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Abstract

We present a comprehensive empirical investigation

of efficient spatio-temporal modeling in video restoration

tasks. To achieve a better speed-accuracy trade-off, our

investigation covers the intersection of three dimensions

in deep video restoration networks: spatial-wise, channel-

wise and temporal-wise. We enumerate various network ar-

chitectures ranging from 2D convolutional models to their

3D extensions, and discuss their gain and loss in terms of

training time, model size, boundary effects, prediction ac-

curacy and the visual quality of restored videos. Under a

strictly controlled computational budget, we also specifi-

cally explore the design inside each residual building block

in a video restoration network, which consists a mixture of

2D and 3D convolutional layers. Our findings are summa-

rized as follows: (1) In 3D convolutional models, setting

more computation/channels for spatial convolution leads to

better performance than on temporal convolution. (2) The

best variant of 3D convolutional models is better than 2D

convolutional models, but the performance gap is close.

(3) In a very limited range, the performance can be im-

proved by the increase of temporal window size (5 frames

for 2D model) or padding size (6 frames for 3D model).

Based on these findings, we propose the wide-activated

3D convolutional network for video restoration (WDVR),

which achieves state-of-the-art restoration accuracy under

constrained computational budgets with low runtime la-

tency. Our solution based on WDVR also won 2nd places

in three out of four tracks of NTIRE 2019 Challenge for

Video Super-Resolution and Deblurring. Code and mod-

els are released at https://github.com/ychfan/

wdvr_ntire2019.

1. Introduction

While videos are one of the most popular media to de-

liver information and data, the distortion problem in the

videos caused by camera calibration, motion blurring, com-

pression over transmission and low-resolution sensors re-

mains unsolved in many practical scenarios. The prob-

lem of video restoration is challenging over-time in the

signal processing area. It is an ill-posed inverse problem

that targets on recovering the original video from its de-

graded counterparts. Among different types of degradation

in videos, video super-resolution and deblurring are two of

the most important and representative problems, illustrated

in Figure 1.

With the recent development of deep convolutional neu-

ral networks (CNNs) in image recognition [1, 2], 2D and

3D CNNs have also been successfully applied to the task

of image and video restoration. These methods usually

model image and video restoration as a direct mapping

function trained with large-scale data via a deep neural

network [3, 4, 5, 6, 7]. Recent works [4, 5] have shown

that deeper networks lead to better performance in terms of

peak signal-to-noise ratio and structural similarity. How-

ever, very heavy computation is also required for the deep

network architecture during training and inference, which

limits its usage in the industrial scenarios.

Previous arts have studied the speed-accuracy trade-offs

in image super-resolution problem with deep neural net-

works [7]. In this work, we present a comprehensive em-

pirical investigation of the speed-accuracy trade-offs for

spatio-temporal modeling in video restoration tasks, includ-

ing video supre-resolution and deblurring. Various network

structures are enumerated, trained and tested, ranging from

2D convolutional models to their 3D extensions. Our inves-

tigation covers the intersection of three dimensions in deep

video restoration networks, spatial-wise, channel-wise and

temporal-wise. We discuss their gain and loss in terms of

training time, model size, boundary effects, prediction ac-

curacy and the visual quality of restored videos. We also

specifically explore the design inside each residual building

block, which consists a mixture of 2D and 3D convolutional

layers, in a video restoration network under a strictly con-

trolled computational budget.

In summary, our findings are as follows. First, in 3D

convolutional models, setting more computation/channels
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(a) HR (b) Deblurring (c) Deblurring with compres-

sion artifacts

(d) Super-resolution (e) Super-resolution with blur

Figure 1: Examples of video restoration with WDVR.

for spatial convolution leads to superior performance over

temporal convolution. Second, the best variant of 3D con-

volutional models is better than 2D convolutional models,

but the performance gap is close. Third, in a very limited

range, the performance can be improved by the increase of

temporal window size (5 frames for 2D model) or padding

size (6 frames for 3D model). Based on these findings, we

introduce the wide-activated 3D convolutional network for

video restoration (WDVR), which achieves state-of-the-art

restoration accuracy under constrained computational bud-

gets with low runtime latency. We provide extensive abla-

tion studies to validate our findings. Our solution based on

WDVR won 2nd places in three out of four tracks of NTIRE

2019 Challenge for Video Super-Resolution and Deblur-

ring.

2. Related Work

In this section, we first review several related methods

for the task of image restoration. We then go over related

approaches on video restoration. We pay special attention

to the deep learning (DL) based methods for image/video

super-resolution and deblurring, which are closely relevant

to our proposed method. Finally we review the topics and

solutions on spatio-temporal modeling in videos.

2.1. Image Restoration

Recently, deep learning (DL) based approaches have

been developed for image restoration, and have achieved

impressive results over the conventional non-DL practices.

Considering single image super-resolution as an example,

the methods built on DL [3, 4, 5, 6, 7] have dramatically

improved the performance over conventional non-DL meth-

ods [8, 9], in terms of peak signal-to-noise ratio, structural

similarity [10] and perceptual visual quality. These meth-

ods usually treat the deep neural network as an end-to-end

mapping function from a low-resolution image to its high-

resolution counterpart. Based on this practice, extensive

works have been focusing on how to design more efficient

and effective network (sub-)architectures including residual

blocks [5], network depth [11, 12, 13, 5, 14, 15], recurrent

architectures [16, 17, 18], skip connections [15, 18, 14], up-

sampling layers [19, 20, 21], normalization layers [7, 6],

non-local attention mechanism [22, 23] and activation func-

tions [24].

Among these recent advances, we selectively review sev-

eral techniques that are closely related in our work. To

improve the efficiency of deep neural networks for image

super-resolution, WDSR [7] demonstrated that models with

wider features before ReLU activation have significantly

better performance under the same parameters and com-

putational budgets. Thus a super-resolution residual net-

work was designed to have a slim identity mapping path-

way with wider (2× to 4×) channels before activation in

each residual block. Moreover, Yu et al. [7] found that train-

ing with weight normalization leads to better accuracy com-

pared with batch normalization or no normalization. In ad-

dition, since the input and output of a super-resolution net-

work have different spatial resolution, an upsampling layer

is usually required. Shi et al. [25] proposed a sub-pixel con-

volutional neural network as a replacement of computation-

ally expensive deconvolution operation. Odena et al. [21]

also demonstrated that deconvolution could lead to checker-

board artifacts thus should be avoided.

As for image deblurring, recent solutions of this prob-

lem are mainly on estimating the deblur function by train-

ing a deep neural network learned from noise-clean data



pair. In the scale-recurrent network for deep image deblur-

ring [26], Tao et al. investigated the coarse-to-fine scheme

to gradually restore the sharp image on different resolutions

in a pyramid. Zhang et al. [27] proposed a spatially vari-

ant neural network which is composed of three deep con-

volutional neural networks (CNNs) and a recurrent neural

network (RNN). In [27], RNN is used as a deconvolution

operator performed on feature maps extracted from the in-

put image by one of the CNNs, and another CNN is used to

learn the weights for the RNN at every location.

2.2. Video Restoration

The difference between video restoration and image

restoration mainly lies in the exploitation of temporal infor-

mation. Since natural videos usually have consecutive co-

herent frames with the same objects and scenes, efficiently

and effectively leveraging the neighboring frames to predict

the center frame could lead to better results. Here we focus

on reviewing recent DL based approaches of video restora-

tion, while using video super-resolution and video deblur-

ring as examples.

In recent years, the major focus of video super-resolution

(VSR) was on temporal modeling within the framework of

deep neural networks. For example, Caballero et al. [28] ex-

plored the use of early fusion, slow fusion and 3D convolu-

tions for the joint processing of multiple consecutive video

frames. A joint motion compensation and video super-

resolution network based on a fast multi-resolution spatial

transformer module was introduced in [28]. Tao et al. [29]

proposed a sub-pixel motion compensation (SPMC) layer

in a CNN framework for video super-resolution. Liu et

al. [30] developed a temporal adaptive network for VSR via

using filters on various temporal scales to extract features.

Moreover, Sajjadi et al. [31] proposed an end-to-end train-

able frame-recurrent video super-resolution framework that

uses the previously inferred HR estimate to super-resolve

the subsequent frame.

In the task of video deblurring, the non-uniform blur

is usually caused by unwanted camera shake and/or object

motion in dynamic scenes. Wieschollek et al. [32] intro-

duced a recurrent network architecture to deblur frames and

considered temporal information into account. The trained

network was able to efficiently handle arbitrary spatial and

temporal input sizes. Kim et al. [33] proposed an online

(sequential) video deblurring method based on a spatio-

temporal recurrent network. Real-time performance can

be achieved by the proposed network layer that enforces

temporal consistency between consecutive frames with dy-

namic temporal blending. Segmentation information was

incorporated with video deblurring when available in [34].

2.3. Spatio­Temporal Modeling in Videos

The ability to understand videos is one of the most im-

portant milestones in artificial intelligence. Such tasks in-

clude video classification, action recognition, optical flow

estimation, video restoration and many others. With the

rapid development and progress made with 2D convolu-

tional networks on image-related tasks [2, 1, 35, 36, 37, 38]

such as image classification, detection and control agents on

playing Atari games, its direct extensions, 3D convolutional

networks, are comprehensively explored for video-related

tasks.

3D Convolution was firstly proposed in [39] where the

authors used a homogeneous architecture with small 3 ×

3 × 3 convolution kernels in all layers for video classifi-

cation. Tran et al. [40] further proposed a improved spa-

tiotemporal convolutional block “R(2+1)D” based on the

observation that 2D CNNs applied to individual frames of

the video have remained solid performers in action recog-

nition. Qiu et al. [41] proposed a Pseudo-3D Residual Net

(P3D ResNet) to exploit all the variants of blocks but com-

poses each in different placement of ResNet. The design

is based on the assumption that enhancing structural diver-

sity with going deep could improve the power of neural net-

works. Xie et al. [42] demonstrated that it is possible to

replace many of the 3D convolutions by low-cost 2D con-

volutions, especially the ones on low-level semantics. It in-

dicated that temporal representation learning on high-level

semantic features is more useful.

3. Deep Network Models for Video Restoration

In this section, we describe in details the neural network

architectures for video restoration from the models based

on 2D convolutions to the models with 3D convolutions.

We elaborated on the relation and difference between these

two types of models in terms of spatio-temporal modeling

information from videos.

3.1. 2D Convolutional Models

Conv Pixel Shuffle

Residual Blocks

Figure 2: 2D convolutional models for video restoration.

In this section, we first explore the naive 2D convolu-

tional design for video restoration. The 2D convolutional

models for video restoration is adapted from models for



the single-image restoration task. We treat the temporal in-

formation as the input features, i.e., for each frame output

at frame index t, we take several input frames centered at

frame index t and concatenate them as the network input.

As shown in Figure 2, the models take multiple consecu-

tive frames from a degraded video as input and restore the

center frame. During training and inference, the 2D mod-

els work in a sliding window manner and propagate the re-

stored images sequentially. The 2D models are deep struc-

tures stacked with multiple residual blocks and two addi-

tional convolutional layers to adapt the input and output di-

mensions. In the widely adopted approach of residual learn-

ing, along with the deep branch, a skip connection is used

with single convolution directly from input to output. For

super-resolution tasks, an additional pixel shuffle layer is

appended to the very end of the models.

Conv2D

ReLU

Conv2D

Figure 3: 2D wide-activated residual block.

The 2D wide-activated residual blocks, as shown in Fig-

ure 3, are the commonly used basic building block for the

2D convolutional models. In such a residual building block,

there are two 2D convolution layers alternated with one

ReLU activation layer. Meanwhile, an identity skip con-

nection from block inputs is added up to outputs. The

wide-activated design allows more channels in the activa-

tion layer, compared to inputs and outputs, which is more

effective in performance and more efficient in speed. As

suggested in [7], expanding features before ReLU allows

more information to pass through while still maintaining

high non-linearity of deep neural networks. Thus low-level

features from shallow layers may be easier to propagate to

the final layer for better dense pixel value predictions.

However, the receptive field in temporal domain is fixed

in such 2D models, because the 2D models have pre-defined

input filter sizes, which takes a fixed number of stacked

frames, i.e., window size of temporal receptive field. Thus,

the number of input concatenation frames is one of the most

important hyper-parameters for temporal modelling in 2D

models. We will show in the experiment section that choos-

ing proper window size has a major impact on performance.

In addition, it is noteworthy that such 2D models are not

very efficient for exploring long-range temporal informa-

tion. The first convolution layer fuses all the frames with

single linear transform, and later layers have little effect

on modeling additional temporal information. In this way,

given a 2D model of fixed temporal scale, the more stacked

input frames, the less representation there is for each frames

in hidden layers.

3.2. 3D Convolutional Models

Here we explore the 3D convolutional models for effi-

cient modeling of temporal information. The 3D convolu-

tional operations are more intrinsic ways for joint spatial

and temporal modelling. We extend a 2D convolutional

model to a 3D one by following the same structure and re-

placing all the 2D convolutional layers to 3D ones. Differ-

ent from the 2D convolutional model, a 3D model take a

clip of video with arbitrary number of frames and predict

their restored counterparts simultaneously. The deep struc-

ture with multiple 3D convolutional layers explore spatial

and temporal information gradually and is expected to be

both efficient and effective for context modelling of videos.

Compared with 2D models, 3D models are capable to

capture temporal signals not only in the input layer but also

in succeeding 3D convolutional layers. Figure 4.(a) and (b)

illustrate the difference between 2D and 3D residual blocks.

In 2D models, all the consecutive frames are already fused

in the very first layer, then temporal dimension is squeezed

and convolutional operations only perform on spatial di-

mensions. Compared to 3D models, 2D convolutional lay-

ers are fully connected in temporal axis but the temporal

axis is limited by the number of input stacked frames. From

computational perspective, the 2D convolutional layers are

identical to 3D spatial convolutional layers. Because mul-

tiple consecutive frames are fused in the entry layers of 2D

models, the temporal information can be kept only along the

channel axis in a very limited manner.

In 3D convolution layers, all the parameters are related

to temporal modelling. However, video restoration as a

low-level vision task relies on more local information for

restoring fine details. Without explicit motion compensa-

tion and frame warping, it is difficult to effectively capture

information from videos containing fast motion or drastic

scene changes by simple local 3D convolution operations.

Hence, the ratio of parameters for temporal modelling is

worth careful investigation.

Multiple 3D wide-activated residual blocks in 3D mod-

els are designed with different ratio of parameters for tem-

poral modeling in this section. We explain them in details

as follows. The most straightforward design of 3D is the

inflated version of 2D wide-Activated blocks, named as IAI

and shown in Figure 4.(b). To reduce the ratio of temporal

parameters by half, the inflated 3D convolution after activa-

tion is replaced with spatial convolution, named as IAS and

shown in Figure 4.(c). To further reduce the ratio, the other

inflated 3D convolution is decomposed to spatio-temporal
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Figure 4: 3D wide-activated residual blocks with different designs. (a) 2D. (b) IAI. (c) IAS. (d) STAS. (e) TSAS.

convolution, named as STAS and shown in Figure 4.(d). The

spatio-temporal convolution explicitly isolates the parame-

ters for spatial and temporal modelling. In STAS, the tempo-

ral convolution is connected with activations, so it has more

channels than input and output features. Switching the order

of spatio-temporal convolution, named as TSAS and shown

in Figure 4.(e), can reduce temporal parameters even more

by moving temporal convolution to connect narrow block

inputs. In the experiment section, the proposed designs of

3D residual blocks are carefully compared to find the most

efficient spatio-temporal modelling approach.

4. Experiment

4.1. Main Results

In this section, we investigate the performance of 2D and

3D convolutional models with detailed experimental results.

4.1.1 Datasets and Metrics

We use the REDS video restoration dataset [?] in NTIRE

2019 Challenges. The dataset contains 300 videos and is

split to 240, 30 and 30 for training, validation and test-

ing set respectively. Each video comes with 100 consec-

utive frame with 1280x720 resolution. There are 4 different

types of degradation, including 4x bi-cubic down-sampling

for super-resolution, 4x blurry down-sampling for super-

resolution, blurring and compression.

The models discussed in this section is based on 4x bi-

cubic down-sampling for super-resolution task. They are

trained with 240 videos in training set and evaluated with

30 videos in validation set. They are trained with multiple

epochs based on small patches of frames, several patches

per frames is sampled in each epoch. The models are trained

with L1 loss and evaluated with peak signal-to-noise ratio

(PSNR) or structural similarity (SSIM) in RGB channels of

every frames in validation set.

4.1.2 Training Settings

Training image frame patches have 64 pixels in width and

height, and 100 patches are sampled from every videos in

one single epoch. ADAM optimizer [43] is used with β1 =

0.9, β2 = 0.999, ǫ = 108. Weight normalization [44] is



Window size PSNR

1 28.45

3 29.04

5 29.14

7 29.08

Table 1: 2D convolutional models with different window

sizes.

applied for all the convolution kernels. The learning rate is

initialized the maximum convergent value, that is 1e-3, then

multiplied by 0.1 for final steps. The models discussed in

Section 4.1 are limited to 16 residual blocks and 32 nodes

in residual connections for fairness in comparisons.

4.1.3 2D Convolutional Models

The implementation of 2D convolutional models are very

similarly to image super-resolution framework but multiple

consecutive frames are stacked as a single input features.

The most important hyper-parameter for 2D models is the

window size, that is the number of stacked frames.

The 2D models with different window sizes are com-

pared in Table 1. The compared models are early-stopped at

10th epoch, due to their training speed. Comparing models

with window size 1, that is single image super-resolution,

other models with stacked context frames are significantly

better in PSNR. The models with windows size 5 achieve

the optimal results, and is better than models with window

size 7.

The results show that 2D convolution has limited capa-

bility in modelling long-term temporal dependency. When

multiple frames are stacked as single input, all the infor-

mation has to be kept in hidden represents with limited di-

mensions. Given fixed number of parameters, the width of

hidden represents also with fixed size have to compress in-

formation from individual frames, when the window size

increases.

4.1.4 3D Convolutional Models

The training of 3D convolutional models is based on video

clips instead images. Each training sample is a pair of de-

graded consecutive frame patches in four dimensions (time,

height, width and channels) and corresponding target frame

patches. Although the temporal receptive field of 3D mod-

els is determined by the number of 3D convolutional layers

theoretically, the practical temporal receptive field is limited

by the length of input video clips. To avoid boundary effect

in temporal, more consecutive frames are padded for input

video clips. The clip size is 4 and padding size is 8, that

Design Activation width Temporal ratio PSNR

IAI 42 1.00 28.70

IAS 64 0.50 28.79

STAS 88 0.31 28.92

TSAS 122 0.06 28.94

Table 2: 3D convolutional models with different residual

block designs.

29.05

29.08

29.11

29.14

29.17

29.2

29.23

1 2 3 4 5 6 7 8
PS
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Padding size

Figure 5: Padding size with 3D models performance.

is 20 consecutive frames for inputs and 4 central frames for

targets, in experiments below.

Model Designs The proposed model designs have dif-

ferent ways for spatio-temporal modelling, hence different

ratio of temporal parameters. Temporal modelling needs

additional parameters comparing to 2D models, especially

3D convolution layers have one more parameter dimension.

To ensure the fairness of comparison, the number of to-

tal parameters must be fixed. Given the fixed number of

layers (16) and residual nodes (32), the number of activa-

tions inside residual blocks is adjusted to control the model

size. The comparison of different residual block designs

are shown in Table 2. The results show that the 3D mod-

els with less parameters for temporal modelling and more

activations achieve better performance, which is coincident

with our hypothesis: (1) spatial information is more im-

portant than temporal information in video restoration; (2)

wide-activation is efficient model structure.

Temporal Modelling Capacity To measure the tempo-

ral modelling capacity of 3D models, the clip size is fixed to

1, and the 3D models are evaluated with different temporal

padding size. As shown in Figure 6, greater padding size

improves the performance until padding reaches 5 frames,

which means the 3D model are capable to capture signifi-

cant information from temporal neighbours up to 5 frames,

equivalent to window size 11 in 2D models. The results

show that the proposed 3D model has 2.5x temporal mod-

elling capacity compared to 2D models.



PSNR/SSIM Bicubic Bayesian [45] Liu et al. [30] DUF[46] WDVR

City 25.13 / 0.601 28.11 / 0.8916 26.50 / 0.8282 28.02 / 0.8950 26.92 / 0.8631

Walk 26.06 / 0.798 27.69 / 0.9122 28.35 / 0.9154 30.11 / 0.9475 30.16 / 0.9408

Calendar 20.54 / 0.571 23.78 / 0.8611 22.13 / 0.7802 23.84 / 0.8588 23.40 / 0.8333

Foliage 23.50 / 0.566 25.98 / 0.8477 25.09 / 0.7931 26.32 / 0.8419 25.99 / 0.8238

Avg. 23.81 / 0.634 26.39 / 0.8782 25.52 / 0.8292 27.07 / 0.8858 26.62 / 0.8653

Table 3: Quantitative comparison with state-of-the-art video super-resolution methods on Vid4 [47].
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Figure 6: Batch size with 3D models speed.

Models PSNR

2D 28.2085

3D 29.2148

Table 4: Comparison of 2D convolutional model and the

best variant of 3D convolutional Models.

Batching Benefited by intrinsic of convolution in tem-

poral, the 3D models can process video clips with multiple

frames simultaneously, and reduce the redundant computa-

tion of overlapped consecutive frames. Results in Figure

6 show that batching can significant increase the speed of

3D models. Especially, when batch size is increased to 20,

the performance can achieve 20 frames per second (FPS),

which makes the 3D models can processing videos in real-

time with only 1 second latency.

4.1.5 Comparison of 2D and 3D Models

Both 2D and 3D models are effective and efficient for video

restoration. We further compared the models in Table 4.

Results show that 3D models outperform 2D models, but

the gap between them are not significant.

4.2. NTIRE 2019 Challenges

Based on our investigation, we found that the gap be-

tween 2D and 3D models are not very significant, while 3D

models consume much more memory for training. Thus

we participate the NTIRE 2019 Challenges with our investi-

Tracks PSNR SSIM

Deblurring Clean 34.17 0.9345

Deblurring Compression 28.73 0.7993

Super-Resolution Clean 29.86 0.8409

Super-Resolution Blur 28.68 0.8103

Table 5: Validation phase results in NTIRE 2019 Chal-

lenges.

Tracks PSNR SSIM Ranking

Deblurring Clean 35.71 0.9522 2

Deblurring Compression 29.78 0.8285 2

Super-Resolution Clean 30.81 0.8748 6

Super-Resolution Blur 29.46 0.8430 2

Table 6: Test phase results in NTIRE 2019 Challenges.

gated 2D convolutional models. The submitted models have

64 layers, 64 residual units and 256 activation units in each

residual blocks.

For validation phase, the models are trained on training

set for 20 epochs. The results on validation set are shown in

Table 5.

For test phase, the models are further fune-tuned on

training and validation set for 10 more epochs. The results

on test set are shown in Table 6. 8x self-ensemble (includ-

ing flips and rotations) is also used for our final submis-

sion. Our proposed methods outperform most of the teams

[48, 49]. Our approach is also extremely efficient, which

achieve 0.98 second per frame for video super-resolution

task and can be reduced 8 times without self-ensemble.

4.3. Comparison of state­of­the­art

The proposed WDVR video restoration method are fur-

ther evaluated on benchmark datasets for video super-

resolution.

On Vid4 benchmark[47], our approach is comparable

with state-of-the-art methods, as shown in Table 3. The

PSNR and SSIM are calculated on luminance channel, 4

boundary pixels are ignored for 4x super-resolution. The

Table 3 are re-calculated with published results of each



(a) city, frame 24

(b) walk, frame 31

(c) calendar, frame 23

(d) foliage, frame 27

Bicubic Liu et al. [30] DUF [46] WDVR HR

Figure 7: Visual comparisons with state-of-the-art video super-resolution methods on Vid4 [47].

method. For method, Liu et al. [30], the first two and last

two frames in every video are ignored.

The qualitative results are shown in Figure 7. Although

the DUF method perform better on 3 out of 4 videos, our

approach is more robust with boundary effects as shown in

video named walk.

5. Conclusion

In this work, we have investigated empirically of effi-

cient spatio-temporal modeling in video restoration tasks.

Based on our findings, we have introduced the WDVR,

wide-activated 3D convolutional network for video restora-

tion, which achieves a better accuracy under similar com-

putational budgets and runtime latency.
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