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Abstract

Large deep networks have demonstrated competitive

performance in single image super-resolution (SISR), with a

huge volume of data involved. However, in real-world sce-

narios, due to the limited accessible training pairs, large

models exhibit undesirable behaviors such as overfitting

and memorization. To suppress model overfitting and fur-

ther enjoy the merits of large model capacity, we thor-

oughly investigate generic approaches for supplying addi-

tional training data pairs. In particular, we introduce a

simple learning principle MixUp [42] to train networks on

interpolations of sample pairs, which encourages networks

to support linear behavior in-between training samples. In

addition, we propose a data synthesis method with learned

degradation, enabling models to use extra high-quality im-

ages with higher content diversity. This strategy proves

to be successful in reducing biases of data. By combin-

ing these components – MixUp and synthetic training data,

large models can be trained without overfitting under very

limited data samples and achieve satisfactory generaliza-

tion performance. Our method won the second place in

NTIRE2019 Real SR Challenge.

1. Introduction

Since the seminal work of employing convolution neural

networks (CNNs) for single image super-resolution (SISR)

[11, 12], a constantly growing flow of deep learning based

methods with different network architectures [13, 21, 24,

22, 37, 18, 44, 43, 3] and training strategies [40, 34, 5, 16]

have been proposed to achieve substantial progress in state-

of-the-art performance. These methods are usually trained

and tested using thousands of high-quality images. There-

fore, overfitting is rarely observed when training models

with such abundant image pairs. These image pairs are usu-

ally generated by pre-defined downsampling methods, such
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Figure 1: Convergence curves of RRDB[40], RCAN[43],

the proposed U-Net and its variants with different data

augmentation techniques. The original large models suf-

fer from different degrees of overfitting, while same mod-

els trained with either MixUp, data synthesis, or both can

achieve satisfactory performance without overfitting.

as bicubic. Beyond those pre-defined degraders, in the re-

cent work [7, 6] real captured low-high resolution image

pairs are used to train SR models under realistic application

settings. However, the amount of such data is often limited

(e.g., only 60 image pairs in NTIRE19 Real SR Challenge

[1]) because of the high cost of collection and preprocess-

ing of data. This leads to severe overfitting problem for

recent deep SR networks. Specifically, the network tends to

memorize the training images and generalizes poorly to the

test set. For instance, as shown in Figure 1, large models

trained on a small dataset quickly deteriorate their general-

ization performance (see the lower curves). The overfitting

problem has largely limited the usage of the advanced SR

methods in real-world applications.

As an important issue, overfitting has attracted increas-

ingly research interests in high-level vision tasks, such as

image classification [10, 15, 20, 8, 39], visual tracking

[9, 14], etc. However, overfitting in low-level tasks has re-

ceived relatively less attention. Due to the different charac-

teristics of low-/high-level tasks, most existing methods that

1



are suitable for high-level tasks cannot be directly applied to

low-level tasks. For example, some network regularization

methods, such as weight decay and dropout, do not work ef-

fectively for low-level networks. In addition, some popular

data augmentation techniques such as label smoothing are

also infeasible for low-level tasks as they only work with

one-hot labels. In low-level vision community, only lim-

ited augmentation methods (e.g., random crop, rotation and

flipping) are investigated, which is far from sufficiency for

real-world applications.

In this paper, we study the overfitting problem for SR.

First, we adopt a simple yet effective data augmentation

method called MixUp [42] in SR. MixUp uses convex com-

binations of samples rather than samples themselves to train

the SR model. It normalizes neural networks to support

simple linear behavior in-between training samples, and

leads to better generalization performance (see orange curve

in Figure 1). Second, we propose a data synthesis approach

with a learned degradation mapping. Concretely, we use

deep networks to learn the degradation mapping first, and

synthesize new training samples using extra high-quality

images. This synthesis strategy reduces the bias of the data

by introducing content diversity into the training set (see

green curve in Figure 1). The SR models trained with the

synthetic data are expected to provide better generalization

performance on image contents that do not exist in the orig-

inal small dataset. By combining the above components –

MixUp and synthetic training data, we are able to suppress

model overfitting in SR under very limited training sam-

ples. Extensive experiments show that either MixUp, data

synthesis, or both can suppress model overfitting and en-

courage better generalization (see upper curves in Figure 1).

We summarize our contributions as follows: (1) We in-

troduce the MixUp technique into SR for data augmenta-

tion. Experiments demonstrate that MixUp could signifi-

cantly reduce the overfitting problem. (2) We propose a new

data synthesis method to suppress model overfitting in SR.

It uses the learned degradation mapping to synthesize more

training pairs with additional high-quality images. (3) With

the proposed data augmentation and data synthesis meth-

ods, we construct a network of a general U-Net shape [32]

which encourages better generalization ability and achieves

satisfactory performance without overfitting. Our method

won the second place in NTIRE 2019 Real SR Challenge.

2. Related Work

Image super-resolution Recently, learning-based meth-

ods have achieved dramatic advantages against the model

based methods. With the seminal exploration of employing

deep learning in SR task [11, 12], the variational approaches

with deep neural networks have been dominated single im-

age SR. Dong et al. [13] propose to use a deeper network

with low-resolution image as input to learn the SR mapping.

Kim et al. [21] propose VDSR – a very deep network with

residual learning and show the performance improvement

by using deep networks. Ledig et al. [25] introduce resid-

ual blocks into SR network and propose SRResNet, which

makes it possible to train deeper networks. Lim et al. [26]

further expand the network size and improve the residual

block by removing the Batch Normalization Layers. Zhang

et al. [43] propose a deep network with dense connection

and Wang et al. [40] propose to use residual in residual

dense block to improve the training stability and network

size. Zhang et al. [44] propose residual channel attention

blocks and indicate that deeper networks may be easier to

achieve better performance than wider networks. As can

be seen, most recently successful SR methods employ very

deep networks with a large number of parameters, which

leads to a high risk of overfitting.

Data augmentation. The method of choice to train on

similar but different examples to the training data is known

as data augmentation [35]. The most common methods

of data augmentation include some basic image process-

ing operations, e.g., random scale, random crop, horizon-

tal/vertical flip and image affine transformation. In addition

to the basic image processing operations, Zhong et al. [45]

propose to augment data by randomly erasing part of the

image. Inoue [20] propose to synthesize a new sample from

one image by overlaying another image randomly chosen

from the training data. Zhang et al. [42] propose to synthe-

size new samples using the linear combination of training

samples. DeVries et al. [10] improves regularization of

networks by masking out square region of training images.

Geirhos et al. [15] reduces bias toward textures by intro-

ducing stylized image data for training. Cubuk et al. [8]

presents AutoAugment to learn the best augmentation poli-

cies from data. Besides, Generative adversarial networks

(GANs) have also been used for the purpose of generating

additional data [29, 27, 46, 4, 36, 31]. Most of the exist-

ing data augmentation methods are proposed and studied

for high-level tasks, and there exists few work to study the

effects of different data augmentation methods on the low-

level task such as SR.

NTIRE 2019 Real Super-Resolution Challenge. This

work is initially developed to participate in the NTIRE2019

Real Super-Resolution Challenge [1]. The challenge aims

to offer an opportunity for academic and industrial attendees

to focus on Super-Resolution applications in real-world sce-

nario. In the challenge, a novel dataset of LR real images

with HR real references, where the sizes of LR images are

same as its HR counterparts, is provided to challenge partic-

ipants. These images are collected in natural environments,

including indoor and outdoor environments. Different from

most SISR tasks [12, 26] using pre-defined degraders, im-

ages from this dataset are captured by DSLR cameras, and

therefore facilitate researches for real-world applications.
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(a) Convergence curves of models trained with different amounts

of data.
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Figure 2: Illustration on impact of amounts of data and

model complexities on validation performance.

However, due to the small volume of data pairs, mod-

els suffer from severe overfitting problem. Hence, mecha-

nisms for training large models without overfitting are re-

quired to deal with this challenge. We submitted our mod-

els and prove that our method are able to suppress model

overfitting in SR. Our methods successfully reconstruct HR

images from severely degraded real LR images without un-

pleasant artifacts related to overfitting. Our approach won

the second place in the challenge.

3. Methodology

In this section we show the overfitting problem in SR and

present our proposed methods. The rest of this section is

organized as follows: Sec. 3.1 describes how SR networks

overfit on training dataset from NTIRE 2019 Real SR Chal-

lenge. Then, we formulate the overfitting issue and data

augmentation. Later, Sec. 3.3 and 3.4 introduce the data

augmentation method with MixUp and the data synthesis

method with learned degradation, respectively. Finally, in

Sec. 3.5 we illustrate the network architecture.

3.1. Overfitting in Super Resolution

In this challenge, a new dataset of real LR and HR paired

images (RealSR), with the spatial resolution no smaller than

1000 × 1000, is publicly available. This dataset contains

only 60 images for training (See Sec. 4.2 for details). Due to

the limited diversity and amount of training data, large mod-

els exhibit undesirable overfitting behaviors even when us-

ing straightforward data augmentation techniques (e.g. ran-

dom crop, rotation, flipping). For instance, a well-trained

model poorly generalize to the test set and tends to generate

unpleasant artifacts on test images.

To start off with right intuitions, Figure 3 illustrates the

impact of data volume and model complexity evaluated on

the validation set. The validation set consists of 20 images

covering contents that do not exist in the training set. In

the first setting, we construct a sufficiently large network

(with 26M parameters) and train the network with different

sizes of data, starting with the first 2, 000 sub-images (from

about 10 images) and increasing gradually to all 12, 837
sub-images (cover 60 images). In Figure 2a, we can ob-

serve that while all models quickly overfit to training set,

increasing amounts of training data will lead to better per-

formance in the training phase. In another setting, we use

the whole training set to train models with different sizes,

ranging from 2M to 15M. Figure 2b shows that larger mod-

els do not necessarily achieve higher PSNR values at the

early stage and suffer from severe overfitting if training con-

tinues. In contrast, the overfitting problem on small mod-

els becomes less severe. This example conveys the central

message: overfitting in SR is partially due to the mismatch

between data volume and model complexity. To enjoy the

merits of large model, we present two methods to remedy

such a discrepancy by supplying additional training pairs.

3.2. Problem Formulation

To facilitate the discussion, we first formulate the over-

fitting problem and data augmentation. Let X , Y be the LR

images and their HR counterparts on the true data space,

where true data refer to image pairs with the desired degra-

dation function, which can be either pre-defined kernels or

unknown real degradations. For each y ∈ Y , we have x =
g(y), where g is the degradation function mapping Y onto

X . In SISR task, given an observation set (X̂, Ŷ ) ⊂ (X,Y )
as the training set, our goal is to find an inverse mapping

function fθ by optimizing a well-defined loss function L

θ̂ = argmin
θ

∑

(x,y)∈(X̂,Ŷ )

L(fθ(x), y). (1)

The major risk of this framework is that fθ may be biased,

leading to poor generalization ability on unobserved data

points. This problem is severe especially when observations

are insufficient to cover the true data manifold.

The most widely-used technique to reduce such a risk

is data augmentation. Specifically, in the perspective of

data augmentation, an addition set (X ′, Y ′), which is be-

yond the training set (X̂, Ŷ ) but believed inside the true

data manifold (X,Y ), are introduced for training. In SISR,
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(a) Original SISR.

X Y

X̂ Ŷ
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Figure 3: Illustration on how data augmentation and data synthesis work. (a) The observation set (X̂, Ŷ ) is a subset of the

true data set (X,Y ). (b) MixUp technique supplies additional training pairs and the augmentation set (X0, Y0) covers the

observation set. (c) Data synthesis method estimates inaccessible LR images X1 from extra high-quality HR images Y1. The

estimation X̂1, accompanied with Y1, constitutes a synthetic dataset and help to reduce the risk of overfitting.

(X ′, Y ′) can be obtained by rotating each data pair in

(X̂, Ŷ ). We hypothesize that for each (x, y) ∈ (X ′, Y ′),
we have g(y) = x, indicating that data pairs in observation

set and those in augmentation set follow the same degrada-

tion mapping.

3.3. Data Augmentation with MixUp

We consider a simple yet effective data augmentation

method, MixUp [42]. In MixUp, each time we randomly

sample two samples (xi, yi) and (xj , yj) in the set (X̂, Ŷ ).
Then we form a new sample by a linear interpolation of

these two samples:

x′ = λxi + (1− λ)xj (2)

y′ = λyi + (1− λ)yj , (3)

where λ ∈ [0, 1] is a random number drawn from a beta

distribution Beta(α, α).

In super resolution, we can assume that the degradation

function g is a linear mapping, which can be formulated as

x = g(y) = Dy + n, where D is the downsampling matrix

and n is the noise. If D and n are determinded, we have

x′ = λxi + (1− λ)xj (4)

= λ(Dyi + ni)) + (1− λ)(Dyj + nj) (5)

= D(λyi + (1− λ)yj) + (λni + (1− λ)nj) (6)

= Dy′ + n′, (7)

where n′ = λni + (1 − λ)nj . n′ is the noise and drawn

from the same distribution of n. This property also holds

when n is signal-dependent. This indicates that although the

MixUp-augmented data pairs have unnatural visual effects,

they follow the same degradation model with the true data

and can be used to learn the inverse mapping f .

Moreover, MixUp provides a linear neighbourhood of

real data, making the learned inverse mapping more robust.

With MixUp, we can easily obtain multiple times of data

pairs to train the network. As illustrated in Figure 3b, the
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Figure 4: Overview of pipeline for data synthesis. The ap-

proach aims to learn two mapping functions gθ : Ŷ → X̂
and fθ : X̂+X̂1 → Ŷ +Y1. (a) Learn gθ that gθ(y) ≈ g(y)
and (b) synthesize LR images from Y1. (c) The vanilla train-

ing process on both observed and synthetic data.

observation set (X̂, Ŷ ) is a subset of MixUp-augmented

dataset (X0, Y0) and the latter on has greater cardinality.

Experiments in Sec. 4.3 show that this simple augmen-

tation method can simultaneously suppress overfitting and

improve performance.

3.4. Data Synthesis with Learned Degradation

Beyond MixUp, we also investigate another strategy to

provide more training examples – data synthesis via learn-

ing degradation process. As depicted in Figure 4, given

an observation set (X̂, Ŷ ) comprising images with finite

content diversity, there might be a risk of biased sampling

from the true data distribution. Formally, let P̂ and P be

the observed and true data distribution, respectively. For

some training pairs (x, y) ∈ (X,Y ) with biased sampling,

P̂ (x, y) could diverge far from P (x, y). In the extreme,

suppose that there is an imbalanced training set with purely

text images, then it is unlikely for models trained with such

a dataset to generalize well on other contents (e.g., human

face, natural scenery, animal, etc.). In practice, a small

set (X̂, Ŷ ) is usually both imbalanced and noisy, which in-



crease the risk of overfitting.

To bridge the gap between P̂ and P , we propose a data

synthesis technique to provide training pairs with higher di-

versity. As illustrated in Figure 4, given a high-quality di-

verse HR dataset (e.g. DIV2K [2], Flickr2K [38], etc.) as

Ŷ , the corresponding LR image set X1 is not accessible

since the true degradation g : Y → X is unknown. Due

to nuisance factors, including blur (e.g. motion or defo-

cus), compression artifacts, color and sensor noise, etc., it

is usually impractical to effectively model the true image

degradation in real-world scenarios. Rather than managing

to model a complicated image degradation process, we pro-

pose to use a neural network model denoted as gθ to learn

the degradation g on finite observation set (Ŷ , X̂).

With well-optimized gθ, we can obtain estimated LR im-

ages X̂1, where for each x̂ ∈ X̂1 we have x̂ = gθ(y) for

y ∈ Y1. As gθ is an approximation of g, we expect that

for each y ∈ Y1, the LR counterpart x ∈ X1 and x̂ ∈ X̂1

should not diverge too far. We will refer to set (X̂1, Y1) as

the synthetic dataset. With extra data pairs, we turns Eqn. 1

into

θ̂ = argmin
θ

∑

(x,y)∈(X̂+X̂1,Ŷ+Y1)

L(fθ(x), y). (8)

During training the SR network fθ, we treat the synthetic

data as additional training data and mix them with the orig-

inal real data. Both networks fθ and gθ have the same ar-

chitecture (see Sec. 3.5). The main difference is that gθ
takes the HR image as input and generate its LR counter-

part, while fθ is modeling an inverse mapping. The overall

pipeline is shown in Figure 4.

This approach is mainly inspired by Back-Translation

[33, 30] in Neural Machine Translation. In the context of

super resolution, [5] proposes to use a GAN to stimulate im-

age degradation and shares a similar motivation. The funda-

mental differences between this paper and [5] are two-fold:

1) we do not add any generative adversarial component into

our PSNR-oriented models; 2) we train both networks with

paired image data.

3.5. Network Architecture

As illustrated in Figure 5, the proposed network has a

U-Net structure and consists of 4 cascading blocks, each of

which has 4 Residual Channel Attention Blocks (RCABs).

The spatial resolution of features is decreased 2 times us-

ing convolution layers with stride 2, and then it is increased

twice via pixel shuffle layers. The basic building block is

RCAB proposed in RCAN [43], and the main difference be-

tween our model and RCAN is the global network topology.

Specifically, motivated by CARN [3], we use both local and

global cascading modules to fully utilize hierarchical fea-

ture information derived from multiple blocks. The outputs

of RCAB are cascaded into higher layers, followed by a sin-

gle 1× 1 convolution layer, all of which serve as cascading

blocks. Similarly, global cascading modules have the same

topology, where the unit blocks are replaced by cascading

blocks. To reduce computational cost, the main branch net-

work works at 1/4H × 1/4W resolution.

4. Experiments

4.1. Technical Details

For all experiments, we implement our models with the

PyTorch [28] framework and train them using NVIDIA Ti-

tan Xp GPUs. The mini-batch size is set to 16 and the spa-

tial size of cropped patch is 128 × 128. For initialization,

the weights are randomly drawn from zero-mean Gaussian

distributions as described in [19]. For optimization, we use

Adam [23] with β1 = 0.9, β2 = 0.999 and δ = 10−8. The

learning rate is initialized as 2× 10−4 and then decayed by

half every 105 iterations. We train all models for a total of

5×105 iterations. We use ℓ1 loss instead of ℓ2 as suggested

in [26]. We empirically set α = 1.2 for MixUp. The SR re-

sults are evaluated on PSNR and SSIM [41] on RGB space.

For all convergence curves plotted in this paper, we calcu-

late the average PSNR value on the central 1000 × 1000
patch of each image in validation set.

4.2. Dataset

We mainly train our models on the new Real-SR dataset,

denoted as RealSR dataset below. The default splits of Re-

alSR dataset consist of 60 training images, 20 validation

images and 20 test images. Evaluation of the trained mod-

els is performed on 20 validation images since test images

are not publicly available. As described in Sec. 3.4, we also

include a prevalent DIV2K dataset [2] as additional training

data, since these images cover diverse contents, including

objects, environments, animals, natural scenery, etc. Fol-

lowing [26], we use 800 training images as training set.

To prepare training data, we first crop the HR images

into a set of 480 × 480 sub-images with a stride 240 for

DIV2K dataset. Similarly, we crop HR images into sub-

images of size 200×200 and stride 100 for RealSR dataset.

In this manner we have totally 12, 837 and 32, 208 sub-

images from RealSR and DIV2K dataset, respectively. To

fully utilize the dataset, training images are augmented with

random horizontal/vertical flips and rotations. During train-

ing, a patch of size 128 × 128 is randomly cropped from a

sub-image.

4.3. Experiments on MixUp

In this section we study the effect of MixUp on differ-

ent types of dataset. Different from Sec. 4.4, we only use

12, 837 sub-images from RealSR dataset as training set. As

described in Sec. 3.3, MixUp serves as a regularization on
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Figure 5: Overall structure of our network.
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data manifold. To verify the effectiveness of this regulariza-

tion on various types of degradation, we study three settings

by generating LR from HR images as follows:

• Real LR images from RealSR training set

• Bicubic downsample HR images with a factor 4× and

then upsample to the original resolution.

• Bicubic downsample HR images with a factor 4× and

then upsample to the original resolution, with realistic

noise [17] added to LR images.

Similarly, the corresponding validation set is constructed in

the same manner for each setting. We denote the LR images

as X̂real, X̂bic and X̂noise, which have the same ground

truth Ŷ . On three datasets we train models with and without

MixUp to investigate effects of MixUp.

It can be observed from Figure 6 that after the first

learning rate decay (100K), models trained without MixUp

quickly deteriorate their validation performance due to

overfitting, while those with MixUp keep the same valida-

tion accuracy until termination. In super-resolution task,
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observed data combined with different amounts of synthetic

data.

MixUp significantly reduces overfitting and guarantees ro-

bust training.

4.4. Experiments on Data Synthesis

In the scope of this section, we mainly use 12, 837 sub-

image pairs from RealSR dataset as the observation set and

32, 208 HR sub-images from DIV2K dataset for data syn-

thesis. We first train the degradation model gθ with 12, 837
training sub-image pairs and the training settings are same

as those for fθ. The model converges at 20K iterations. We

aim to provide a systematic analysis of SR networks trained

on different synthetic dataset (X̂1, Y1) to build a clearer pic-

ture about the progressive effects of incremental amounts of

synthetic data to the generalization ability.

To validate the assumption that the observation set

(X̂, Ŷ ) is biased sampled, we evaluate how the validation

error varies while increasing volumes of synthetic data (i.e.,

higher diversity). Specifically, models are built using a

base observation set combined with the augmentation set

(X̂1, Y1) that starts with 0 sub-image and grows incremen-

tally to all 32, 208 sub-images. Note that the experimental

settings degenerate to a baseline scenario without any regu-



larization when (X̂1, Y1) contains no sub-image.

According to the results shown in Figure 7, the benefits

of adding synthetic data are delaying and reducing overfit-

ting on training set. As expected, adding more and more

synthetic data to the training set encourages better gener-

alization. The best combination comprises 45, 045 sub-

images (12, 837 from (X̂, Ŷ ) and 32, 208 from (X̂1, Y1)),
which achieves a PSNR of 30.46dB, 0.25dB better than the

baseline model.

4.5. Comparison with the Stateofthearts

To further investigate overfitting on limited data, we

include both light-weight networks (e.g., FSRCNN [13],

CARN [3]) and larger networks (e.g., RCAN [43], RRDB

[40]) in our comparison. We reimplement these state-of-

the-art methods on RealSR dataset. Note that most of the

existing methods operate at low resolution and upsample

feature maps at the very end of the networks. Therefore,

we simply modify the models by downsampling LR images

with a stride 4 in the first convolution layer, which is consis-

tent with our U-Net architecture. Throughout experiments,

we find existing large models can easily overfit to the train-

ing set, and therefore we study early stopped versions of

those models to provide a stronger comparison. In contrast,

early stopping is not necessary for light-weight networks

and our method. We stress that early stopping strategy does

not solve the overfitting problem (see also Sec. 3.1), as both

training error and validation error are high. With early stop-

ping, a large model will underfit and fail to make full use of

model capacity. Specifically, an early stopped large model

tends to restore blurry images while a overfitted version

generates sharp images with unpleasant artifacts. Follow-

ing [26], self-ensemble strategy is also applied to further

improve generalization performance and the self-ensemble

version is denoted with “*”.

Table 1 lists the quantitative results (PSNR / SSIM) on

RealSR validation set. These results provide two insights:

(1) both MixUp and data synthesis can significantly sup-

press overfitting on limited training data. (2) MixUp and

data synthesis are not mutually exclusive, as one can addi-

tionally apply MixUp technique on the additional synthetic

data to further improve the final performance.

In Figure 9, we show visual comparisons on state-of-the-

art networks and our model. For image “cam2 08”, we ob-

serve that most of the compared methods cannot recover

the lines of text and would suffer from blurring artifacts. In

contrast, our model can alleviate the blurring artifacts better

and recover more details. Similar observations are shown in

images “cam2 07” and “cam1 06”.

5. Discussion

In this section we further discuss the effectiveness of

data synthesis. With a sufficiently large dataset comprising

Table 1: Model comparisons on validation set. The best

and second best results are highlighted and underlined, re-

spectively. “+ES” denotes early stopping and “*” denotes

self-ensemble strategy.

Method PSNR SSIM

FSRCNN[13] 28.3394 0.8254

CARN[3] + ES 29.1620 0.8580

RRDB[40] + ES 29.4581 0.8643

RCAN[43] + ES 29.6299 0.8675

U-Net(Ours) + Synthesis 29.8503 0.8731

U-Net(Ours) + MixUp 29.9055 0.8729

U-Net(Ours) + Synthesis + MixUp 30.0278 0.8753

U-Net(Ours)* + Synthesis + MixUp 30.1624 0.8777

0 100k 200k 300k 400k 500k
Iteration

29.6

29.8

30.0

30.2

30.4

PS
NR

baseline
net
noise
bic

Figure 8: Convergence curves of SR networks trained on

observed data combined with different types of synthetic

data.

high-quality HR images, one question remains unanswered

is how the quality of generated LR images affects general-

ization ability. Our investigation involves applying various

degradation types to HR images from DIV2K training set,

while RealSR dataset remains unchanged. LR images are

produced with three different degradation processes:

• Add White Gaussian noise with σ = 25 to HR images.

• Bicubic downsample HR images with a factor 4× and

then upsample to the original resolution.

• Construct a network to learn degradation.

The corresponding data pairs constitute a synthetic dataset,

where we will refer to these augmentation set as X̂1 noise,

X̂1 bic and X̂1 net. Convergence curves of models trained

on different types of augmentation set are shown in Fig-

ure 8. We see that the use of synthetic data essentially re-

duce overfitting problem, compared with the baseline. In

addition, LR images from X̂1 noise, X̂1 bic and X̂1 net are

completely different from each other. The best generaliza-

tion is reached by the model trained with X̂1 net, indicat-

ing that the learned mapping function gθ among the investi-

gated degradation types would be the most “similar” to the

unknown true degradation g. One can also investigate the



HR
PSNR / SSIM

FSRCNN
25.99 / 0.7395

CARN
26.44 / 0.7668

RRDB
26.95 / 0.7756

RCAN
27.17 / 0.7794

Ours
27.62 / 0.7934

cam1_06

CARN
29.76 / 0.8863

FSRCNN
29.31 / 0.8474

HR
PSNR / SSIM

RCAN
30.45 / 0.9026

RRDB
30.62 / 0.9010

Ours
30.52 / 0.8990

cam2_07

HR
PSNR / SSIM

FSCRNN
28.38 / 0.6741

CARN
28.55 / 0.7076

RRDB
28.95 / 0.7382

RCAN
28.78 / 0.7341

Ours
29.22 / 0.7840

cam2_08

Ours
27.62 / 0.7934

Figure 9: Visual comparison of FSRCNN [13], CARN [3], RRDB [40], RCAN [43] and our method on validation dataset.

sensitivity of SR networks to different kinds of degradation

models, which will be left to our future work.

6. Conclusion

In this paper, we propose two simple yet effective meth-

ods to reduce overfitting problem in SR networks. Our

method won the second place in NTIRE2019 Real SR Chal-

lenge. Particularly, we introduce MixUp technique to en-

courage networks trained with limited data to generalize

well. In addition, data synthesis with learned degradation

are employed to train models using extra high-quality im-

ages with higher content diversity. This strategy proves to

be successful in reducing biases of data. By combining

both techniques, large models can be trained without over-

fitting and achieve satisfactory generalization performance.

Since the proposed approach is network-independent, it is

expected to be easily applied to other network architectures

and image restoration tasks. Future work will explore the

effectiveness of our approach in more settings.
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