
Recurrent Convolutional Strategies

for Face Manipulation Detection in Videos

Ekraam Sabir, Jiaxin Cheng, Ayush Jaiswal, Wael AbdAlmageed, Iacopo Masi, Prem Natarajan

USC Information Sciences Institute, Marina del Rey, CA, USA

{esabir, chengjia, ajaiswal, wamageed, iacopo, pnataraj}@isi.edu

Abstract

The spread of misinformation through synthetically gen-

erated yet realistic images and videos has become a sig-

nificant problem, calling for robust manipulation detection

methods. Despite the predominant effort of detecting face

manipulation in still images, less attention has been paid to

the identification of tampered faces in videos by taking ad-

vantage of the temporal information present in the stream.

Recurrent convolutional models are a class of deep learning

models which have proven effective at exploiting the tempo-

ral information from image streams across domains. We

thereby distill the best strategy for combining variations in

these models along with domain specific face preprocess-

ing techniques through extensive experimentation to obtain

state-of-the-art performance on publicly available video-

based facial manipulation benchmarks. Specifically, we at-

tempt to detect Deepfake, Face2Face and FaceSwap tam-

pered faces in video streams. Evaluation is performed on

the recently introduced FaceForensics++ dataset, improv-

ing the previous state-of-the-art by up to 4.55% in accuracy.

1. Introduction

A spate of recent incidents have increased the scrutiny

of online misinformation [11, 5]. This has spurred research

on both analysis and detection of misinformation [41, 35].

Misinformation can be manifested in different ways — di-

rect manipulation of information or presentation of unma-

nipulated content in a misleading context. Digital image

manipulation such as copy-move and splicing [45, 44] are

examples of deliberate manipulation, while image repur-

posing [17, 36, 18] is an example of misleading context.

Out of the wide range of manipulations on different modal-

ities, automatic manipulation of digital content has recently

gained attention. In particular, facial manipulations lately

became very popular as a way for disseminating false in-

formation or even to libel celebrities or very well-known

people [2]. It is not surprising that faces are preferred over

other objects, since the face is used everyday in our soci-

ety as a means for human communication and associating

information with identity.

Prior to the rise of deep learning, a malicious attacker

would manually prepare counterfeit media either using

Adobe Photoshop 1 or GIMP2, making the process tedious,

but nowadays the scenario has changed drastically: before

machine learning came in the process, tools only aided

the user in content creation, whilst currently, machine-

learning–aided tools create content without manual inter-

vention. The user is just required to “babysit” the training

process, most of the time using easy-to-use Graphical User

Interfaces (GUI) [3, 1].

More precisely, fueled by the recent success of Gen-

erative Adversarial Networks (GANs) [12] along with the

availability of graphical processors (GPUs), any amateur

user is capable of producing completely synthetic yet hyper-

realistic content. The realism achieved by the aforemen-

tioned machine learning components is so high that even

humans have difficulties in assessing whenever a face pic-

ture is naturally captured with a camera or, artificially pro-

duced. This statement is even more true for single still im-

ages. For instance, websites such as thispersondoesnotex-

ist.com offer evidences of the level of realism reached by

the aforementioned tools. The level of artefacts produced

by such systems is so subtle that the only clues to assess if

a face is real or fake are (i) subtle inconsistency in the hairs

— too straight, with disconnected strands or simply unnat-

ural, (ii) unnaturally asymmetric face, (iii) weird teeth, and

more importantly and most of the time, (iv) other more clear

inconsistencies are not localized on the face yet in the back-

ground. These latter artefacts are peculiar of generative net-

works that render the entire head along with the background

e.g., StarGAN [7].

While we believe that it is important to develop detectors

to pick up those salient irregularities in still images [49, 4] to

stem the spread of false information, additional, orthogonal

1www.adobe.com/products/photoshopfamily.html
2www.gimp.org
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important features for detecting manipulations in videos are

captured by the temporal coherence inherently present in a

video stream. In this sense, face manipulation in videos has

recently gained interest upon still images. The increased

proliferation of fake videos may be attributed to two rea-

sons:

1. Transposing a person’s identity or expression with

somebody else’s, is easier now given the off-the-self

availability of machine-learning-aided face swapping

or face reenactment tools [39, 1, 31, 3].

2. A video is more likely to be believable rather than

a still image since it demonstrates the activity in

progress and also, in principle, it requires a much

painstaking effort in manipulating coherently all the

frames.

In light of above observations and considering that face

manipulation generation tools [39, 1, 31, 3] do not enforce

temporal coherence in the synthesis process and perform

manipulations on a frame-by-frame basis, we propose to

leverage temporal artefacts as a means for indication of ab-

normal faces in a video stream. Unlike state-of-the-art fake

detection methods [49, 4], we explore recurrent convolu-

tional models to exploit temporal discrepancies for improv-

ing upon the current practice. To remove other confounding

factors related to the rigid motion of the face in a video, we

also explore face alignment methods. We optimize a deep

learning model architecture over these two factors which

gives state-of-the-art performance in face manipulation de-

tection accuracy.

The rest of the manuscript is organized as follows: Sec-

tion 2 presents the related work on temporal processing with

deep models, recent face manipulation benchmarks along

with manipulation detection techniques recently published.

Section 3 explains the proposed methodology comprising of

face preprocessing, feature extraction and finally prediction

based on a bi-direction recurrent model. The experimental

evaluation is presented in Section 4 with quantitative results

on FaceForensiscs++ (FF++) [34]. Section 5 concludes the

paper.

2. Related Work

Video processing with deep models. Activity recognition

in videos has well developed literature and can be used to

gain insights into processing videos, taking advance of tem-

poral information. There are three major approaches in

this area. The first line of research develops from a two

stream network [37], where an RGB video frame and its

optical flow version are processed in two separate branches

in the network followed by a fusion mechanism. This for-

mer strategy of video processing aims to capture temporal

information and motion across frames with the usage of op-

tic flow. The second is a single stream network supported

by recurrent convolutional layers: perceptual knowledge of

the content in each frame is gathered using a separate con-

volutional neural network (CNN) that extracts high-level

semantic features, while a recurrent model is trained on

top of those features to perform decisions over the tempo-

ral dimension [10]. The third line of development resides

in 3D convolutions [40, 19] as a local building block in

the network to learn rich spatio-temporal features. With

respect to all the previous mentioned strategies, we argue

that methods based on two-stream architecture are effective

in action recognition but not relevant to capture the sub-

tle flickering artefacts that a generator may produce in a

video; on the other hand, 3D convolutions could be better

suited for this purpose but they greatly increase the num-

ber of learned filters. For all these reasons, we use a main

backbone CNN encoder and capture temporal anomaly in

face appearance using a recurrent model. Recurrent models

have been widely used in computer vision for face land-

mark detection [26], face age progression [42] and even

face parsing [27]; nevertheless, to the best of our knowledge

they have not been employed before for video manipulation,

with the only exception of [13].

Face manipulation benchmarks. Regrettably, compelling

datasets for face manipulation detection and evaluation in

videos had been lacking in the community; some previous

attempts [49] generated face swapped images using an iOS

app and a open-source face swap software using still im-

ages; though Zhou et al. used this set for evaluation, it did

not provide manipulation for video streams.

Video-based face manipulation became available for the

community with the recent release of FaceForensics [33],

followed by its extended and improved version called Face-

Forensics++ [34]. FaceForensics (FF) released Face2Face

manipulated videos [39]. FaceForensics++ (FF++) is an ex-

tension of FF, further augmenting the collection with Deep-

fake [1] and FaceSwap [28] manipulations. The set com-

prises of 1,000 videos organized into a single split where

720 videos are reserved for training and 140 videos used

for validation and the same amount for test. All videos are

collected from Youtube and capture “talking heads” or an-

chor men/women presenting news. In general, the subject

faces the camera and cooperates with it.

Regarding the manipulation types, Deepfakes are gener-

ated via a two-branch autoencoder network. Deepfake sys-

tem is a identity-swapping method and trained given two

subjects. In this base version, a single autoencoder needs to

be trained for a pair of individuals. The autoencoder shares

a single encoder for compressing the information while two

decoders reconstruct each one of the subject’s images. At

test time, the two decoders are inverted to obtain the final

face identity manipulation also known as face swapping; on
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Figure 1: The overall pipeline is a two step process. The first step detects, crops and aligns faces on a sequence of frames. The second

step is manipulation detection with our recurrent convolutional model.

the other hand, FaceSwap is a graphics-based approach to

attain the same objective of swapping the identity of sub-

jects. Unlike Deepfakes, FaceSwap can be applied to an

unlimited number of subjects though is more prone to se-

vere artefacts if some of its inside modules fail. Finally,

Face2Face [39] is a graphics-based approach yet achieves

very realistic facial reenactment. Reenactment transfers

the expression and pose of a source character into a target

video, while the identity of the target subject remains un-

varied: i.e. it offers the same functionality of animating a

pre-recorded video. For more details, we refer to [34].

Face Manipulation Detection. Copy-move and splic-

ing detection datasets and methods are abundant for im-

ages [32, 46, 45, 47] and less dominant in videos [20].

However, due to the recent emergence of face manipula-

tion problem the literature is relatively sparse. Rossler et

al. [34] introduced baselines implemented through existing

methods and thus trained an XceptionNet [8] architecture

to establish state-of-the-art on the FF+ benchmark. In the

meantime, MesoNet [4] introduces two CNN based archi-

tectures for face manipulation detection: they take a meso-

scopic approach to manipulation detection, which combines

information from both low level (microscopic) and high

level (macroscopic) features. Their main novelty resides in

the MesoInception block that extends the Inception mod-

ule [38] with the usage of dilated convolution [48]. Zhou

et al. trained a GoogLeNet based architecture for detect-

ing tampered face in still images, in synergy with another

model working with steganalysis features and trained with

triplet loss. The two models’ scores are combined through

late fusion. In order to improve transfer learning of features

Cozzolino et al. [9] leverage the abundant data present for

face manipulation by using FF++ collections and adapted

the model to newer domain using ForensicTransfer: an

encoder-decoder architecture provided with an activation

loss measures the activation of the latent space vector dis-

tinctively for the real class and the fake class. The closest

prior work to ours is [13]: unlike them, we experiment with

face alignment as a means for removing confounding fac-

tors in detecting facial manipulations and we make use of

bidirectional recurrency rather than just mono-directional.

Additionally, we attempt to detect multiple types of face

manipulation while the previous work is centered around

deepfake detection.

3. Method

The overall approach for manipulation detection is a two

step process: cropping and alignment of faces from video

frames, followed by manipulation detection over the pre-

processed facial region. We explain both the steps in detail

in this section.

3.1. Face preprocessing

For cropping the face region, we use the masks provided

by [34], generated using computer graphics [39]. Since it

has been shown in [29, 30] that face alignment is beneficial

for face recognition, we employ face alignment here as well.

In particular, we have experimented with two techniques

for alignment: (i) explicit alignment using facial landmarks,

where a reference coordinate system and the tightness of the

face crop are decided a priori and all the faces are aligned

to this reference coordinate system so that any rigid motion

of the face is compensated, and (ii) implicit alignment that

uses a Spatial Transformer Network (STN) [16, 43] based

on an affine transformation. In the latter case, the network

predicts the alignment parameters, conditioned on the in-

put image, thus may learn to “zoom” on particular parts of

the face, as necessary to minimize the expected loss in the

training set.

In both cases the core idea is that we want the recurrent

convolutional model to take as input a face “tubelet” [22,

23], which is a sequence of spatio-temporal, tightly aligned

face crops across video frames.
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Manipulation Frames
FF++

ResNet50 DenseNet
ResNet50 DenseNet

ResNet50 DenseNet

[34] + Alignment + Alignment
+ Alignment + Alignment

+ BiDir + BiDir

Deepfake
1 93.46 94.8 94.5 96.1 96.4 - -

5 - 94.6 94.7 96.0 96.7 94.9 96.9

Face2Face
1 89.8 90.25 90.65 89.31 87.18 - -

5 - 90.25 89.8 92.4 93.21 93.05 94.35

FaceSwap
1 92.72 91.34 91.04 93.85 96.1 - -

5 - 90.95 93.11 95.07 95.8 95.4 96.3

Table 1: Accuracy for manipulation detection across all manipulation types. DenseNet with alignment and bidirectional recurrent network

is found to perform best. FF++ [34] is the baseline in these experiments.

Manipulation Base

Variation

Spatial Multi

Transformer Recurrence

Deepfake 96.9 91.7 94.4

Face2Face 94.35 87.46 89.9

FaceSwap 96.3 93.2 94.8

Table 2: Results on using variations to the recurrent convolu-

tional architecture. Both spatial-transformer networks and multi-

recurrent networks exhibit a decline in performance.

Landmark-based alignment. Face images are aligned us-

ing a simple similarity transformation (four degrees of free-

dom), compensating for isotropic scale, in-plane rotation,

and 2D translation. Most of the faces in the dataset are

near-frontal and thus, it was sufficient to employ an accu-

rate yet fast landmark detector method [24] implemented

through [25]. Though [24] returns dense landmarks on the

face, we select only a set of seven sparse points located on

the most discriminative features of the faces (corners of the

eyes, the tip of the nose, and corners of the mouth). Fol-

lowing the similarity transformation, faces are aligned with

a loose crop at a 224× 224 resolution.

Spatial Transformer Network. A spatial transformer net-

work (STN) [16] performs spatial alignment of data with

learnable affine transformation parameters. It can be in-

serted between feature maps in deep learning networks. It

comprises three components: a localization net, a grid gen-

erator and a sampler. The localization net predicts the affine

transformation parameters and the grid generator and sam-

pler warp the input feature map with the affine parameters to

produce the output feature maps. They have been shown to

focus on spatially important areas of the input feature map

for improved performance [16].

3.2. Video­based Face Manipulation Detection

For manipulation detection, we use a recurrent-

convolutional network similar to [10, 13], where the input

is a sequence of frames from the query video. The intu-

ition behind this model is to exploit temporal discrepan-

cies across frames. Temporal discrepancies are expected

to occur in images, since manipulations are performed on a

frame-by-frame basis. As such, low level artifacts caused

by manipulations on faces are expected to further mani-

fest themselves as temporal artifacts with inconsistent fea-

tures across frames. There are two differences from [10]

in our implementation: (1) instead of using CaffeNet [21],

we explore more suitable CNN architectures for the prob-

lem, and (2) instead of averaging recurrent features across

all time-steps, we extract the final output of the recurrent

network. Our work is also different from [13], in that we

train our model end-to-end, whereas they use pre-trained

CNNs. Fig. 1 shows the model diagram.

Backbone encoding network. In our experiments, we ex-

plore ResNet [14] and DenseNet [15] for the CNN compo-

nent of the model. There are two reasons for exploring these

CNNs. FaceForensics++ [34] is a low resource dataset with

a 1,000 videos and to avoid overfitting, authors had to use

pre-trained XceptionNet [8] with fixed feature extraction

layers. For end-to-end trainability, we chose ResNet [14]

which was shown to be easily trainable by the authors. Ad-

ditionally, manipulation artifacts exhibit low level features

(such as discontinuous jawlines, blurred eyes etc.) which

do not require high level face semantic features. DenseNet

is also a suitable CNN architecture, because it extracts fea-

tures at different levels of hierarchy [15].

Regardless of the architecture used, the backbone net-

work is firstly trained on the FF++ training split minimizing

cross-entropy loss for binary classification to develop fea-

tures to discern real faces from synthetics. The backbone

is then extended with RNN and finally trained end-to-end

under multiple strategies.

RNN training strategies. In our approach we experiment

with the recurrent models placed at different locations of

the backbone network: it connects together the backbone

network to act as a feature learner that passes features to

the RNN aggregating inputs over time. The final system
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Figure 2: ROC plots for all manipulation types. Each row corresponds to a different manipulation type. The left column is a linear plot,

while the right column has linear-log plots to better analyze the false alarm region. The legend reports ablation studies performed in our

experiments: in particular, each experiment describes the backbone network used, how many frames are employed, if bidirectional GRU

cells are used or not; finally each item offers the AUC.

is ultimately trained end-to-end. We experiment with two

strategies: the first simply uses a single recurrent network

on top of the final features from the backbone network; al-

ternatively we attempt to learn multiple recurrent networks

at different level of the hierarchy of the backbone net: in

[4], the authors propose a model that exploits features at

a mesoscopic level. Their intuition is that purely micro-

scopic and macroscopic features are not well suited for the
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(a) (b) (c)

Figure 3: Precision Recall curves for all manipulation types. Each column corresponds to a different manipulation type. The legend is

similar to Fig. 2. Each item also offers the average precision (AP) score.

face manipulation detection task. We incorporate this idea

into our framework by extracting features at multiple fea-

ture levels from CNNs for manipulation detection. These

features are processed in individual recurrent networks. We

expect this new multi-recurrent-convolutional model to uti-

lize micro, meso and macroscopic features for manipulation

detection.

4. Experiments

Our evaluation metric is accuracy for a fair comparison

with baselines in [34]. Additionally, we report area under

the receiver operating curve (AUC) scores. All numbers are

reported on FaceForensics++. For training, we use Adam

optimizer with 1e-4 learning rate. We use GRU cells [6] for

our recurrent network. Additionally, all results are on the

heavily compressed version of dataset from [34]. We do not

evaluate on high and low quality videos since the baseline

performance for those is already above 98% in [34].

Table 1 shows our results on Deepfakes, Face2Face and

FaceSwap manipulation. These results show the impact of

variations in architecture. We perform experiments to vali-

date if face alignment improves performance. We use the

landmark based face alignment discussed in Section 3.1.

We also check if the temporal aspect of videos helps im-

prove performance. We validate this with two variations:

comparing five frame vs single frame input and uni- vs bi-

directional recurrent network for five frame input experi-

ments. We use a single recurrent network here on top of

final CNN features. We consistently find (1) DenseNet to

outperform ResNet, (2) face alignment to give improvement

and (3) a sequence of images to be better than single frame

input. We also find bidirectional recurrence to be superior

to uni-directional recurrence. Fig. 2 and Fig. 3 report ROC

and precision-recall (PR) curves for the same results. Since

the false alarm region is hard to discern, we also show the

linear-log plots for the ROC curve.

Table 2 shows our results from the choice of face align-

ment method and multiple levels of recurrence of our

model. We use the best model from Table 1, namely the

five-frame-bidirectional-densenet as our base model. The

first variation is to use a spatial transformer network (STN)

for learning an affine alignment of faces instead of a land-

mark based alignments as discussed in Section 3.1. For our

experiments, we use a simple CNN with 2 convolution and

max-pooling layers each followed by a feedforward net-

work as the localization net and bilinear interpolation for

the sampler. The second variation is the multi-recurrent

model which involves extracting recurrent features at multi-

ple levels of CNNs as explained in Section 3.2. Specifically,

since the DenseNet used in our experiments has four blocks

for generating feature maps, we build four recurrent net-

works for these. We find both strategies to be unsuccessful

for improving performance. With respect to STN, we no-

tice that training is relatively unstable and this may be due

to changes in affine parameters during training which im-

pacts the performance of the following CNN network. This

may be a possible reason for performance drop when using

STN. A possible reason for the relatively poor performance

of the multi-recurrence model is the significant increase in

the number of parameters, which leads to overfitting, given

that the FaceForensics++ dataset has a limited number of

samples (1,000 videos).

5. Conclusion

Misinformation in online content is increasing and there

is an exigent need for detecting such content. Face ma-

nipulation in videos is one aspect of the larger problem.

In this work we showed that a combination of recurrent-

convolutional model and face alignment approach improves

upon the state-of-the-art. We also explored different strate-

gies for both alignment and combining CNN features

through recurrence. We found a landmark based face align-

ment with bidirectional-recurrent-denset to perform the best

for face manipulation detection in videos.
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