match against the

prototype of the novel class/concept. (2) Learning the joint

embedding space [1, 38, 31]. Both the image features and

1Competition Website: https://challenger.ai/
2Github Repository: https://github.com/PatrickZH/A-Large-scale-

Attribute-Dataset-for-Zero-shot-Learning
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semantic embeddings are jointly projected into a new em-

bedding space. For each given testing unseen image, its la-

bel is predicted according to the distance to unseen seman-

tic embeddings in the new space. (3) Transferring structural

knowledge from semantic space to visual space [23, 4, 45].

The structural knowledge is learned in semantic space, and

then transferred to the visual space for synthesizing the vi-

sual instances or classifiers of unseen classes.

Zero-shot Generation (ZSG). In recent years, zero-shot

generation methods synthesize images conditioned on at-

tributes/texts using generative models. [41] presented a

successful trial to synthesize natural images of birds and

faces. They choose Conditional Variational Auto-Encoder

as the basic model and then disentangle the foreground and

background by introducing a layer representation. Pixel-

CNN is utilized to model images conditioned on labels,

tags or latent embeddings [36]. However, new images can

be synthesized only based on existing labels, latent embed-

dings or the linear interpolations of them. Some methods

[30, 43, 44, 27] based on conditional GAN [22] have been

proposed to generate images with unseen attribute/text rep-

resentation. In [30], the encoding of text is used as the

condition in both the generator and discriminator by con-

catenating the random noise and image feature maps. [43]

proposed a novel model to synthesize and edit facial im-

ages. The semi-latent facial attribute space, which includes

both learned latent attributes and user-defined attributes, are

leveraged as the conditional input of GAN. Note that most

of these methods focus on the image generation with par-

ticular visual attributes or descriptions, e.g. colors, parts

of faces, flowers and birds. However, in this paper, we try

a more difficult task, i.e., manipulating semantic attributes

and generating images with abstract attributes as discussed

in Sec. 5.3.

2.2. Image­based Attribute Datasets

Several datasets are repurposed by annotating attributes

in order to evaluate the zero-shot learning algorithms.

These datasets include Caltech-UCSD Birds-200-2011

(CUB) [37], SUN Attributes (SUN) [40], aPascal&aYahoo

(aP&aY) [7], Animals with Attributes (AwA) [7], Public

Figures Face Database (PubFig) [16], Human Attributes

(HAT) [32] and Unstructured Social Activity Attribute

(USAA) [8]. Essentially, any dataset, if labeled with

attributes or word vectors, can be used to evaluate the

ZSR/ZSG algorithms. The statistics of the most popular

four attribute datasets are shown in Tab. 1.

As aforementioned, existing benchmarks have three

main drawbacks. (1) The categories and images of ex-

isting attribute datasets may be highly reused in ILSVRC

2010/2012 which are frequently used to pre-train the deep

feature extractors. Hence, the image feature extractors may

have seen many testing (“unseen”) classes. (2) The cate-

gories are not fine-grained enough. For example, aP/aY

contains only 32 coarse-grained categories. As aforemen-

tioned, those datasets do not have sufficient fine-grained

classes to validate ZSL methods. (3) There exists serious

co-occurrence bias in these datasets. AwA and aP/aY con-

tain images with multiple foreground objects; however ev-

ery image only has a single label. Some objects have a bi-

ased co-occurrence with others in particular classes. For in-

stance, 30% classes in AwA have more than 10% images

containing “person”. Even, in “ox” and “horse” classes,

the co-occurrence ratio is greater than 35%. To overcome

these three drawbacks, we introduce a new benchmark as

the testbed of zero-shot learning.

3. Dataset Construction

The construction process of LAD can be divided into

four steps, namely, the definition of classes and attributes

(Sec. 3.1), image crawling (Sec. 3.2), data preprocessing

(Sec. 3.3) and data annotation (Sec. 3.4).

3.1. Definition of Classes and Attributes

Classes. It is of central importance to well define the classes

and attributes of an attribute dataset. In general, we expect

the LAD have more common classes, and yet fewer shared

classes with ImageNet dataset (ILSVRC 2010/2012) [6]. It

is nontrivial, since ImageNet dataset is built upon the well-

known concept ontology – WordNet [21]. Critically, we de-

fine the classes from five domains (super-classes), namely,

animals, fruits, vehicles, electronics and hairstyles. An-

imals and fruits are natural products, while vehicles and

electronics are artificial products. We choose 50 popu-

lar classes for animals, fruits, vehicles, electronics. The

hairstyle super-classes include the 30 mostly popular Asian

and Western hairstyles. All these classes are selected as less

overlapped with the WordNet ID of ILSVRC 2010/2012

dataset. In particular, some classes (e.g., the “fauxhawk”

and “mullet” in the hairstyle super-class) have only recently

been collected and annotated to the community [42]. Some

example images of different classes are shown in the tree

structure of Fig. 2.

Attributes. Considering the huge diversity of LAD, we de-

sign the attribute list for each super-class; more specifically,

we define 123, 58, 81, 75 and 22 attributes for animals,

fruits, vehicles, electronics and hairstyles respectively. The

defined attributes include visual information ( e.g. color,

shape, size, appearance, part, and texture), the visual se-

mantic information such as “whether an type of animal eats

meat?”, and subjective visual properties [9], e.g., “whether

the hairstyle gives the feeling of cute?”. Such a type of at-

tribute definition will facilitate designing zero-shot learning

algorithms by transferring various information – visual in-

formation, semantic information and subjective visual prop-
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LAD CUB-bird SUN aP/aY AwA

Images 78,017 11,788 14,340 15,339 30,475

Classes 230 200 717 32 50

Bounding Box Yes Yes No Yes No

Attributes 359 312 102 64 85

Annotation Level 20 ins./class instance instance instance class

Table 1. Statistics and comparison of different datasets used in zero-shot learning.

Mammal Bird Fish Insect

Animal

Nut Berry
Tropical 

fruit
Pome

Fruit

Land Water Sky

Vehicle

Communic

ation
Computer

Entertain

ment

Electronics

Cool Elegant Mature

Hairstyle

Figure 2. The hierarchical structure of super-classes (domains)

and some example classes. Each image represents a class.

erties. Additionally, even more wider types of attributes

have been considered here; for example, we annotate at-

tributes of diets and habits for the animal super-class, edi-

bility and medicinal property for the fruit super-class, safety

and usage scenarios for the vehicle super-class, functions

and usage mode for the electronic super-class. The knowl-

edge of such attributes is referring to Wikipedia.

3.2. Image Crawling

We gather the images of each defined class by using the

popular search engines, e.g. Baidu and Google. Specifi-

cally, to efficiently search enough images, the class names

by different languages (e.g. English and Chinese) have been

used in the search engines. We also use synonyms and de-

terminers to obtain better search results. By this mean, for

each class we crawled about 1,000 images with public li-

censes.

3.3. Preprocessing

Initial Preprocessing. The raw crawled images are very

noisy. Huge human efforts are devoted to clean up the

crawled images. Specifically, we manually remove those

images of low quality (e.g., low-resolution, or large water-

mark). Also for each class, those duplicated or unrelated

noisy images are also manually pruned.

Removing Co-occurrence Bias. Considering that the co-

occurrence bias of one dataset mostly comes from the co-

existent objects with the proposed object class. For exam-

ple, many images of the animals in AwA contain the “per-

son” object. To avoid such cases, we prefer the images with

iconic view of each class. Particularly, we take as the back-

ground, the sky, lakes, land, trees, buildings, blur objects

and tiny objects; and those images have more than one fore-

ground object of iconic view would be discarded.

3.4. Annotation

Class Annotation. We also need to further annotate the

preprocessed images. In particular, we remove those images

whose foreground objects mismatch the class name/label.

We finally obtain 78k images of all five super-classes as

shown in Tab. 1. We also annotate the bounding box of

each foreground object.

Attribute Annotation. According to the attribute list de-

fined in Sec. 3.1, we annotate instance-level attributes for

selected images. Specifically, we randomly select 20 im-

ages per class to annotate attributes. The class-level at-

tributes can be computed as the mean values of the attributes

of 20 images.

3.5. Statistics

Total Images. Our LAD dataset contains 78,017 images.

As shown in Fig. 3(a), we compare the distribution of im-

age number per class with the AwA and aP/aY datasets. It

shows that most classes of LAD have 350 images whilst

the AwA and aP/aY have around 650 and 250 images per

classes respectively. In particular, AwA has 30,475 images

from 50 animals with 85 class-level attributes; and aP/aY

includes 15,339 images of 32 classes with 64 instance-level

attributes. The area under the curve indicates the total im-

ages of each dataset. It means that our LAD is much larger

than the AwA and aP/aY datasets.

Classes and Attributes. Fig. 2 provide a hierarchical view

of part of classes in our dataset. We can find that every

super-class is fine-grained. We also compare the total class

and attribute numbers of LAD, CUB, SUN, aP/aY and AwA

datasets in Fig. 3(b). Our LAD contains the 359 attributes

which is much larger than the attribute number of other

datasets. The sheer volume of annotated attributes essen-

tially provide a good testing bed for the zero-shot learning
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Figure 3. Statistics of image, class and attribute numbers.

Dataset aP/aY AwA LAD

Ratio 86.96 76.00 43.48
Table 2. The ratios (%) of shared classes between different datasets

and ILSVRC 2012. Clearly, our dataset has the lowest overlap

ratio.

algorithms. Furthermore, we also introduce the subjective

attributes of human hairstyle classes as illustrated in Fig. 1.

Comparably, the SUN dataset has 717 classes and yet only

14,340 images and 102 annotated attributes. The CUB-200

2011 bird dataset has 312 attributes, which however only

focus on the visual information such as colors, shapes, pat-

terns, sizes and lengths of the birds. In contrast, our LAD

introduces the attributes of visual semantic information and

subjective visual properties [9]; and we argue that these at-

tributes are much richer semantic representation and poten-

tially can be better used for knowledge transfer in testing

the zero-shot algorithms.

We calculate the ratio of shared classes between different

attribute datasets and ImageNet dataset. In particular, we

use the competition data in ILSVRC 2012, because most

deep feature extractors are trained on ILSVRC 2012. For

each dataset, we count the number of class names which

exist in the WordNet ID of ILSVRC 2012. The ratio is cal-

culated by dividing the total class number of each dataset.

As shown in Tab. 2, our dataset has only 43.48% overlap

ratio with ILSVRC 2012 which is significantly lower than

AwA (76.00%) and aP/aY (86.96%).

4. Data Split

The split of seen/unseen classes significantly influences

the performance of zero-shot learning methods. In previ-

ous datasets such as CUB, SUN, aP/aY and AwA, only one

split of seen/unseen classes is specified for testing zero-shot

algorithms. However, due to the distinctive correlations of

the classes, it is not reliable nor convincing to evaluate the

performance of algorithms on the only one split. Hence, we

propose a set of splits of seen/unseen classes for zero-shot

learning on our dataset. We adopt the idea of five-fold cross

validation to split the seen/unseen classes. Specifically, we

shuffle these classes and divide them into 5 folds. Each fold

includes 20% classes of every super-class. Each fold is used

as the unseen classes (20%) in some split, and the rest folds

are seen classes (80%) in the split. In this way, we obtain 5

random splits of seen/unseen classes to evaluate the perfor-

mance of zero-shot learning on our dataset.

We advocate others to evaluate their ZSL methods on

each super-class individually. It means that the data (im-

ages, labels, attributes) of each super-class should be used

separately. The performance on each super-class should

be the average value on all 5 splits. For easy comparison,

the average recognition accuracy on all super-classes can

be used as the general performance on our dataset. In ex-

periments, we will provide the evaluation of seven state-of-

the-art ZSL methods using these splits under the inductive

setting.

For supervised learning, we randomly select 70% data

from each class as training (train+validation) data and the

rest 30% are testing data. These splits will be released along

with our dataset.

5. Methods and Experiments

This section will compare the state-of-the-art methods

and conduct the experiments under different settings on our

dataset. In particular, we consider the supervised learning

(Sec. 5.1), zero-shot learning (Sec. 5.2), zero-shot genera-

tion (Sec. 5.3). The data and code have been released.

5.1. Supervised Learning

Though our LAD is designed as the testbed for zero-shot

learning, we can still validate the LAD in the standard su-

pervised setting. In particular, we provide several baseline

results of the supervised learning of objects and attributes.
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w/o. Pre-training w. Pre-training

ResNet Inception-v3 ResNet Inception-v3

AwA 49.97 46.26 86.51 87.29

LAD 66.78 44.08 84.92 79.52
Table 3. Object recognition accuracies (%) on two datasets. w.

means “with”, and w/o. means “without”. Clearly, the pre-training

on ILSVRC 2012 brings larger performance increase (averagely

38.79%) for AwA than our LAD (averagely 26.79%). This result

also denotes that AwA shares more classes with ILSVRC 2012.

In each class, we have labeled training data and unlabeled

testing data (the split refers to Sec. 4). We also show that

our LAD is large enough and has sufficient images to train

the state-of-the-art deep architecture – ResNet.

5.1.1 Object Recognition

We use the state-of-the-art object recognition models,

namely, Inception-V3 [35] and ResNet [12] to recognize

objects. We train the two models under two settings,

namely, with pre-training on ILSVRC 2012 and without

pre-training.

The recognition accuracies of LAD and AwA datasets

are shown in Tab. 3. In terms of deep models, ResNet works

better than Inception-V3 in most settings. Note that there

are 230 classes in LAD and 50 classes in AwA. The chance

levels on the two datasets are 0.43% and 2% respectively.

However, the recognition accuracy on LAD is close to, even

higher than, that on AwA. This phenomenon hints that more

images and classes are beneficial to train deep models.

Generally speaking, the pre-training brings signifi-

cant improvement of recognition accuracies for both two

datasets and two models. Averagely, on AwA dataset, the

pre-training brings 38.79% increase of recognition accu-

racy. However, the increase is only 26.79% on our LAD

dataset. This gap means that AwA dataset shares more

classes with ILSVRC 2012 dataset.

5.1.2 Attribute Recognition

We also consider the task of recognizing different attributes.

We use the Inception-v3 features (without fine-tune) to learn

attributes. The images that belong to each class are ran-

domly split into 70% training and 30% testing data. The

class-level attributes are binarized to be 0 or 1, then the at-

tribute recognition is a binary classification task. We train

the Support Vector Machine (SVM) with Multilayer Per-

ception Kernel to learn each attribute of each super-class.

The classification accuracy of each attribute is reported as

the metric of the performance of attribute recognition.

We histogram the attributes recognition accuracies into

several intervals: [0%, 50%), [50%, 60%), [60%, 70%),

[70%, 80%), [80%, 90%), [90%, 100%]. As shown in Fig.
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Figure 4. The statistics of attribute recognition accuracies.

4, the recognition accuracies of most attributes of LAD are

between 50% and 80%. There are 28 attributes with lower

than 50% recognition accuracy (even lower than the chance

level), which means those attributes are not well learned.

We list some of those attributes in Tab. 4. It is clear that

most of those hard attributes are about high-level seman-

tics or those features that can not be visually predicted. For

example, habit of animals, safety of vehicles, aim of elec-

tronics and feeling of hairstyles are about semantics which

is hard to learn. Some attributes, e.g. appearance has soft

skin of animals, hardness is soft of fruits, material is made

of plastic and sound is quiet, are also low-level perceptions,

but other than vision. Thus the attributes annotated in LAD

are multi-modal. Currently, those attributes are difficult to

be predicted based on visual perception.

5.2. Zero­shot Recognition by Attributes

We propose LAD as the new testbed for zero-shot recog-

nition. In particular, as the sanity check, seven state-of-the-

art zero-shot learning algorithms are re-implemented; and

their results are reported and compared in this section. We

use the data split proposed in Sec. 4. For all methods, we

use the ResNet feature extractor which is trained on training

images of ILSVRC 2012. We follow the inductive learning

setting, i.e., data from unseen classes are not available for

training.

Methods. We compare seven state-of-the-art zero-shot

learning methods, including SOC [25], ConSE [24], ESZSL

[31], SJE [2], SynC [4], LatEm [38], MDP [45]. SOC [25]

learns the mapping from image features to semantic output

codes (semantic embeddings) using seen classes. Then the

learned mapping is used for predicting the semantic output

codes of images from unseen classes. ConSE [24] maps

the images into the semantic embedding space by the con-

vex combination of the class label embedding vectors. The

benefit is that this method does not need an extra training

for unseen classes. ESZSL [31] learns the bi-linear map-

ping function which maps both the image features and se-

mantic embeddings to the new space. SJE [2] proposes to
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Super-class hard-Attributes Explanation

Animal
diet eats meat Whether the animal eats meat

habit is nocturnal whether the animal’s habit is nocturnal

Fruits
growth grow on trees whether the fruit grows on the tree

hardness is soft whether the hardness of the fruit is soft

Vehicles
safety is safe whether the vehicle is safety

material is made of plastic whether the vehicle is made of plastic

Electronics
aim is for display whether the electronics is designed for display

sound is quiet whether the sound of electronics is quite

Hairstyles
feeling Is elegant whether the hairstyle gives the feeling of elegant

feeling Is sexy whether the hairstyle gives the feeling of sexy

Table 4. Some example attributes with low recognition accuracies.

SOC ConSE ESZSL SJE SynC LatEm MDP

Animals 50.76 36.87 50.15 61.89 61.60 63.92 62.16

Fruits 40.01 29.77 37.23 46.39 51.42 44.23 56.40

Vehicles 56.98 37.48 45.75 63.00 54.89 60.94 65.09

Electronics 33.73 28.27 32.83 39.51 42.97 40.71 45.11

Hairstyles 42.45 24.55 31.84 38.50 29.10 38.53 42.12

Average 44.79 31.39 39.56 49.86 48.00 49.67 54.18
Table 5. The performance (%) of seven state-of-the-art ZSR methods on our dataset.

learn the compatibility function which measures the com-

patibility between the the image features and semantic em-

beddings. The function is trained on seen classes and tested

on unseen classes. SynC [4] learns to synthesize classifiers

for unseen classes by the linear combination of classifiers

for seen classes. LatEm [38] proposes a new compatibility

function which is a collection of bilinear maps. These bilin-

ear maps can discover latent variables. MDP [45] aims to

learn the local structure in the semantic embedding space,

then transfer it to the image feature space. In the image fea-

ture space, the distribution of unseen classes are estimated

based on the transferred structural knowledge and the dis-

tribution of seen classes.

We can roughly classify these methods into three groups

in term of how the knowledge is transferred (refer to Sec. 2).

The first group includes SOC [25], ConSE [24] and ESZSL

[31], while SJE [2] and LatEm [38]) belong to the second

group. The third group contains SynC [4] and MDP [45].

Note that there are many zero-shot algorithms such as

SS-Voc [10] that heavily rely on the word vectors (e.g.

Word2Vec[20], or GloVec[26]) of the class names. How-

ever, in LAD, the class name is less informative to repre-

sent the whole data distribution in the semantic layer, e.g.,

the “fauxhawk” class in the hairstyle super-class. Therefore,

for a more fair comparison, the algorithms that are heavily

relying on the word vectors have not been compared here.

The zero-shot recognition is conducted on each super-class

separately.

Tab. 5 shows the zero-shot recognition accuracies of dif-

ferent methods. In general, MDP achieves the best perfor-

mance (54.18% averagely). This result is higher than the

runner-up (SJE) by 4.32%. Among all the super-classes,

most algorithms can achieve relative high performance on

the super-classes of “Animals” and “Vehicles”. This is rea-

sonable, since these two super-classes include very common

objects/concepts which have been widely collected in the

ImageNet dataset. Hence, the feature extractor pre-trained

on ILSVRC 2012 may work better on the two super-classes

than the other ones. Almost all the algorithms have relative

low performance on “Hairstyles” super-class, even although

we only split 6 unseen classes. More impressively, the SOC

[25] proposed in 2009 can beat all the other methods on

“Hairstyles” super-class.

5.3. Zero­shot Generation

We also conduct experiments for the zero-shot gen-

eration task. This task aims to generate images of un-

seen classes, i.e., those with novel attribute representations.

Note that this task is extremely challenging due to both

the diverse and fine-grained classes in LAD and the high-

semantic multi-modal. In particular, we conduct the exper-

iments on the “Animals” super-class.

Methods. Based on the Deep Convolutional Generative

Adversarial Networks (DCGAN) [28], we introduce the

condition by concatenating the condition vector and the

noise vector. In DCGAN, the generator and discriminator

are two deep convolutional networks which have 4 convo-

lution layers. Refer to [28] for the detailed convolutional

structure. Both input and output images are reshaped to

64 × 64 × 3. The attributes of each image serves as the

condition. In this way, the learned DCGAN can generate

images conditioned on attributes. We illustrate the model
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Figure 5. The model structure for zero-shot generation.
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Figure 6. The co-occurrence bias on AwA dataset. This figure

shows the top 15 animal classes with high co-occurrence ratios of

persons.

structure in Fig. 5.

Results. The animals in our dataset are divided into 3 folds

in term of their attributes – “can swim”(1/0) and “can fly”

(1/0), namely, 00, 01, 10. Then we train a GAN conditioned

on the two attributes. The trained model is used to gener-

ate new images with both seen attribute representations and

the unseen one (with the attribute representation “11”). As

shown in Fig. 7, objects with the particular seen attributes

can be generated. From the left to right, more clear images

are generated with more training iteration. The objects in

the first three rows look like “monkey”, “fish” and “bird”

respectively. In the 4th row, the generated unseen object

looks like a “fish” in the 2nd stage (column). Later, the

“wings” are observed in the 3rd stage. This result means

that the novel object can be generated based on novel the

attribute representation. Note that the distribution of the

training seen images in LAD is very diverse; and thus it is

intrinsically a very challenging task to generate the images

of novel unseen classes.

Analysis of Co-occurrence Bias in AwA. We also study

the co-occurrence bias in previous datasets. We analyze

and visualize the influence of the co-occurrence bias on the

learning of a particular concept. Specifically, we first count

the co-occurrence of person and different animals in AwA

dataset. We use YOLO [29], which is pre-trained on MS-

COCO [18], to detect person in each image. We only count

Can fly/swim

0 0

0 1

1 0

1 1

Seen

Unseen

Figure 7. Results of zero-shot generation. The seen classes have

the attributes 00, 01 and 10, which denote whether it can fly or

swim. The unseen class has the attribute representation of 11.

From left to right, we display the generated images with more

training iterations.

Figure 8. Visualization of the co-occurrence bias in AwA. The up-

per three images are synthesized images of “ox”, and the below

images are those of “horse”. Blue boxes are animals, while red

boxes are “persons”, i.e., bias.

those appeared person with high (> 70%) probability. As

shown in Fig. 6, 15 classes in AwA have large (> 10%)

co-occurrence ratio of person. Clearly, the co-occurrence

bias of person is serious in AwA. To visualize the influence

of the co-occurrence bias, we use the GAN, which can well

capture the data distribution, to learn the concepts “ox” and

“horse”. Fig. 8 illustrates the synthesized images of the two

animals. Except animals in blue boxes, the “persons” in red

boxes are also synthesized in the image. These synthesis

results illustrate that the co-occurrence bias may cause the

mis-learning of a particular concept. Thus during the con-

struction of LAD, we reduce the correlation bias by filtering

multi-object images, i.e., we preserve images with only one

foreground object.
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