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Abstract

Since haze degrades an image including contrast de-

creasing and color lost, which has a negative effect on the

subsequent object detection and recognition, single image

dehazing is a challenging visual task. Most existing de-

hazing methods are not robust to uneven haze. In this pa-

per, we developed an adaptive distillation network to solve

the dehaze problem with non-uniform haze, which does not

rely on the physical scattering model. The proposed model

consists of two parts: an adaptive distillation module and

a multi-scale enhancing module. The adaptive distillation

block redistributes the channel feature response via adap-

tively weighting the input maps. And then the important

feature maps are dissociated from the trivial for further fo-

cused learning. After that, a multi-scale enhancing module

containing two pyramid downsampling blocks is employed

to fuse the context features for haze-free images restoration

in a coarse-to-fine way. Extensive experimental results on

synthetic and real datasets demonstrates that the proposed

approach outperforms the state-of-the-arts in both quanti-

tative and qualitative evaluations.

1. Introduction

In poor weather conditions, the digital image will be de-

graded when it’s photographed in the hazy scene, because

the particles such as the haze and dusts interfere with the

imaging process which results in the low contrast, color

distortion and blurring problems. Because of this, dehaz-

ing which can improve the quality of hazy images is highly

desired in photography, autonomous vehicles and other di-

versity computer vision applications [16].

Many successful dehazing methods are based on the

physical scattering model [15] which is established by

studying the scatter of light by atmospheric particles. The

physical model is formulate as

I(z) = J(z)t(z) +A(z)(1− t(z))), (1)

∗Corresponding author

where I is the input hazy images, J is the restored images,

t and A represent the medium transmission map and the

global atmospheric light respectively. The restoration of

clear images through the physical scattering model [15] de-

pends on the estimation of transmission map and the atmo-

spheric light. However, the estimation is an ill-posed task.

Early methods utilizes various priors to settle the ill-posed

problem so that the image can be restored. He et al. [8] pro-

posed the theory of dark channel prior (DCP) for the pre-

diction of transmission map. Zhu et al. [23] reconstructs

transmission map based on the observation of color atten-

uation prior (CAP). While those prior-based methods are

not robust enough in real-world scene. Recently, learning-

based methods are more popular because of the rise of deep

learning. Some of them use convolutional neural network

(CNN) to estimate the parameter of the physical model and

restore clear images. A common practice is to use deep

neural networks to predict transmission maps from the hazy

images [19] [2], there are also some networks designed to

jointly predict the transmittance and the airlight [22] [21].

Since these methods are still limited to the dehazing model,

when the parameters of the model are not accurately pre-

dicted, the removal performance is reduced. And for non-

uniform weather conditions, they often fail to estimate the

haze accurately, which in turn affects the subsequent dehaz-

ing.

In order to get over the parameter limitation brought by

the physical model, we strive to achieve dehazing directly

from the input hazy images to the scene radiance without

drawing support from the physical model. Due to the ex-

isting methods face challenges in uneven haze and dense

fog conditions, a solution which can autonomous focus on

the learning of important features is required. The knowl-

edge distillation network [10] which performs feature diver-

sion according to the learned weights, and then strengthens

learning on important features works. Based on this we in-

troduce distillation in the dehazing. For the dehazing task,

if we exact the haze-related knowledge from the input hazy

maps and transfer them to a specific network for centralized

learning, the dehazing performance of the entire model is
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expected to elevate.

In this work, we introduce a Multi-scale Adaptive

Dehazing Network (MADN) to complete the single image

haze removal. Our network consists of two parts: an

adaptive distillation module and a multi-scale enhancing

module. The adaptive distillation module focuses on

learning of the key knowledge. It autonomously learns the

importance of the feature maps and separates the master

feature maps from the secondary according to the learned

feature weight and then carry out further information

learning. Important features, embodying more information,

plays a key role in the overall recovery. This part should be

the back bone of our attention. While the other information

plays a supporting role and contributes less to the whole

model, correspondingly deserving less concern. The

multi-scale enhancing module comply the comprehension

learning in a coarse-to-fine way. By combining learning

from local focus and global perspective, our network obtain

more accurate and exhaustive learning. We perform our

experiments on SOTS of RESIDE [13] and the NTIRE

2019 challenge on single image dehazing datasets Dense

Haze [4].

The contributions of our work are summarized as fol-

lows:

1. We implement an adaptive distillation network for sin-

gle image dehazing which redistributes channel re-

sponse through an adaptive distillation module. So the

useful and useless feature maps are adaptively sepa-

rated by distillation and each carry out corresponding

further learning.

2. We employ a multi-scale enhancing module which in-

cludes a pyramid pooling [11] block to fuse global and

detail information to restore hazy image from coarse

to fine.

3. We compare our proposed method with several rep-

resentative state-of-the-art methods on both synthetic

and real-world datasets. Our approach achieves supe-

rior performance in both visual effect and evaluation

metrics.

2. Related Work

In this part, we mainly review the related methods which

are used to address the single image dehazing task. The

existing dehazing methods can be roughly categorized two

classes: prior-based and learning-based.

Prior-based approaches. Early attempts focus on the

extrinsic characteristics of images. Prior-based methods ex-

ploits statistical properties and hand-crafted features of nat-

ural images. Dark Channel Prior(DCP) [8], proposed by

He, has made a hit then and used widely even now, which

presents its outstanding performance in the dehazing filed.

However, the computational cost of soft matting which is

used to smooth the transmission map has been suggested

high. [6] presumes that in a small image patch, pixels sat-

isfy a one-dimensional distribution of the RGB-space [18],

based on color-lines assumption, the transmission map can

be estimated. Berman et al. proposed non-local dehaz-

ing(NLD) [1] which indicates that a sharp image contains

few hundreds of different colors. These colors cluster and

appear in the form of haze line. The position of the pixel

in the haze line is consistent with its attributes in the origi-

nal image. prior-based methods exhibit excellent dehazing

in the past few years, while the dependence on priors and

assumptions makes them somewhat limited.

Learning-based approaches. Learning-based methods

emerged following the trend of deep learning. Some of

them based on the physical model predicts transmission

maps and atmospheric light independent of physical priors.

MSCNN [19] is one of the first to construct for single im-

age dehazing, which learns the mapping between input hazy

images and transmission maps. DehazeNet [2] proposes

a novel network architecture and estimates the transmis-

sion map directly in an end-to-end manner given an input

hazy image. AOD-Net [12] employs a multi-scale network

to jointly estimate the transmittance and atmospheric light.

Since it uses a unified representation, the haze-free image

can be directly reconstructed, which reduces errors caused

by two-step calculation. The arrival of Generative Adver-

sarial Networks [7] has led a novel fashion for learning-

based dehazing. Yan et.al. [14] combined the atmospheric

scattering model with GAN, and DehazeGAN [22] applies

GAN to generate both transmittance and air light. Besides,

some model-free methods have recently appeared for single

image dehazing. GFN [20] directly completes the genera-

tion of hazy maps to haze-free maps through a fusion-based

strategy. It used a multi-scale structure, where the output of

the coarse network is added to the fine network as input.

3. Proposed Method

3.1. Architecture

In this paper, we proposed a Multi-scale Adaptive De-

hazing Network (MADN) to directly learn a mapping from

the input hazy image to the clear image. The architecture

of MADN is shown in Figure 1. It consists of two steps

of adaptive distillation and multi-scale enhancement, with

corresponding modules we call AD module and ME mod-

ule. The AD module mainly contains three Adaptive Dis-

tillation blocks (AD block), while the ME module includes

two enhancing blocks.

Adaptive Distillation module. Benefited from the dis-

tillation network [10], We utilities AD blocks to our dehaz-

ing network. The role of AD block is to elect the master
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Figure 1. The Architecture of MADN.

feature maps from the secondary via corresponding weights

and strengthen learning of important features. That is to

say, feature maps passing through the block will be given

a weight, according to which the separation of useful and

useless feature maps will be performed. For important fea-

ture maps, the network automatically pay more attention to

learning.

As shown in Figure 2, the input hazy image, first passes

through three convolutions in the front of AD block, then

a SE block [9] and a light SE (L-SE) are utilized to learn

weights and threshold. Features with large weights learned

next by three 3 × 3 convolutions, and features with small

weights learned by one 1×1 convolution. The output of the

two-way learning is added. SE consists of a global pool-

ing layer, a full connection and a ReLU activation, followed

by another full connection layer, a sigmoid function which

achieves a linear transformation and finally output weights

respectively for each feature map. L-SE block can be seen

a streamlined SE with only a global pooling and a linear

transformation layer embedded. The function of L-SE is to

produce a threshold of our AD block. SE and L-SE act as

shunts in this module which measures the weight of each

feature in the input and assign high attention to areas with

good weight and low values to ones with poor weight. Spe-

cially, when the weight of feature map is greater than the

threshold, the feature map is transferred to the next convo-

lution block for reinforce learning. The rest trivial features,

united with input feature maps, eventually gathered with an-

other well-learned feature branch.

Multi-scale Enhancing module. We introduce a Multi-

scale Enhancing module (ME module) to strengthen the

learning ability of the network. The ME module contains

two enhancing blocks of which the architecture is shown in
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Figure 2. The structure of AD block, SE block and L-SE block.

Figure 3. The first is fed into the original image and the out-

put from the front-end AD module. The result from the first

enhancing block, concatenated with the output from AD

module, serves as the input to the second enhancing block.

This connection makes the flow of information both inher-

ited and preserved. Feature maps, processed by two 3 × 3
convolution kernels, is subjected to downsample according

to the scale factors of 4, 8, 16, 32 respectively, and thus a

four-scale pyramid pooling block [11] is formed. Each layer

in the pyramid passes through a convolution layer with fil-

ter size 1× 1, and upsample to primitive size. Feature maps

before and after the pyramid pooling are concatenated to-

gether. At the end, we use a 3×3 convolution for dimension

alignment. By merging multi-scale features, our network is

equivalent to learning knowledge based on different recep-

tive filed, and thus get finer feature representation ability via

learning in both global and fine granularity.
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Figure 3. The architecture of enhancing block.

3.2. Loss function

We optimize the linear combination of the perceptual

loss LP and the similarity loss LS .

Perceptual loss. We involves perceptual loss LP to mea-

sure the high-level difference between the hazy and the cor-

responding target images. It is beneficial to improve seman-

tic fidelity of the feature map. In this work, LP is based on

a pre-trained VGG-16 network [11] from which we draw

the activations of the i-th layer as the perceptual feature we

need. The aim is to minimize the difference between the

perceptual features of the hazy and the ground truth image.

We use the Euclidean distance as the measure criteria. The

perceptual loss function is defined as

LP =
1

CiWiHi

Ci∑

c=1

Wi∑

x=1

Hi∑

y=1

(φ(Îc,x,y)− φ(Jc,x,y))
2 (2)

where Î is the hazy image, J is the ground truth image.

Wi, Hi, Ci indicate the width, the height and the chan-

nel of the i-th layer feature map. φ is an operator of non-

transformation that extracting a Ci ×Wi ×Hi feature map

in VGG-16. (c, x, y) is the pixel position.

Similarity loss. In order to more accurately combine the

information of the original image and improve the predic-

tion, we measured the pixel-wise difference as the similarity

loss. We compute the Euclidean distance between the hazy

images and the counterpart images. The similarity loss is as

follow

LS =
1

CWH

C∑

c=1

W∑

x=1

H∑

y=1

(Îc,x,y − Jc,x,y)
2 (3)

where C is the channels of the original image, W and H

denote the input size. Î , J and (c, x, y) mean the same as

before.

By combing the perceptual loss and similarity loss, our

overall loss function is defined as

L = λ1LP + λ2LS (4)

where (λ1, λ2) is the coefficient that control the weight of

each term.

4. Experiments

In this section, we describe the datasets we used for train-

ing and testing along with some training details. We qualita-

tively and quantitatively evaluate the dehazing results of our

proposed method with some other state-of-the-art methods.

4.1. Datasets

RESIDE [13]. As a standard benchmark widely used

in dehazing task, RESIDE [13] consists of both indoor and

outdoor, both synthetic and real-world hazy images. There

are totally five subsets in it: Indoor Training Set (ITS),

Synthetic Objective Testing Set (SOTS), Hybrid Subjective

Testing Set (HSTS), Outdoor Training Set (OTS) and Real-

world Task-driven Testing Set (RTTS). In our work, we use

ITS which consists of 13990 synthetic images to train our

network. SOTS is employed as our testing set, which in-

cludes 500 indoor and 500 outdoor images. In addition,

we implement our method on some other real-world images

used by previous methods for further evaluation.

Dense Haze [4]. The NTIRE2019 challenge dataset on

single image dehazing which is named Dense Haze [4], con-

tains 45 training data, 5 validation data and 5 test data. The

hazy images are generated via professional devices in vari-

ous indoor and outdoor environments. Their corresponding

hazy-free images are collected in the same scenes. The res-

olution of all images is the same 1600× 1200.

I-HAZE [17] & O-HAZE [3]. The NTIRE2018 dehaz-

ing challenge [5] datasets consist of two subsets: the indoor

data (I-HAZE) and the outdoor data (O-HAZE), which in-

volve 25 and 35 hazy images separately. The corresponding

ground truth images are provided by the organizers as well.

All the competition images with unequal high resolutions

were collected using professional haze machines to ensure

the hazy images and hazy-free images are captured in the

same scene.

4.2. Experimental setting

Data augmentation. As for Dense Haze [4] dataset, to

enrich the training set, we adopt measures to augment the

45 training images. In detail, the training set is divided into

three parts according to the representative contents: wall,

sky and others. For every part, we resize the images ac-

cording to four distinctive proportions of the original size.

At this time, four classes of images with various resolutions

are obtained. The first class remains the same. Each image

of the other three classes is cropped into 4, 16, 16 respec-

tively. In addition, all images are flipped in four ways: keep

as is, horizontally, vertically, horizontally and then verti-

cally. After the above series of operations, we finally got

7236 training data.
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Training details. We trained our model on the Dense

Haze [4] dataset for better performance to remove the haze

of the challenge images. While we trained the model on the

ITS of RESIDE [13] as a benchmark to compare our pro-

posed method against the state-of the-art dehazing methods.

The parameter settings for the two training processes are the

same as follows: Adam optimizer is adopted with a batch

size of 1. The network adopts a learning rate of 0.0005. We

set the exponential rates (β1, β2) to (0.6, 0.999). (λ1, λ2)

in Equation 1 is set to (1, 5) empirically. We carry out our

model with PyTorch framework in 1 TITAN GPU.

Quality measures. As for qualitative evaluation, we

measure the result of our method in terms of two evaluation

metrics: the Peak Signal to Noise Ratio (PSNR) and the

Structural Similarity index (SSIM), which are often used as

criteria for evaluating image quality in dehazing. Further-

more, we evaluate and compare our dehazing effects with

the subjective visual effects.

4.3. Comparisons with state­of­the­art methods

We compare the proposed method with two representa-

tive prior-based methods: Dark Channel Prior (DCP) [8],

Non-local Image Dehazing (NLD) [1], and three advanced

learning-based methods: ALL-in-One Dehazing Network

(AOD-Net) [12], DehazeNet [2] and Gated Fusion Network

(GFN) [20].

Results on synthesis dataset. Table 1 and Figure 4 show

the quantitative and qualitative results of our method and

other comparison methods on synthesis dataset. In Table 1,

our method achieves the best performance on the two met-

rics PSNR and SSIM. Our PSNR surpasses the second place

1.72 dB in indoor testing and 1.18 dB in outdoor testing,

while SSIM is 0.0421 and 0.0372 higher than the second in

indoor and outdoor separately.

From Figure 4, we see that DCP [8] is not fine for the

recovery of some details. Particularly for hazy images with

sky region, the effect of DCP [8] is significantly reduced,

which is its inherent disadvantage. NLD [1] has appar-

ent color distortion and produces some unrealistic tones be-

cause the prior on which it is based is not robust. The result

images processed by AOD-Net [12] and DehazeNet [2] still

remain some noticeable hazy. GFN [20] recovers some de-

tails more clearly, however it generates some artifacts and

over-saturated colors. Note that on the outdoor test set,

GFN [20] failed to exhibit the desired performance. Both

on the indoor and outdoor synthesis dataset, our network

shows the best visual effect.

Results on a real-world dataset. We further evaluate

the proposed model on a real-world dataset collected by

previous works. A satisfactory result is that our model also

shows superior performance, indicating that our model has

good robustness and scalability. Shown as Figure 5, prior-

based methods DCP [8], NLD [1] generate unrealistic tones

Table 2. Quantitative comparisons of different (λ1, λ2) on SOTS

outdoor.

(λ1, λ2) (10,1) (5,1) (1,1) (1,5) (1,10)

PSNR 20.81 19.55 19.93 23.64 22.35

SSIM 0.8728 0.8530 0.8453 0.9137 0.8859

which cause the images color-distorted. AOD-Net [12] and

DehazeNet [2] still remain residual haze. GFN can not work

well in dense fog areas. In comparison, our model restores

images more naturally and realistically.

Results on Dense Haze [4]. The Dense Haze [4] dataset

can be a pretty challenge for dehazing task because of the

heavy fog. We use the proposed model to test on both the

validation and testing images. As shown in Figure 6, for the

initial input filled with thick fog, although not completely

removing all the haze, our method relatively shows superior

effect and better restores the details and color information

of the image.

Results on I-HAZE [17] & O-HAZE [3]. In order to

better present our model, we performed extensive experi-

ments on the NTIRE2018 dehazing challenge [5] datasets

(I-HAZE [17] and O-HAZE [3]). It is worth noting that

we used the model trained on the RESIDE [13] to test the

images from NTIRE2018 datasets and achieved promising

results, which shows the robustness of our model. Figure 7

shows the visual results.

4.4. Ablation study

For loss function in Equation 4, different parameter

settings of (λ1, λ2) should contribute to different perfor-

mances. To examine the influence of the hyper-parameters

settings and select an optimal value for training, we conduct

a series of tests on (λ1, λ2) in SOTS outdoor. The results

of average PSNR, SSIM, as well as corresponding settings

are shown in Table 2. The network performs best when (λ1,

λ2) is set to (1, 5).
In order to intentionally analyse and demonstrate the ef-

fectiveness of the different components of the architecture,

we designed the following ablation experiments: 1) w/o AD

block: replace AD block with other block; 2) w/o ME mod-

ule: remove the two enhancing blocks; 3) single ME: retain

only one enhancing block. The results with corresponding

configurations of three ablation variants are shown in Table

3 and Figure 8. We observed that the proposed structure

outperforms the other variants both in the measure criteria

and visual effect. As for the variant without AD, we re-

place the AD block with 6 regular convolutions with ker-

nel size 3 × 3. Considering the consistency of other vari-

ables, we concatenate the input to the convolution output.

Contrast with the replacement, the proposed method leads

2.49 dB in PSNR and 0.04 dB in SSIM respectively, which

shows that the AD block is indeed valid. As our ME mod-
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Table 1. Quantitative comparisons of the state-of-the-art dehazing methods and our method on SOTS.

Method DCP [8] NLD [1] AOD-Net [12] DehazeNet [2] GFN [20] Ours

indoor
PSNR 16.62 17.57 19.06 21.14 22.30 24.02

SSIM 0.8179 0.81 0.8504 0.8472 0.8800 0.9221

outdoor
PSNR 19.13 17.97 20.29 22.46 21.55 23.64

SSIM 0.8148 0.7791 0.8765 0.8514 0.8444 0.9137

Input DCP [8] NLD [1] AOD-Net [12] DehazeNet [2] GFN [20] Ours GT

Figure 4. Qualitative result of the state-of-the-art dehazing methods and our proposal on synthetic dataset. The upper three rows are the

results on SOTS-indoor images and the bottom three rows are the results on SOTS-outdoor images.

ule consists of two enhancing blocks, to better investigate

the influence of the enhancing block, we implement the ar-

chitectures with no and single enhancing block respectively.

Comparing these three models, it can be obviously seen that

the structure without ME shows the worst effect. The struc-

ture with single enhancing block performances slightly bet-

ter, however it introduces some degree of color distortion.

Our method is superior to single enhancement since the sec-

ond enhancing block further fuses the refinements from the

first and the feature maps learned by distillation. In sum-

mary, the enhancing block does works in refining features

and improving performance, and two enhancing blocks re-

move haze more effective than one does. The above ablation

Table 3. Ablation settings and results on SOTS-outdoor.

Method AD block
enhancing

block
PSNR SSIM

w/o AD -
√

21.15 0.8737

w/o ME
√

- 21.94 0.8840

single ME
√

1 23.09 0.9073

Ours
√ √

23.64 0.9137

experiments demonstrate that our designed adaptive distil-

lation block and multi-scale enhancing block are efficient.
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Input DCP [8] NLD [1] AOD-Net [12] DehazeNet [2] GFN [20] Ours

Figure 5. Qualitative result of the state-of-the-art dehazing methods and our method on the real dataset.

Input DCP [8] NLD [1] Ours GT

(8.683dB) (13.199dB) (15.421dB)

Figure 6. Visual results on Dense Haze [4]. The value below each methods denotes the corresponding average PSNR.

5. Conclusion

In this paper, we propose an adaptive distillation net-

work which directly dehazes on single image independent

of the atmospheric scattering model. Besides, we introduce

a multi-scale enhancing module consisting of two enhanc-

ing blocks to refine the distillation results. To optimize the

quality of hazy-free image, we combine the perceptual loss

with the similarity loss. We implement our model on vari-

ous datasets involving indoor and outdoor. Comparing with

other representative dehazing methods, our results achieve

satisfactory PSNR and SSIM values as well as visual effect.

Moreover, we perform additional ablation experiments to

demonstrate the effectiveness of the various compositions

of the network.
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Input DCP [8] NLD [1] Ours GT

Figure 7. Qualitative results on NTIRE2018 challenge datasets. The upper two rows show the dehazing results on I-HAZE [17] and the

bottom two rows show the dehazing results on O-HAZE [3].

Input w/o AD w/o ME sME Ours GT

Figure 8. Qualitative result of ablation study on SOTS-outdoor.
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