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Abstract

Lenslet-based light field imaging generally suffers from

a fundamental trade-off between spatial and angular res-

olutions, which limits its promotion to practical applica-

tions. To this end, a substantial amount of efforts have

been dedicated to light field super-resolution (SR) in recent

years. Despite the demonstrated success, existing light field

SR methods are often evaluated based on different degra-

dation assumptions using different datasets, and even con-

tradictory results are reported in literature. In this paper,

we conduct the first systematic benchmark evaluation for

representative light field SR methods on both synthetic and

real-world datasets with various downsampling kernels and

scaling factors. We then analyze and discuss the advan-

tages and limitations of each kind of method from different

perspectives. Especially, we find that CNN-based single im-

age SR without using any angular information outperforms

most light field SR methods even including learning-based

ones. This benchmark evaluation, along with the compre-

hensive analysis and discussion, sheds light on the future

researches in light field SR.

1. Introduction

The light field imaging technique enables capture of the

light rays not only at different locations but also from dif-

ferent directions [6]. Owing to the redundant spatio-angular

information recorded in light field images, many novel

applications such as post-capture refocusing [35], stereo-

scopic display [25], and single-shot depth sensing [36, 37,

38] become possible and popular, especially after the emer-

gence of commercialized portable light field cameras such

as Lytro [1] and Raytrix [2]. Despite such advantages of

light field imaging, several researches have also pointed out

that there is a fundamental trade-off between spatial and an-

gular resolutions [28, 35] that can be obtained. For portable

light field cameras, the micro-lens-array placed between the

main lens and the sensor plane virtually splits the main lens

into sub-apertures, which trades the spatial resolution of the

sensor for the angular resolution.
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The spatio-angular resolution trade-off of light field

imaging limits its promotion to practical applications.

Therefore, light field super-resolution (SR) has drawn more

and more attention from researchers and a number of meth-

ods have been proposed to take advantage of the redundant

information in the 4D light field to solve this problem.1

Broadly speaking, these light field SR methods can be di-

vided into three categories: projection-based, optimization-

based, and learning-based. Relying on the imaging princi-

ples of light field cameras, projection-based methods [17,

29, 31, 34] propagate the pixels of each sub-aperture image

to the target view by using the abundant sub-pixel informa-

tion. Optimization-based methods [5, 7, 14, 33, 40, 41, 50]

super-resolve the light field under various optimization

frameworks with priors analyzed from different mathemat-

ical models. Learning-based methods [13,15,21,48,55,56]

use powerful statistical learning tools especially convolu-

tional neural networks (CNNs) to derive an appropriate

mapping from low-resolution (LR) light fields to high-

resolution (HR) ones. As a result, the super-resolved images

are demonstrated to be useful in light field applications such

as disparity estimation [21, 48, 50, 55].

Despite the demonstrated success, existing light field SR

methods are usually evaluated with different datasets and

the LR images are generated under different degradation

assumptions (i.e., downsampling kernels and scaling fac-

tors). It makes the comparison among them difficult, and

even contradictory results are reported in literature. There-

fore, it is of great interest and importance to systematically

evaluate existing light field SR methods under a unified set-

ting. For a fair comparison, the test LR light field images

together with the ground truth should be the same for ev-

ery evaluated method, and various degradation assumptions

should be considered as well. In addition, due to the notable

difference in image quality and scene content between syn-

thetic and real-world light field images, these two kinds of

datasets should be both taken into account.

In this paper, we conduct the first systematic benchmark

evaluation on several representative light field SR meth-

1We mainly discuss the spatial resolution enhancement in this paper,

although the angular resolution enhancement (i.e., view synthesis) has also

been frequently investigated [24, 47, 52, 53].



ods. We select two datasets that are commonly used in

light field researches for the evaluation. One is the HCI

synthetic dataset [51] and the other is the EPFL real-world

dataset [39]. We then examine the performance of all con-

sidered light field SR methods under degradation assump-

tions with various downsampling kernels and scaling fac-

tors. The HR light field images generated by each method

are evaluated using four image quality metrics in terms of

both reconstruction accuracy and perceptual quality. Ac-

cording to the evaluation results, we then analyze and dis-

cuss the advantages and limitations of each kind of method

from different perspectives.

Especially, besides the representative light field SR

methods, we also adopt a CNN-based single image SR

method without using any angular information in the light

field for an additional comparison, which outperforms most

light field SR methods even including learning-based ones.

It is not so surprising since the single image SR method re-

lies on a powerful 2D natural image prior learned from a

large external dataset, while the light field SR methods ei-

ther exploit the inter-view redundancy within the LR input

only or learn from limited external data. However, it reveals

that there is still a large room of improvement for light field

SR. Based on this observation as well as the above analy-

sis and discussion, we point out the key challenges for light

field SR and further propose several promising directions to

address them.

Contributions of this paper are highlighted as follows:

(1) The first benchmark evaluation for light field SR.

(2) Interesting and informative observations on the ad-

vantages and limitations of representative methods in terms

of different datasets, degradations, and metrics.

(3) Analysis and discussion for promising directions in

future light field SR researches.

2. Related Work

In general, light field SR aims to enhance the spatial res-

olution of each sub-aperture image from an LR light field

by exploiting the redundant information across the angular

dimensions. Existing methods can be broadly divided into

three categories: projection-based, optimization-based, and

learning-based. Note that methods using additional hard-

ware [9, 59, 60] are not included.

Projection-based methods rely on the imaging princi-

ples of light field cameras. As first introduced by Lim et

al. [31], the 2D sub-aperture images contain sub-pixel shift

in the spatial dimensions, which can be used for spatial

resolution enhancement after projecting them onto convex

sets. Nava et al. [34] exploited the refocusing principle

and projected pixels from other views to the central view to

get an all-in-focus image of the present scene. Georgiev et

al. [17] also established sub-pixel correspondences with the

projection scheme designed for the focused plenotic cam-

eras. Liang et al. [29] proved that typical lenslet light field

cameras preserve frequency components above the spatial

Nyquist rate and projected the light field samples to the tar-

get view with the guidance of scene depth to make use of

the redundant inter-view information.

Optimization-based methods utilize various optimiza-

tion frameworks to super-resolve light field images, rely-

ing on different mathematical or geometric modeling of the

4D light field structure. Bishop et al. [7] explicitly intro-

duced Lambertian reflectance and texture preserving priors

in the light field imaging model and reconstructed the HR

light field images with a variational Bayesian framework.

Mitra and Veeraraghavan [33] assumed that the disparity is

constant within each 4D light field patch and estimated the

HR light field patches using a linear minimum mean square

error estimator with a disparity-dependent Gaussian mix-

ture model. Wanner and Goldluecke [50] applied a varia-

tional framework to conduct both spatial and angular SR us-

ing the disparity maps estimated from the epipolar images

(EPIs) with a structure tensor method. Recently, Rossi et

al. [41] super-resolved the light fields by coupling the multi-

frame approach with a graph-based regularizer that enforces

the light field structure and avoids explicit disparity estima-

tion. Their subsequent work [40] prevented the low-pass

tendency of the quadratic regularizer by replacing it with a

nonsmooth square root regularizer. Inspired by LFBM5D

for light field denoising [4], Alain and Smolic [5] proposed

an algorithm that iteratively alternates between LFBM5D

filtering and back-projection for light field SR.

Learning-based methods emerge recently especially

due to the prosperity of deep learning. Farrugia et al. [15]

showed that the light field patch volume resides in a low-

dimensional subspace and learned a linear mapping be-

tween the LR and HR subspaces with ridge regression.

Deep learning for light field SR was first introduced by

Yoon et al. in [55], where they stacked 4-tuples of sub-

aperture images and fed them into the SRCNN [11] archi-

tecture with multiple channels. Fan et al. [13] developed

a two-stage CNN framework, where different sub-aperture

images are aligned by patch matching in the first stage and a

multi-patch fusion CNN is used in the second stage. A shal-

low CNN was proposed by Gul et al. [21] to super-resolve

light fields directly from the raw data captured by plenop-

tic cameras without decoding to sub-aperture images. Con-

sidering a light field as a sequence of 2D images, Wang

et al. [48] modeled the spatial correlation between adja-

cent views with a bidirectional recurrent CNN and accu-

mulated contextual information from multiple scales with

a specially designed fusion layer. With a combined CNN

architecture, Yuan et al. [56] performed light field SR with

the EDSR [30] network followed by an EPI enhancement

network.



3. Benchmark Settings

3.1. Datasets

We select two datasets that are widely used in light

field researches for the benchmark evaluation. The HCI

dataset [51] originally proposed for light field disparity es-

timation [22, 45] contains a number of scenes synthesized

by graphic software. To facilitate a fair comparison es-

pecially for learning-based methods, we select 10 scenes

with a uniform angular resolution of 9 × 9 and the spatial

resolution ranging from 768 × 768 to 1024 × 720. The

EPFL dataset [39] originally proposed for light field im-

age compression [12] contains 12 real-world scenes cap-

tured by the Lytro Illum camera. The resolution of these

4D light field images is 625 × 434 × 15 × 15. Unlike the

synthetic images, the real-world images suffer from the vi-

gnetting effect even after calibration with the built-in cam-

era firmware [10]. Therefore, we only use the central 9× 9

views from the original light field and conduct a further

rectification by matching the average intensity of each sub-

aperture image to that of the central view. Note that even

after the post-processing, the real-world light field may still

have view-dependent camera degradations such as noise, as

will be seen in the experiments. More details of the datasets

are provided in the supplementary document.

3.2. Degradations

There are several ways to simulate the degradation from

HR light field images to LR ones. With different degra-

dation assumptions, the resulting LR light field images as

well as their interpolated ones may be drastically different.

This poses the main difficulty for directly comparing exist-

ing light field SR methods since their inputs may be dras-

tically different even the same groud truth is used. With-

out loss of generality, we simulate four degradation mod-

els with two different downsampling kernels (Bicubic and

Gaussian) and two different scale factors (2 and 3). For

Bicubic downsampling, we use the MATLAB function im-

resize. For Gaussian downsampling, we blur each ground

truth sub-aperture image using a 3×3 Gaussian kernel with

the standard deviation of 2. The LR light field is obtained

by averaging the neighboring four pixels for the scale fac-

tor of 2 and directly sampling the central pixel for the scale

factor of 3 in each blurred sub-aperture images. In this way,

the LR light field can be well aligned with the HR ground

truth after interpolation.

3.3. Methods

We select four representative light field SR methods from

the three categories as mentioned above for the evaluation

based on the following considerations: 1) recently pro-

posed state-of-the-art (within the last three years), 2) pub-

licly available or easily implementable codes, and 3) gen-

Method Language Category Time (s)

BIC MATLAB Single image 0.002

PRO [29] MATLAB&C++ Projection 113.0

GB [41] MATLAB Optimization 286.9

RR [15] MATLAB Learning 24.02

LFCNN [55] MATLAB&C++ Learning 0.036

VDSR [26] MATLAB&C++ Single image 0.138

Table 1. Evaluated methods and average execution time for super-

resolving one sub-aperture image from an input light field with a

256 × 256 × 9 × 9 resolution. The execution time is measured

under Gaussian downsampling with the scale factor of 3 on a ma-

chine with a 3.2GHz CPU (for BIC, PRO, GB, and RR) and a

GTX 1080Ti GPU (for LFCNN and VDSR). More details of the

evaluated methods are provided in the supplementary document.

eralizability to different downsampling kernels and scal-

ing factors. Specifically, we adopt the projection-based

method (PRO) [29] using estimated scene depth by [45],

the optimization-based method using graphs (GB) [41], the

learning-based method with ridge regression (RR) [15], and

the first CNN-based method (LFCNN) [55]. For an ad-

ditional comparison, we also adopt a representative CNN-

based single image SR method (VDSR) [26] without using

any angular information in the light field but trained from

a large external 2D image dataset. These methods are ei-

ther implemented using the author provided codes [15, 41]

or that developed by ourselves [26, 29, 55]. In both cases,

they are validated with the results in the original paper. It

is worth mentioning that, despite our best efforts, each se-

lected method may not give the top performance in the cat-

egory which it belongs to, yet the overall picture drawn

from the experiments should still hold. Also, interested re-

searchers can easily add their own methods that may give

better results into this benchmark evaluation.

Table 1 lists the implementation language of these meth-

ods along with their categories and average execution time.

Bicubic interpolation (BIC) is included as the baseline. For

PRO [29] and GB [41] that involve several tunable param-

eters, we select the setting that gives the best results. For

RR [15], we use the PCA basis and transformation matri-

ces learned from an additional dataset without overlap of

our test dataset, which are provided by the authors. For

LFCNN [55] which need to be trained on part of the dataset,

we use the K-fold cross validation strategy to get the SR

results on the whole dataset. Specifically, we split each

dataset to test groups with 2 (for HCI dataset) or 3 (for

EPFL dataset) scenes in each group and use the scenes

outside each group to train the network model. Note that

we upgrade the shallow SRCNN structure originally used

in LFCNN to the deep VDSR structure, which promotes

its performance for a fair comparison with single image

VDSR. For single image VDSR, we train the network using

the same training set as in [26] under different degradations.



3.4. Metrics

We use the PSNR and SSIM [49] metrics to evaluate the

reconstruction accuracy. Besides, considering the tradeoff

between reconstruction accuracy and perceptual quality as

revealed in [8], we also use the VGG metric [58] and Ma’s

metric [32] to evaluate the perceptual quality besides direct

visual comparison. It is worth mentioning that, given an LR

light field, not all light field SR methods output a complete

4D HR light field at once. Specifically, LFCNN [55] uses

a 4-tuple of sub-aperture images as the input and the out-

put is still a 4-tuple of HR sub-aperture images. We can

repeat this process to obtain the whole HR light field. For

PRO [29], however, it only generates the HR central view.

Therefore, we conduct the evaluation on the super-resolved

central view image for all methods and on all sub-aperture

images except PRO. For the latter, we compare the average

results and their standard deviation over all views.

4. Results and Analysis

4.1. Reconstruction accuracy evaluation

Comparison to baseline. Fig. 1 plots the average PSNR

values of the super-resolved central view images for six se-

lected methods over two datasets and under four degrada-

tion models, which gives an overall picture of this bench-

mark evaluation. At the first glance, all light field SR meth-

ods outperform the baseline BIC in all cases, which demon-

strates the effectiveness of exploiting the inter-view infor-

mation. We cannot take this for granted. Actually, con-

sidering the complicated scene content especially occlusion

present in the sub-aperture images, it is possible that infe-

rior results to BIC could be generated if the inter-view in-

formation is not properly used. Therefore, the advantages of

these selected methods are validated comprehensively. The

results in terms of the SSIM metric [49] are provided in the

supplementary document, from which we have similar ob-

servations.

Synthetic dataset VS. real-world dataset. We further

divide the four light field SR methods into two groups,

non-learning-based including PRO and GB, and learning-

based including RR and LFCNN. We observe that, ex-

cept for Gaussian downsampling with the scale factor of

2 (as will be explained below), non-learning-based meth-

ods give competitive or even better results to learning-based

ones on the HCI synthetic dataset, while on the EPFL real-

world dataset, learning-based methods have a clear advan-

tage. The underlying reason is that, compared with the real-

world light fields, the synthetic light fields generally has

much cleaner and simpler scene content, which facilities the

projection-based and optimization-based methods that rely

on system or mathematic modeling of light field imaging.

In contrast, learning-based methods are more robust even

for noisy or cluttered scene content in real world.

Bicubic downsampling VS. Gaussian downsampling.

In terms of the degradation model, a notable thing is that

LFCNN significantly outperforms the other ones for Gaus-

sian downsampling with the scale factor of 2. Recall that

this degradation model is operated as first blurring the sub-

aperture image with a Gaussian kernel and then averaging

the four neighboring pixels for downsampling. Compared

with other degradation models, this one actually conducts

twice of low-pass filtering and thus results in more heavily

degraded LR images, which can be verified by the baseline

BIC results. This degradation is thus more challenging for

non-learning-based methods PRO and GB and even the con-

ventional learning-based method RR, while LFCNN stands

out owing to the power of deep learning.

Light field SR VS. single image SR. Besides the light

field SR methods, we also evaluate the performance of sin-

gle image VDSR without using the inter-view information.

As can be seen from Fig. 1, single image VDSR almost al-

ways gives the best performance among its competitors in-

cluding LFCNN. This seemingly surprising result is actu-

ally reasonable, since single image VDSR relies on a pow-

erful 2D natural image prior learned from a large external

dataset, while its competitors either exploit the inter-view

information within the LR input only or learn from limited

external data (e.g., 8 or 9 scenes for LFCNN). In this sense,

this is not a really fair comparison. However, it reveals that

these is still a large room of improvement for light field SR,

as we will discuss in the following section.

4.2. Perceptual quality evaluation

Perceptual metric. According to [8], there exists a

tradeoff between reconstruction accuracy and perceptual

quality for image restoration problems. To evaluate the

perceptual quality of different methods in a quantitative

manner, we adopt the VGG metric [58] that represents the

pixel-wise distance in the feature space of a VGG19 net-

work [42]. Fig. 2 plots the average VGG values of the

super-resolved central view images for six selected meth-

ods over two datasets and under four degradation models.

As can be seen, the basic trend is similar to that of the

PSNR metric. All light field methods outperform the base-

line BIC, and single image VDSR gives best results. How-

ever, there are still several notable differences. First, PRO

gives promising performance in terms of the VGG metric.

For example, under Gaussian downsampling with the scale

factor of 3, PRO significantly outperforms LFCNN on the

synthetic dataset and even outperforms LFCNN on the real-

world dataset where it has a much lower PSNR. Second, RR

seems to be not favorable by the VGG metric, even on the

real-world dataset where it always outperforms PRO and

GB in terms of PSNR. These observations confirm to the

perceptual-distortion tradeoff [8]. The results of Ma’s met-

ric [32] are provided in the supplementary document.



Figure 1. The average PSNR values (the higher, the better) of the super-resolved central view images for six selected methods over two

datasets and under four degradation models. The results in terms of the SSIM metric [49] are provided in the supplementary document.

Figure 2. The average VGG values (the lower, the better) of the super-resolved central view images for six selected methods over two

datasets and under four degradation models. The results of Ma’s perceptual metric [32] are provided in the supplementary document.

Visual results. Fig. 3 shows some super-resolved cen-

tral view images under Gaussian downsampling with the

scale factor of 3 for a qualitative comparison among dif-

ferent methods. We can see that, while all methods add

more visual details over the baseline BIC, their behaviors

are quite different. Specifically, PRO gives quite impressive

results in regions with fine textures and continuous depth

(marked in red rectangles) but is not so effective in regions

with distinct edges and occlusion (marked in green rectan-

gles). In contrast, LFCNN produces sharp edges but often

introduces unrealistic artifacts in texture regions. The visual

results from GB are somewhat between PRO and LFCNN
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Figure 3. Visual comparisons of super-resolved central view images through different methods under Gaussian downsampling with the

scale factor of 3. The first two scenes are from the HCI synthetic dataset and the last two scenes are from the EPFL real-world dataset.

while those from RR are not so encouraging. This is in ac-

cordance with the VGG metric, on which PRO and LFCNN

are the top two performers in most cases. Besides, single

image VDSR without using inter-view information gener-



Method
HCI EPFL

Bicubic×2 Gaussian×2 Bicubic×3 Gaussian×3 Bicubic×2 Gaussian×2 Bicubic×3 Gaussian×3

BIC
36.26± 0.07 34.30± 0.06 32.75± 0.06 32.84± 0.07 31.67± 0.75 30.56± 0.66 29.22± 0.71 29.22± 0.73

20.32± 0.51 30.84± 0.66 42.35± 0.93 40.45± 0.95 27.42± 1.35 41.80± 1.73 57.25± 2.21 54.53± 2.22

GB 37.18± 0.21 35.14± 0.11 33.89± 0.08 34.14± 0.11 32.13± 0.82 31.04± 0.74 29.78± 0.81 29.98± 0.84

[41] 15.12± 1.52 25.15± 1.19 34.12± 1.04 28.90± 1.01 19.08± 1.80 33.51± 2.14 46.45± 2.18 40.78± 1.85

RR 36.89± 0.15 35.13± 0.11 33.62± 0.08 33.52± 0.09 32.75± 0.43 31.68± 0.44 30.21± 0.54 30.00± 0.59

[15] 14.57± 0.62 23.55± 0.77 35.77± 0.93 34.73± 1.02 20.91± 1.30 32.91± 1.59 48.26± 2.11 48.26± 2.17

LFCNN 37.60± 0.12 37.03± 0.12 33.46± 0.10 33.38± 0.13 33.33± 0.51 33.53± 0.46 30.72± 0.55 30.28± 0.67

[55] 10.66± 0.37 13.00± 0.52 33.70± 0.98 32.39± 1.05 12.78± 0.94 14.61± 1.07 41.09± 2.03 42.06± 2.32

Table 2. Mean and standard deviation values of PSNR (dB) and VGG (×100, displayed in gray) on all sub-aperture images.

Train / Test
Bicubic Gaussian Bicubic Gaussian

×2 ×2 ×3 ×3

EPFL / EPFL 33.13 33.25 30.50 30.11

HCI / EPFL 32.18 31.97 28.96 28.89

Table 3. Domain shift investigation. Average PSNR (dB) results

of super-resolving central view images from the EPFL dataset with

LFCNN trained on different datasets.

ates even sharper edges than LFCNN, yet PRO still has an

advantage in texture regions. The reason is that fine textures

are more difficult to learn from external examples, but rela-

tively easy to be enhanced by the internal correlation across

the angular dimensions of the light field itself. This suggests

a potential way for combining non-learning-based methods

and learning-based ones.

4.3. Inter­view consistency

The above comparisons are conducted on the super-

resolved central view images. In Table 2 we list the PSNR

and VGG results on all sub-aperture images in terms of the

mean and standard deviation values, for light field SR meth-

ods except PRO which only generates the HR central view.

The mean PSNR and VGG values on all sub-aperture im-

ages are similar to those on the central view, which sug-

gests the universal effectiveness of selected methods. On

the other hand, the standard deviation results are more infor-

mative, which indicates the inter-view consistency of each

method. As can be seen, BIC has a relatively small devia-

tion on the synthetic dataset but a much larger one on the

real-world dataset. This can be explained by the fact that

the synthetic light fields have no intensity variation among

views but the real-world ones are affected by vignetting as

well as other view-dependent camera degradations such as

noise. Therefore, the individual operation like BIC will in-

herit the inter-view variation on real-world data, while this

variation could be alleviated by light field SR methods that

operate on all sub-aperture images simultaneously. Among

the three light field SR methods, RR exhibits the smallest

deviation in terms of the PSNR metric and LFCNN exhibits

the smallest deviation in terms of the VGG metric.

4.4. Generalizability of LFCNN

Recall that for LFCNN, we use the K-fold cross vali-

dation strategy to get the SR results on the whole dataset,

which requires to train the model on part of the dataset.

Here we conduct another experiment for LFCNN to eval-

uate its generalization capability from one dataset to an-

other. Specifically, we select one LFCNN network trained

on the synthetic dataset and then apply it to the real-world

dataset. The PSNR results on the central view images for

different degradation models are listed in Table 3. We can

see that, due to the domain shift issue, the performance of

LFCNN deteriorates by an average of 1.25dB in terms of

PSNR. It thus reveals the shortcoming of CNN-based meth-

ods for light field SR, despite its superior performance over

other methods when trained on part of the dataset. On the

other hand, however, it can be expected that LFCNN would

benefit from increased training data in the same domain.

4.5. Computational complexity

The computational complexity of the evaluated meth-

ods are included in Table 1. While these methods are im-

plemented based on different languages and hardware, it

is obvious that non-learning-based method consumes more

time than learning-based ones. Owing to the parallel com-

putation, LFCNN only requires 0.036s for super-resolving

one sub-aperture image from an input light field with a

256 × 256 × 9 × 9 resolution in the test phase, although

it takes about 7 hours for training the network. Note that

LFCNN is averagely faster than VDSR since it processes a

4-tuple of sub-aperture images at once.

5. Light Field SR: Next Step

5.1. Combining natural image priors

Natural image priors such as edge structure and patch

recurrence are widely used for single image SR in an early

stage [18, 57]. Recent CNN-based methods achieve excel-

lent results with deep learning from a large external im-

age dataset, and the performance can be further improved if

trained on 2D images with very high spatial resolution [43].

Although these powerful network structures can be read-



ily extended to light field SR [55], a sufficiently large light

field dataset containing diverse content is not easy to col-

lect compared with 2D natural images. On the other hand,

the real-world data collected with portable light field cam-

eras often suffers from limited spatial resolution, which

also restricts the capability of deep learning. Consequently,

as demonstrated above, single image VDSR easily outper-

forms LFCNN, since it uses much more training data.

While it is definitely necessary to pay efforts for collect-

ing even larger high quality light field datasets than the ex-

isting ones, an alternative way for boosting the performance

of light field SR could be directly taking advantage of nat-

ural image priors. For example, in a most simple manner,

the single image SR results can be used as initializations for

light field SR [13, 56]. In an advanced manner, single im-

age SR methods that exploit the intra-view information can

be combined with light field SR methods that exploit the

inter-view information, where they may find complemen-

tary strengths [54]. In a word, the powerful natural image

priors can be better leveraged.

5.2. Taking full use of 4D structure

Owing to its high dimensional property, light fields en-

able novel applications beyond conventional 2D images.

For light field SR, a main problem is how to take full use

of the 4D structure. Take deep-learning-based methods for

example, it is essential to utilize network structures that

are specially designed for high dimensional data. For in-

stance, 3D CNN was first used for human action recognition

from videos [23] and has been proven efficient for integrat-

ing spatial and temporal information. In addition, there are

some CNN architectures designed for 4D light fields such as

the pseudo 4D CNN which is used for view synthesis [47]

and the 4D filter mimicked by interleaved spatial and angu-

lar filters which is used for material recognition [46]. Both

of these two 4D CNN structures outperform traditional 2D

CNNs for their specific applications with light fields. It thus

reveals a potential way to develop light field SR methods

with advanced CNN structures taking full use of the 4D cor-

relations across both spatial and angular dimensions.

5.3. Alleviating domain shift

Since light field imaging was first introduced by [6], the

acquisition systems have been developed in different prin-

ciples such as computer graphics tools [51], lenslet cam-

eras [35], and camera arrays [3]. These systems are quite

different from each other. Even within the same category,

e.g., lenslet cameras, different configurations of the micro-

lens-array may result in different camera models. This dif-

ference, regarded as domain shift, is considerably larger

compared with conventional 2D images captured with dif-

ferent devices. As demonstrated by the experiments on

LFCNN, although deep learning opens the door for a better

modeling of light field SR, the model learned from a certain

light field dataset cannot be easily applied to another dataset

obtained with different camera configurations. This is an-

other key issue that makes light field SR more challenging

than single image SR.

We suggest two possible solutions for addressing this

issue. From the perspective of modeling, non-learning-

based methods are not so sensitive to the domain shift ef-

fect, which indicates that we can incorporate light field

modeling used in these methods into deep learning archi-

tectures. Take the optimization-based method GB [41] as

an example, light fields can be represented as a graph in

which one single node represents several rays coming from

the same scene point. Meanwhile, graph convolution net-

works (GCNs) have shown excellent capability in charac-

terizing the relationship between adjacency nodes in many

tasks such as classification [27] and 3D shape analysis [44].

Therefore, modeling light fields as graphs and exploiting

GCNs to learn the 4D correlations may be a useful solution

to address the domain shift issue for light field SR.

On the other hand, from the perspective of domain trans-

fer, domain adaptation techniques are specified for learning

tasks in which data at training and testing phases come from

similar but different distributions [16]. These techniques are

also applicable to alleviate the domain shift effect in light

field SR. For example, we can extract the shared features

between different light field datasets with adversarial train-

ing at a certain layer of the CNNs, which has demonstrated

promising domain adaptation performance for object recog-

nition [20] and classification [19].

6. Conclusion

In this paper, the first benchmark evaluation is conducted

for light field SR. We systematically evaluate the perfor-

mance of representative light field SR methods on two sets

of light field images for synthetic and real-world scenes un-

der various degradation assumptions. Comprehensive ex-

perimental results and further analysis reveal the advantages

and limitations of these methods. Based on the benchmark

evaluation and corresponding analysis, we suggest several

promising directions for the development of more effective

methods in the future. We hope this benchmark along with

the discussion will not only provide a clear picture for the

current status of light field SR but also inspire novel ideas

in this important field.
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