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Abstract

A frame recursive video denoising method computes

each output frame as a function of only the current noisy

frame and the previous denoised output. Frame recursive

methods were among the earliest approaches for video de-

noising. However in the last fifteen years they have been

used almost exclusively for real-time applications with de-

noising performance far from being state-of-the-art. In this

work we propose a simple frame recursive method which

is fast, has a low memory complexity and achieves re-

sults competitive with more complex state-of-the-art meth-

ods that require processing several input frames for pro-

ducing each output frame. Furthermore, in terms of visual

quality, the proposed approach is able to recover many de-

tails that are missed by most non-recursive methods. As

an additional contribution we also propose an off-line post-

processing of the denoised video that boosts denoising qual-

ity and temporal consistency.

1. Introduction

Denoising is a fundamental problem in image and video

processing, and a necessary step in almost any imaging

pipeline as the RAW data captured by the sensor is unavoid-

ably corrupted by noise. After decades of research the field

has evolved significantly. So much so, that in the case of

still images it is difficult for a new method to obtain a sig-

nificant improvement over the state of the art (for white ad-

ditive Gaussian noise). Quite different is the situation in

video denoising: There is still a lot of room for improve-

ment and some approaches have been little explored.

Although evidently related, the problems of image and

video denoising have important differences. The temporal

consistency of videos facilitates the denoising as it provides

a strong source of redundancy absent in still images. At the

same time it also brings a new challenge: the output of the

denoising algorithm is required to have the same temporal

consistency, a key element for the perceived quality of a

video [36, 28]. In addition, video denoising algorithms need

to process a much larger amount of data, which results in

more exigent design constraints for practical methods.

Currently, the best results are obtained by patch-based

methods [13, 29, 3, 17, 9, 38] that benefit from the fact that

video patches have several similar peers. They group to-

gether similar patches in highly redundant sets which can

therefore be denoised effectively.

Convolutional neural networks (CNN) have been suc-

cessfully applied to image denoising (e.g. [42, 43, 35])

but their application to video denoising has been limited so

far. In [12] a recurrent architecture is proposed, but the re-

sults are below the state-of-the-art. Recently, [15] reported

state-of-the-art results with a hybrid method which applies a

CNN to an image of “non-local features”: the values of the

centers of the most similar patches at each location. Some

works have tackled the related problem of burst denoising

[21, 30], but do not report results on video.

All these methods have in common that they produce

an output frame ut at time t as a function of a number

of input noisy frames fs in a temporal vicinity: ut =
D(ft−h, . . . , ft+h).

1 In spite of their good results, they

have some disadvantages: (i) They tend to be computa-

tionally costly, since they have to process a volume to pro-

duce each frame; (ii) They have a latency of h frames (this

could be avoided by using only past frames, possibly with

a penalty in the output quality); and (iii) They lack of a di-

rect way to control the temporal consistency of the result.

Therefore they are only suited for off-line processing.

An alternative approach is given by recursive algorithms

where the output at t depends on the previous output: ut =
D(ft, ut−1). These were among the earliest methods for

video denoising [7], and today are used mainly as a choice

for algorithms that need to operate at real-time frame rates.

The works [45, 31] combine a spatial bilateral filter with a

temporal Kalman filter which is applied when no motion is

detected. Recursive versions of the non-local means algo-

rithm [8] were proposed in [23, 1]. Recently, [16] presented

a multi-resolution approach for real-time video denoising.

The focus of these works is reducing the number of opera-

1The exception are the recurrent networks [12] and [21]. The former

does not achieve state-of-the-art results and the latter is for burst denoising

and cannot be directly applied to video.
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Figure 1. Comparison of results obtained for σ = 40. From the top: original frame, noisy, results of V-BM3D [13], VNLB [3], FNLK

[18], the proposed BNLK and BNLK+S.

tions per pixel. Their results are far from the state-of-the-

art in terms of denoising quality. For instance, the results

reported in [1, 16] are 2dB below V-BM3D [13].

An exception is the non-local Kalman filter proposed in

[18], where Kalman filters act on patches instead of single

pixels as in [45, 31]. This method achieves the best results

reported in the literature for a recursive method, close to

those of V-BMxD [13, 29]. However the method is still

costly both in terms of computation and memory usage.

The reason is that that frame ut is produced as a function

ut = D(ft, ut−1,Mt−1), of the previous frame ut−1 and

an auxiliary memory Mt−1 containing the state of all patch

Kalman filters. For patches of size
√
d ×
√
d, the patch

Kalman filters require storing and inverting covariance ma-

trices of size d × d. As a result, the method is two to three

times slower than V-BM3D.



Algorithm 1: Recursive video filtering

input: noisy video f , noise level σ
output: filtered video û

1 ũ1 ← nldct(f̂1, σ)
2 for t = 2, . . . , T do

3 vb
t ← compute-optical-flow(ft, ût−1, σ)

4 ûw
t−1, κ

b
t ← warp-bicubic(ût−1,v

b
t)

5 ĝt ← nlkalman-filter(ft, û
w
t−1, κ

b
t , σ)

6 ût ← nlkalman-filter(ft, û
w
t−1, κ

b
t , ĝt, σ)

7 end

Contribution. In this work we propose a purely frame re-

cursive video denoising method. By this we mean that the

output at frame t only depends on the current noisy frame

and the previous denoised frame. Our work is inspired by

the non-local Kalman filter of [18], but we introduce two

approximations that result in a simpler and faster method.

Firstly, we assume dynamic models for patches to be di-

agonal in the DCT basis, which reduces the computational

complexity from O(d3) to O(d). Secondly, the covariances

of the previous state are estimated from the patches of the

previous denoised frame ut−1, thus eliminating the need of

the auxiliary state memory Mt−1. These approximations

cause a substantial drop in performance, but we are able to

compensate for it by applying two denoising iterations per-

frame. Our results are on par with those of [18], and are

even better for higher values of noise. In terms of visual

quality, our method shows less temporal consistency than

[18], but in turn produces sharper frames and recovers more

details. Some examples are shown in Figure 1. To the best

of our knowledge, these are the best video denoising results

reported with a purely frame-recursive method so far.

As an additional contribution, we also propose a

“smoothing” algorithm suitable for an off-line setting.

Based on the Rauch-Tung-Striebel (RTS) smoother [32], it

processes the filtering output video backwards from the last

frame to the first. The smoothing boosts the quality of the

result (PSNR increases almost 0.7dB) and greatly improves

the temporal consistency.

All results and the code are available at http://dev.

ipol.im/~pariasm/bnlk/.

2. Overview

Algorithm 1 shows the main elements of the non-local

Kalman filtering method for a video with T frames. The

noisy input video is denoted by f , and a noisy frame at time

t by ft. By u we denote the unknown clean video, by û
the filtered video and by ũ the smoothed one. We assume

white additive Gaussian noise of standard deviation σ, i.e.

ft(x) = ut(x) + rt(x), where rt(x) ∼ N (0, σ2) and x
represents a pixel location in the frame domain.

Algorithm 2: Recursive video smoothing

input: filtered video û, noise level σ
output: smoothed video ũ

1 ũT ← ûT

2 for t = T − 1, . . . , 1 do

3 v
f
t ← compute-optical-flow(ût, ũt+1, σ)

4 ũw
t+1, κ

f
t ← warp-bicubic(ũt+1,v

f
t )

5 ũt ← nlkalman-smoother(ût, κ
f
t , ũ

w
t+1, σ)

6 end

The first frame is denoised with a still image denoising

algorithm. We use a simplified version of BM3D [14] called

non-local DCT [2], although other methods could be used as

well. For the remaining frames we compute the backwards

optical flow, vb
t which estimates the motion from frame t to

frame t− 1. The backwards flow is used to warp the previ-

ous denoising output ût−1. An occlusion mask κb
t is com-

puting during warping essentially as the locations of strong

discontinuities in the optical flow.

We apply two filtering iterations. The first iteration takes

as inputs the current noisy frame ft, the warped previous de-

noising output uw
t−1 and the occlusion mask κb

t . Its output,

denoted by ĝt, is then used as a guide for the second iter-

ation (similar two iteration procedures are common among

denoising methods [14, 26]). Note that the only information

required from the previous frame is ût−1.

A pseudo-code for the non-local Kalman smoothing is

shown in Algorithm 2. It is a recursive method as well, but

it runs backwards. It is initialized by setting ũT = ûT . Sim-

ilar to the filtering, for the remaining frames we compute

the forward optical flow and occlusions from t to t+1, and

warp the previous output of the smoothing recursion ũt+1.

For the smoother, there is no need to run two iterations as

during filtering.

In the following sections we give detailed explanations

of all these elements. But before, we give a brief revision of

the theory of the Kalman filtering.

3. Inference in dynamical Gaussian models

The Kalman filter solves a Bayesian estimation problem

for a sequence of random vectors pt from noisy observa-

tions qt. It corresponds to the specific case in which these

sequences follow a dynamic linear Gaussian model [5]. We

consider a particularly simple model by assuming observa-

tion and state transition matrices equal to identity:




p0 ∼ N (µ0, P0),
pt = pt−1 +wt, where wt ∼ N (0,Wt),
qt = pt + rt, where rt ∼ N (0, σ2I),

(1)

where the last two equations hold for t = 1, 2, . . . , and σ2

is the variance of the noise (assumed to be known).



In the Kalman filter literature, the unknown vector pt is

called the state. The initial state p0 is Gaussian with mean

µ0 and covariance P0. The second equation is the state

transition equation and it describes the change in the state

from t−1 to t. The evolution of the state is modeled by a se-

quence of Gaussian random vectors wt ∼ N (0,Wt). The

transition covariance matrices Wt determine the modes of

random variation in the state. The last equation describes

the observation qt as a noisy linear function of the state.

The parameters of this model are the state transition co-

variances Wt and the mean and variance of the first state.

Assuming that the parameters are known, during infer-

ence at time t we are interested in the posterior distribu-

tion of the state pt given all previous observations, i.e.

p(pt|qt, . . . , q1). This posterior distribution, sometimes re-

ferred to as the filtering posterior, is Gaussian, with mean

p̂t and covariance Pt. The Kalman filter equations [25] are

a set of recursive equations which allow to compute p̂t, Pt

in terms of p̂t−1, Pt−1.

Several denoising methods have proposed Gaussian

models as priors for image and video patches [44, 40, 11,

26, 3, 24]. In [18], the authors adopt the dynamic model (1)

and apply it to video patches: qt represents a patch from

the observed noisy video and the state pt is the unknown

clean patch. Patches are squares of size
√
d×
√
d, thus the

identity I and the covariances P0 and Wt have size d× d.

Kalman filter. The Kalman filter equations corresponding

to the model (1) are as follows:

Kt = (Pt−1 +Wt)(Pt−1 +Wt + σ2I)−1,
p̂t = (I −Kt)p̂t−1 +Ktqt,
Pt = (I −Kt)(Pt−1 +Wt)(I −Kt)

T + σ2K2
t .

(2)

We can gain intuition on this set of equations by express-

ing them in the basis of eigenvectors of Pt−1 + Wt. Let

ut,1, . . . ,ut,d, and λt,1, . . . , λt,d be the eigenvectors and

eigenvalues of Pt−1 + Wt. Then it can be seen that the

eigenvectors Kt are also ut,i and its eigenvalues are st,i =
λt,i/(λt,i + σ2). It then follows that the projection of p̂t

over the ith eigenvector is computed as

〈p̂t,ut,i〉 = (1− st,i)〈p̂t−1,ut,i〉+ st,i〈qt,ut,i〉.

At time t, the Kalman filter computes the state posterior

mean p̂t as a multivalued convex combination between the

new observation qt and p̂t−1. The matrix Kt is called the

Kalman gain, and controls the weights given to the previ-

ous state and to the observation. The Kalman filter provides

both the mean p̂t and covariance Pt which define the fil-

tering posterior p(pt|qt, . . . , q1). The mean is an optimal

estimator for the unknown state. It is both the MMSE and

MAP estimator in an online setting, i.e. given all observa-

tions until t.

RTS smoother. In an offline setting the full sequence of

observations q1, . . . , qT is available. In this case the rele-

vant posterior is p(pt|qT , . . . , q1), which is Gaussian with

mean p̃t and covariance P̃t. Interestingly, this mean and

covariance can be computed with the following backwards

recursion on the results of the Kalman filter [5]:

Jt = Pt(Pt +Wt+1)
−1,

p̃t = (I − Jt)p̂t + Jtp̃t+1,

P̃t = Pt + Jt(P̃t+1 − Pt −Wt+1)Jt.

(3)

This is called smoothing, and these equations are the Rauch-

Tung-Striebel (RTS) smoother [32]. The matrix Jt serves

a similar role as the Kalman gain, performing a multival-

ued weighted average between the current filtering output

p̂t and the future smoothed state p̃t+1. In the smoothing

equations, the smoothed means p̃t can be computed with-

out computing the covariances P̃t (which is not the case for

the filtering). However, they require all the filtering covari-

ances Pt, which have to be kept in memory if smoothing is

going to be applied.

4. Kalman filters for video patches

The Kalman filter is a well-known tool and has been ap-

plied to many video processing problems: such as denoising

[45, 31, 23], inpainting [10], optical flow [6, 37] and super-

resolution [19, 20] problems.In most of these cases, the

states are the individual pixel values. Some works treat the

image as the state assuming diagonal transition and noise

covariance matrices [20]. Our model is built upon the work

of [18], which proposes a Kalman filter for video patches.

To better motivate our contribution, we start by reviewing

the approach of [18].

4.1. Review of [18]

This method works by building groups of similar patches

and following them throughout the video. For this, the mo-

tion in the video is estimated using an optical flow algo-

rithm. The patches in each group are assumed to be inde-

pendent realizations of a dynamic model such as (1).

A group is created by picking a reference patch and

searching for the n most similar patches in a neighborhood

around it within the frame. Suppose q0,1, . . . , q0,n is one of

such groups created in the first frame t = 0. These patches

are denoised using [26, 27]. The denoised patches are ag-

gregated in the output frame, and are used to initialize n
Kalman filters. The initial state means p̂0,i are set to be the

denoised patches. The state and transition covariances P0

and W0 are initialized as the sample covariance matrix of

the patches in the group.

After denoising the first frame, we end up with a number

of groups of patches such that the union of all these patches

fully covers the frame. For each group two covariance ma-

trices need to be stored: the state and transition covariances,



P0 and W0. The database with the groups of patches is de-

noted by M0.

For denoising frame t, we receive Mt−1 from the previ-

ous frame, with the groups of patches and their covariance

matrices Pt−1 and Wt−1. Each of such groups contains the

state estimate for n patch Kalman filters p̂t−1,i. The for-

ward optical flow at t−1, v
f
t−1 computes the displacements

from frame t−1 to t and is used to find the position at frame

t of the patches in the group: if the ith patch is centered at

pixel xi at t−1, the authors assume that it will be centered at

xi + v
f
t−1(xi) in frame t (i.e. the patch moves with a trans-

lation of v
f
t−1(xi)). The noisy observation qt,i is taken as

the patch from the noisy video centered xi + v
f
t−1(xi).

Before updating the estimated patches and their state co-

variance with the Kalman filter (2) the transition covariance

Wt needs to be estimated. The authors exploit the following

relation

E{(qt − qt−1)(qt − qt−1)
T } = Wt + 2σ2I, (4)

obtained by substituting qt−1 = pt−1 + rt−1 and qt =
pt−1+wt+rt on the left hand side. Then Wt is estimated as

the sample covariance matrix of the innovations qt − qt−1:

Ŵt = (1− δ)Ŵt−1+

δ

(
1

n

n∑

i=1

(qt,i − qt−1,i)(qt,i − qt−1,i)
T − 2σ2I

)

where qt,i is the tth observation for the ith patch in the

group, with i = 1, . . . , n.2 The transition covariance of

the previous frame Ŵt−1 is added with a weight 1 − δ to

increase the temporal consistency.

With the estimated Ŵt the patches p̂t,i are estimated run-

ning the Kalman filter. The updated state means are stored

in Mt and are aggregated on the output frame. After pro-

cessing all groups of patches in Mt−1 some areas in the

frame might be left uncovered. This typically happens in

dis-occluded areas since no patch from t−1 moves to those

areas. To cover them, new groups are created and initial-

ized via the spatial denoising [26] as for t = 0. These

new groups together with the updated pre-existing ones are

stored in Mt and passed to frame t+ 1.

Although this approach produces good results with

strong temporal consistency, it has important drawbacks.

Processing each group is costly, as it requires inverting a

d× d matrix for computing the Kalman gain. Furthermore,

the auxiliary memory Mt can be quite large, since for each

group two d × d matrices need to be stored in addition to

the n patch mean states p̂t,i. As noted by the authors, this

is aggravated by the fact that the number of groups grows

2The resulting Ŵt might not be positive semi-definite. Negative eigen-

values are avoided by setting them to zero.

at each new frame, since new groups are created to process

dis-occluded areas. This negatively affects the running time

and memory usage, which in some sense defeats the pur-

pose of using a recursive approach.

Next we describe how we can overcome these drawbacks

by the use of recursive Bayesian filters which do not need to

keep track of the covariance matrices Pt and Wt and operate

in the DCT domain.

4.2. Kalman­like recursive Bayesian filters

At time t the Kalman filter updates the filtering posterior

p(pt−1|qt−1, . . . , q1) = N (p̂t−1, Pt−1) to account for the

new observation qt. All the information we need from the

past observations is captured by p̂t−1, Pt−1. Therefore, the

new filtering posterior can be computed from the following

model involving only pt−1,pt and qt:





pt−1 ∼ N ( p̂t−1, Pt−1 ),
pt = pt−1 +wt, wt ∼ N (0,Wt),
qt = pt + rt rt ∼ N (0, σ2I).

(5)

If we are running the Kalman filter, we obtain p̂t−1 and

Pt−1 from the previous iteration. Since we want to avoid

having to store covariance matrices, we consider them

model parameters to be estimated from data. We assume

that we have available a set of n observations pt−1,i and

qt,i which are independent samples of the model. We then

estimate the parameters as follows:

P̂t−1 =
1

n

n∑

i=1

, (pt−1,i − p̂t−1,i)(pt−1,i − p̂t−1,i)
T , (6)

Ŵt =
1

n

n∑

i=1

(qt,i − pt−1,i)(qt,i − pt−1,i)
T − σ2. (7)

where p̂t−1 = 1
m

∑m

i=1 pt−1,i. The patches pt−1,i will be

extracted from the previous denoising output (warped by the

optical flow) ûw
t−1.

The equations for inference under this model are still the

Kalman filter equations (2). However, there is a subtle dif-

ference between our filtering equations and the ones from

[18]. In their groups of similar patches, n Kalman filters

are running in parallel. They share the same covariances

Pt,Wt, but have different state means p̂t,i. As a result, the

ith patch estimated at time t corresponds to a weighted com-

bination between the ith observation and the ith previous

state, i.e.

p̂t,i = (I −Kt)p̂t−1,i +Ktqt,i. (8)

Instead, we do not consider previous patches pt−1,i to be

the state means, but different realizations of the previous

state. As a result, all the patches at t are estimated with the

same previous mean:

p̂t,i = (I −Kt)p̂t−1 +Ktqt,i. (9)
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Figure 2. Overview of the proposed non-local Kalman filtering method.

This modification has important consequences. While the

denoising in [18] is mainly temporal, Eq. (9) has a compo-

nent of spatial denoising, as p̂t−1 is estimated as a non-local

average of similar patches. This can be useful, but in excess

it may lead to loss of detail. To control the spatial denoising,

we use m 6 n patches to estimate p̂t−1.

RTS-like recursive smoother. In a similar way, the model

of the RTS smoother of Eq. (3) can be adapted to include

the state covariances Pt and P̃t+1 as parameters that are

estimated from a set of observations p̂t,i and p̃t+1,i. We

omit these details for reasons of space.

4.3. Working in the DCT domain

As an additional simplification, we assume that the co-

variances Wt, Ct−1 are diagonal on the DCT basis, i.e.

Wt = UDiag(νt)U
T , Ct−1 = UDiag(ρt−1)U

T ,

where U denotes the d × d matrix whose columns are the

DCT basis vectors. Here νt = (νt(0), ..., νt(d − 1)) is

the vector of transition variances along each DCT direc-

tion: i.e. νt(j) represents how much the jth DCT com-

ponent of the state can change from t − 1 to t. Similarly

ρt−1 = (ρt−1(0), ..., ρt−1(d−1)) contains the variances of

the previous state along each DCT component.

This assumption greatly reduces the computational cost

of the filtering, as it decouples over the DCT components.

Let us denote the DCTs of the mean state and its noisy

observation as: α̂t = DCT(p̂t) = UT p̂t and βt =
DCT(qt) = UTqt. We can express the filtering equations

for the ith DCT component as follows:

st(j) =
ρt−1(j) + νt(j)

ρt−1(j) + νt(j) + γσ2
,

α̂t(j) = (1− st(j))α̂t−1(j) + st(j)βt(j)
ρt(j) = (1− st(j))

2(ρt−1(j) + νt(j)) + st(j)
2σ2.

(10)

Note that we have added a noise multiplier factor γ in the

computation of the Kalman gain st(j) as a parameter to

control the filtering strength. A higher value of γ results

in a lower value for st(j) and thus a higher attachment to

the previous state. The updated state can be computed by

inverting the DCT transform p̂t = IDCT(α̂t) = Uα̂t.

The computation of the variances is also simplified, since

instead of having to compute a d× d covariance matrix, we

need to estimate d scalar variances:

ρ̂t−1(j) =
1

n

n∑

i=1

(αt−1,i(j)− α̂t−1,i(j))
2, (11)

ν̂t(j) =

(
1

n

n∑

i=1

(βt,i(j)− αt−1,i(j))
2 − σ2

)

+

, (12)

where (x)+ = x if x is positive and 0 otherwise. Note that

we need to compute the DCT of the n similar patches qt,i

and their corresponding previous states pt−1,i.

5. Filtering algorithm

We now describe the proposed method.

5.1. Optical flow and warping

The optical flow is a critical component of the method.

Any optical flow algorithm could be used. For our experi-

ments, we used the implementation [34] of the TV-L1 op-

tical flow introduced in [41]. This is a common choice in

the denoising literature [18, 3, 9] since it has a low running

time (GPU versions of this code work in real-time) and is

quite robust to noise (as opposed to some neural networks

which have been trained on clean data). The TV-L1 method

is computed in a coarse-to-fine multiscale framework. At

each scale the upscaled result from the coarser scale is re-

fined. The last scale is the most costly one. We skip the

computation of the finest scale, as this results in faster run-

ning times and a more regular optical flow. Note that the

optical flow is computed between the noisy frame at time t
and the previous denoising output ût−1, which reduces the

impact of the noise.

The optical flow is used only to warp the previous filtered

frame ût−1 and register it with the current noisy frame:

ûw
t−1(x) = ût−1(x+ vb

t(x)),



where bicubic interpolation is used. Some pixels in the

warped frame uw
t−1 are labeled as undefined in a mask κb

t−1

which is returned alongside with the warped image. Unde-

fined pixels are those which have at least one pixel in their

bicubic interpolation stencil which is not visible at t − 1.

There are three reasons for this:

(i) When t = 0, i.e. we are denoising the first frame of

the video. In this case all pixels in uw
t−1 are undefined.

(ii) When the pixel is out of the frame domain. This

happens for example close to the frame boundaries when

there is camera motion and some pixels enter the video at t
that were not visible at t− 1.

(iii) When the pixel is flagged as occluded. Occlusions

are determined simply as pixels where the divergence of the

optical flow is above a threshold: |div(vt)(x)| ≥ τk. We

compute the partial derivatives of the flow with a standard

forward difference approximation. The use of occlusion

masks avoids artifacts located around the border of moving

objects. A similar approach was used in [4, 9].

The same process is applied during smoothing to warp

the smoothed frame ũt+1 to the filtered frame ût.

5.2. Non­local Kalman filtering

We now focus on the recursive Bayesian temporal filter-

ing of patches (lines 5 and 6 in Algorithm 1).

We process the frame t by selecting reference patches in

raster order with a step of
√
d/2 (thus the number of ref-

erence patches is the total number of patches divided by

d/4). At each location we extract a patch qt from the noisy

frame t and the corresponding patch from the warped pre-

vious frame ûw
t , which we denote pt−1. If any pixel of the

previous patch pt−1 is flagged as undefined in κb
t−1, then

we use the spatial denoising algorithm to estimate pt (ex-

plained below). If not, we proceed with the temporal fil-

tering. It consists of (1) searching for similar patches, (2)

estimating the parameters of the dynamic Gaussian model,

(3) estimating the clean patch p̂t and (4) aggregating it on

the output image. This is shown by the diagram in Figure

2. We now describe each step of the algorithm. In each

case we detail first the first iteration, and then explain the

modifications for the second iteration with the guide.

Search for similar patches. The similar patches are

searched for in a square region of size w × w centered at

the location of the reference patch qt. The patch distance

is the L2 norm (or sum of square differences) between the

noisy patches. We then extract the n most similar patches

qt = qt,1, . . . , qt,n and their corresponding patches from

the previous warped frame, pt−1,i (excluding those with un-

defined pixels).3 In the second iteration the patch distance is

computed as the L2 norm between the patches of the guide.

3The number of patches used is between 5 and 40. Higher noise levels

require increased number of patches.

In this case we extract the n most similar patches from the

guide as well gt,1, . . . , gt,n.

Parameter estimation. We then compute the DCT of the n
similar patches βt,i = UTqt,i and αt,i = UTpt,i, and es-

timate the parameters of the dynamic model (5) in the DCT

domain α̂t−1, ρ̂t−1 and ν̂t as in equations (11) and (12). If

a guide is available we define βt,i as the DCT of the patches

of the guide gt,i and use them in the computation of ν̂t. In

this case we do not subtract σ2 in Eq. (12).

Recursive Bayesian filtering. The m most similar patches

(where m 6 n) are filtered by applying Eqs. (10), followed

by the application of the inverse DCT p̂t,i = IDCT(α̂t,i),
for i = 1, . . . ,m.

Weighted aggregation. The aggregation is the process by

which a single output frame is computed from all the es-

timated patches. Since the patches overlap, a single pixel

will be estimated several times, one for each denoised patch

that contains the pixel. These estimates will not coincide,

and thus they are aggregated by computing a weighted aver-

age. The aggregation weights are inversely proportional to

the variance of each estimated patch. The variance is com-

puted as the sum of the variances of the DCT components∑d

j=1 ρt(j). This is a common practice in patch-based de-

noising [22, 14, 33]. These weights can be shown to be

optimal in the MSE sense [22].

5.3. Spatial denoising

If pt−1(x) has some if its pixels flagged as undefined we

apply a spatial denoising algorithm. Any spatial denoising

method could be used. The one we use is a version of the

non-local Bayesian method [26] in the DCT domain, which

is similar to the non-local Kalman filter described.

We search for n patches qt = qt,1, . . . , qt,n in a square

search window centered at qt. We then assume that the un-

known clean patches are distributed following a Gaussian

prior, pt,i ∼ N (µ, C), where C is assumed to be diagonal

in the DCT basis, i.e. C = UDiag(λ)UT .

We compute the DCT transform of the similar patches,

βt,i = DCT(qt,i). The mean µ and variances λ are esti-

mated from the sample average and variances of set of simi-

lar patches along each DCT component, similar to Eqs. (??)

and (11). The clean patches are estimated via the following

Wiener filter of their DCT coefficients:

α̂t,i(j) = (1− s(j))µ̂(j) + s(j)βt,i(j),

where s(j) = λ̂(j)/(λ̂(j) + γσ2). Here γ is a parame-

ter added to control the denoising strength, similar to the

one in Eq. (10). Finally we aggregate the corresponding

patches p̂t,i = IDCT(α̂t,i) on the output image. The ag-

gregation is weighted by the posterior variance, given by∑d

j=1 s(j)λ̂(j). The spatial denoising is iterated too using
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Figure 3. Average PSNR and SSIM over 7 grayscale sequences 960× 540× 100, for noise levels σ = 40, 20, 10 (bars from left to right).

The methods in red are non-recursive, and in purple are recursive. The methods proposed in this work are shown in boldface.

the first iterate as guide. As before, the guide is used to com-

pute the patch distances and the to estimate the variances λ.

6. Results

We fix the patch size at 8 × 8. The search region is of

size 21 × 21 for the spatial denoising and 11 × 11 for the

temporal filtering and smoothing. The remaining parame-

ters are twelve. For iteration i of the spatial denoising: the

number of patches n
(i)
x and the noise multiplier γ

(i)
x ; for iter-

ation i of the temporal filtering, the numbers of patches n
(i)
t

and m
(i)
t and the noise multiplier γ

(i)
t ; and for the smoother

the number of patches nS
t and noise multiplier γS

t . These

parameters were tuned using a training set of consisting of

400×400 crops extracted from 14 grayscale sequences hav-

ing 20 frames each. We considered noises 10, 20 and 40 and

computed the parameters as linear functions of σ.

To differentiate the proposed non-local Kalman (NLK)

filter from the one in [18] we call ours backward NLK

(BNLK) and one in [18] forward NLK (FNLK), the reason

being that during filtering, ours uses the backwards optical

flow to locate the previous patches in frame t − 1, whereas

[18] uses the forward flow to push the patches from t−1 to t.
The proposed BNLK applies two filtering iterations. The re-

sult obtained with a single iteration is labeled BNLK1. The

results obtained with the smoother are denoted as BNLK+S.

We evaluated the performance of the algorithm by com-

puting the average PSNR and SSIM over the test set used

in [15]. It consists of seven grayscale sequences with 100

960× 540 frames from [39] used in [2]. Table 3 shows the

quantitative results together with six state-of-the-art meth-

ods: VNLB [3], VNLnet [15], SPTWO [9], V-BM3D [13],

V-BM4D [29] and FNLK [18]. For reasons of space we

did not include other frame recursive methods in our com-

parison. An indirect comparison can be made through V-

BM3D: for example the results reported in [1, 16] are on

average around 2dB below V-BM3D and in [23] 1.6dB.

The results after the single filtering iteration are rather

poor (more than 2dB below FNLK). This is in part be-

cause the parameters are set to optimize the output only

after the second iteration. But it is also because of the ap-

proximations introduced with respect to FNLK. The results

are greatly improved by the second iteration, up to 3dB for

σ = 40. The reason for this might be that the transition

variances are better estimated in the second iteration using

the first iterate as guide. Our results after the two filter-

ing iterations (BNLK) are on par with FNLK and V-BM3D.

For σ = 40 we obtain a better performance than FNLK. In

terms of SSIM, our results are slightly better than those of

V-BM4D as well. More complex methods such as VNLB,

SPTWO and VNLnet dominate in quantitative terms. This

comes at the expense of a much higher complexity: they

use a dozen of frames to estimate each output frame and

take two to three minutes per-frame. Our non-optimized C

implementation takes 16s but is amenable to parallelization

in GPU, where it should reach real-time performances, al-

though we have not tested this yet. A visual comparison

shows that the recursive methods are able to recover many

more details than the non-recursive ones (particularly for

high levels of noise). However, the proposed BNLK method

produces a sharper result than FNLK and is able to recover

even more details. The smoother boosts the denoising per-

formance and temporal consistency (see the supplementary

material) and is a good option for off-line denoising.

7. Conclusions and perspectives

Recursive methods, and in particular frame recursive

ones were until recently relegated from the state of the art

in video denoising. This work demonstrates that good re-

sults can be achieved with fast and simple methods with

low memory requirements, making them ideal for real-time

processing. We are currently working on a GPU implemen-

tation of the proposed method.

The proposed method is based on a recursive Bayesian

estimation framework. In addition to the filter and smoother

presented in this work, other options are possible, such as a

fixed lag smoother that estimates image t having observed

a few future frames. We plan to explore such options.
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