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Abstract

Occurrence of Poisson noise in captured observations

is inevitable in various real imaging applications ranging

from medical imaging to night vision imaging. Restoration

of fine details of an image is difficult when it is corrupted

by Poisson noise. Recently, low rank approaches outper-

formed several state-of-the-art techniques for image denois-

ing, deblurring, image completion, super-resolution, etc.

The ability of low rank techniques to preserve fine details,

even though the image is corrupted by severe noise, moti-

vated us to develop an optimization framework wherein, we

propose to use a low rank prior for Poisson noise removal.

In the proposed low rank Poisson denoising (LRPD) algo-

rithm, we resort to split Bregman technique to solve an ap-

propriate objective function. We incorporate the forward-

backward splitting scheme to minimize the first subproblem

and the weighted nuclear norm minimization (WNNM) for

the second subproblem of split Bregman algorithm to arrive

at the final solution. We conduct several experiments on

both simulated and real-world Poisson noisy data and show

the superiority of the proposed method over other state-of-

the-art Poisson denoising techniques.

1. Introduction

Poisson denoising is one of the active research topics in

the field of computer vision. Poisson noise typically occurs

in real-world applications such as night vision, biomedi-

cal imaging, microscopic imaging, astronomy imaging, etc.

wherein images are obtained by counting the number of

photons that hit the sensor. When an image is captured in

low-intensity illumination or with short exposure times, the

main source of noise can be well modeled as Poissonian [1],

[2]. The strength of Poisson noise rely on the pixel intensity,

hence is strongly signal dependent and not additive. There-

fore, the traditional denoising algorithms [3], [4], [5], [6],

[7], [8], [9], [10], [11], developed to tackle additive white

Gaussian noise (AWGN) are not suitable.

In image restoration, there is a rich literature of Pois-

son denoising algorithms and they are broadly classified

into two categories: 1) variance stabilization transformation

(VST) based and 2) non VST methods. In VST method,

the image is preprocessed using a nonlinear VST such as

Anscombe [12], [13] or Haar-Fisz transform [14], [15], [16]

to alleviate the signal dependency of Poisson noise. The

transformed image noise statistics are approximately treated

as additive white Gaussian with constant variance and the

underlying clean image is estimated using any of the well-

known Gaussian denoising algorithms available in litera-

ture. The underlying clean image is finally estimated by

applying the inverse VST [17], [18] to the denoised version

of the transformed image. The main drawback of VST ap-

proach is that the performance deteriorates (i.e., the SNR

decreases) if the photon-counting rate is less due to low in-

tensity.

Providing an alternative to the classical VST techniques

[12], [19], the authors of [20] proposed a wavelet domain

filter, which can be interpreted as a data-adaptive Wiener

filter using wavelet basis. The seminal work by [21], in-

troduced a Haar domain threshold for multi-scale Poisson

image denoising [22] and a noise-free coefficient was esti-

mated under the Bayesian setting. One of the key advan-

tages of Bayesian methods are that they allow incorpora-

tion of prior knowledge into the estimation procedure. In

particular, the framework of [1] and [23] involves a decom-

position of the Poisson process likelihood function across

scales, allowing computationally efficient intensity estima-

tion by means of a scale-recursive scheme. Further im-

provements in this field include Bayesian Skellam (noise

distribution of Haar wavelet coefficients) mean estimators

[24] and unbiased estimate of risk [25], [26] aimed at the

recovery of noise-free wavelet coefficients from Poisson

noisy images. The authors in [27] proposed a hybrid min-
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imum risk shrinkage operator for denoising the multi-scale

Poisson image that effectively produced a denoised image

with minimum attainable ℓ2 error.

To alleviate the limitations of the VST approach, many

authors have proposed non-VST Poisson denoising algo-

rithms [28], [29], [30], [31], [32], [33], [34], [35], [36]

which directly rely on the statistics of the Poisson noise.

In [28], the authors have proposed a Poisson denoising al-

gorithm based on the idea of non-local means (NLM) and

used stochastic distances to measure the similarities be-

tween the non-local patches instead of Euclidean distance.

The method proposed in [29] uses a dictionary learning

strategy with a sparse coding algorithm by directly rely-

ing on the Poisson statistical model. Relying directly on

Poisson noise properties, a denoising technique was pro-

posed in [31] which combines sparse patch-based repre-

sentations and the elements of dictionary learning. It em-

ploys both an adaptation of principal component analy-

sis (PCA) [37] and sparsity-regularized convex optimiza-

tion algorithms [32] for photon-limited images in non-local

framework. The non-local PCA (NLPCA) and the non-

local sparse PCA (NL-SPCA) are the two versions of the

work proposed in [31]. Particularly, the NL-SPCA have

yielded better performance in image recovery by integrat-

ing ℓ1 regularization term to the objective function which

is minimized. The authors in [34] developed an efficient

Poisson denoising model which uses the newly-developed

trainable nonlinear reaction diffusion (TNRD) model [38]

which has outperformed all state-of-the-art Poisson denois-

ing methods in terms of computational efficiency and recov-

ery quality. Even though the performance of [34] is superior

compared to existing techniques, it is limited to the natural

image denoising. However, Poisson noise often arises also

in real-world applications such as biomedical imaging, fluo-

rescence microscopy, astronomy, etc. training the diffusion

process for these specific class of images is tedious due to

non-availability of large amount of annotated data and the

difference in the pixel intensity values.

In recent years, patch-based techniques [3], [39] have

shown significant improvement in performance for image

restoration problems by exploiting the self-similarity prop-

erty of the image. If we collect all similar patches together

in an image and construct a matrix by stacking all those

similar patches as the column vectors and it will be of low

rank [40]. Low rank minimization methods [9], [41], [42],

[43], [11] have achieved great success in low-level vision

problems. The work proposed in [41] uses non-local low

rank regularization approach to recover the image in a com-

pressive sensing framework. For a low rank matrix, the nu-

clear norm is defined as the sum of its singular values and

the minimization of nuclear norm (NNM) is presented in

[42] for video denoising problem. Since all singular values

are equally penalized in NNM, the major edge and texture

information will be degraded due to shrinkage of large sin-

gular values. The limitation of NNM was overcome by pe-

nalizing each singular value by different weights depending

on their magnitudes, leading to a technique called weighted

nuclear norm minimization (WNNM) [11], [43] which has

outperformed all state-of-the-art denoising techniques. The

WNNM proposed in [11], [43] penalize the smaller singu-

lar values by larger weights and the significant singular val-

ues by smaller weights and hence preserve large-scale sharp

edges and small-scale fine image details more effectively.

The authors in [44] proposed an algorithm which combines

low rank and TV priors to recover the deblurred image in

the presence of salt-and-pepper noise and additive Gaussian

noise. In [45], the authors have used weighted nuclear norm

(WNN) as a prior to estimate the structure of a 3D object by

incorporating new shrinkage operator to penalize the singu-

lar values. The ability of low rank (WNN) prior to preserve

large-scale sharp edges and small-scale fine details more ef-

fectively, motivated us to develop the proposed algorithm

for Poisson noise removal.

The key challenge in Poisson intensity estimation prob-

lem is that the mean and the variance of the observed count

are same and also the Poisson noise is completely signal

dependent. Hence, building of an optimization framework

is not straight forward. In the proposed work, we formu-

late an appropriate objective function with low rank prior

constraint. We resort to split Bregman technique [46], [47]

to solve the proposed objective function in terms of easily

solvable subproblems. Since direct gradient descent method

can’t be applied due to numerical instability and hence, we

use proximal gradient descent method [48], [49] by incor-

porating a forward-backward splitting scheme [50] to solve

the first subproblem of the split Bregman algorithm. Solu-

tion of the second subproblem is obtained using weighted

nuclear norm minimization (WNNM) [11], [43].

Organization of rest of the paper is as follows. The de-

tailed description of the proposed LRPD algorithm is pre-

sented in section 2. Experimental results of the proposed

approach are compiled in section 3. Finally, concluding re-

marks of the proposed method are provided in section 4.

2. The proposed LRPD algorithm

In this section we describe the steps involved to develop

the mathematical model of the proposed Poisson denoising

algorithm in variational approach with low rank regulariza-

tion constraints using split Bregman technique [46].

2.1. Mathematical modeling of Poisson denoising

Let x ∈ R
N2×1 be the original clean image and y ∈

Z
N2×1
+ denotes a noise image degraded by Poisson noise

(both x and y are lexicographically arranged column vec-

tors). Our aim is to recover the clean image x from Pois-
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son noisy observation y. Each observed pixel value yi in

y given pixel xi in x is assumed to be Poisson distributed

independent random variable with mean and variance equal

to xi. The likelihood of Poisson distribution is given by

P (y|x) =











N2

∏

i=1

x
yi
i

exp(−xi)

yi!
, if xi > 0

δ0(yi), if xi = 0

(1)

where xi and yi are the ith components in x and y respec-

tively and δ0 is the Kronecker delta function. We know that

the occurrence of Poisson noise is proportional to the pixel

intensity xi and is completely signal dependent. Therefore,

the noise level in image x is usually defined as the peak

value in x. This is evident, since the effect of the Pois-

son noise decreases (i.e., SNR increases) as the intensity

value xi increases and vice versa. The negative Poisson

log-likelihood function is given by

F (x) = − log
(

P (y|x)
)

= − log

( N2

∏

i=1

x
yi

i exp(−xi)

yi!

)

=

N2

∑

i=1

{

xi − yi log xi + log(yi!)
}

(2)

Since log(yi!) is a constant and therefore, it can be ne-

glected. Minimizing the negative Poisson log-likelihood

F (x) = − log
(

P (y|x)
)

leads to the following data-fidelity

term

F (x) =

N2

∑

i=1

{

xi − yi log xi} = 〈x− y logx,1〉 (3)

and is also known as the so called Csiszár I-divergence

model [51] and this data-fidelity term has been widely used

in previous Poisson image denoising algorithms [35], [36],

[28], [34].

However, the straightforward direct gradient descent
(

∂F (x)
∂x

= 1 − y

x

)

is not applicable [34] in practice for this

problem, because of two reasons. Firstly, there exists nu-

merical instability when x leads very close to zero and sec-

ondly, the output image x after one iteration may become

negative and the non-positive values of x will breach the

constraint of the data-fidelity term F (x) = 〈x−y logx, 1〉.
As a consequence, we resort to the proximal gradient de-

scent technique [48], [49] which avoids the gradient for-

mula
(

∂F (x)
∂x

= 1− y

x

)

and can solve numerical instability

problem and prevents negative values in the output.

2.2. The proximal gradient algorithm

The proximal gradient descent method [48], [49] is ap-

plicable to optimization problems which are composed of

a smooth, differentiable function G(x) and possibly a non-

smooth function F (x):

Φ(x) = argmin
x

F (x) +G(x) (4)

where, Φ(x) is the objective function to be minimized. The

solution of Eq. (4) can be obtained using forward-backward

splitting scheme [50]. The basic update rule to solve Eq. (4)

is given by

xt+1 =
(

I − τ∂F
)−1(

xt − τ∇G(xt)
)

(5)

where I denotes identity matrix, ∂F is sub-differential of

non-smooth function F (x),
(

xt−τ∇G(xt)
)

is the forward

gradient descent step, τ represents the step size of the for-

ward gradient step and the term
(

I − τ∂F
)−1

denotes the

proximal mapping and is also called as backward step [49].

Let us assume, the forward gradient step as

x̃ = xt − τ∇G(xt) (6)

The proximal mapping
(

I − τ∂F
)−1

(x̃) with respect to F

is given by the following optimization problem [34], [49]

(

I − τ∂F
)−1

(x̃) = argmin
x

1

2
‖x− x̃‖22 + τF (x) (7)

substituting F (x) from Eq. (3) in Eq. (7), we get

(

I − τ∂F
)−1

(x̃) = argmin
x

1

2
‖x− x̃‖22 + τ

(

x− y logx
)

(8)

which leads to a point-wise solution for the ith element and

is given by

(

I−τ∂F
)−1

(x̃i) = argmin
xi

{1

2

(

xi−x̃i

)2
+τ

(

xi−yi log xi

)

}

(9)

The solution of Eq. (9) can be obtained by setting the gra-

dient with respect to xi to zero,

∂

∂xi

[

1

2

(

xi − x̃i

)2
+ τ

(

xi − yi log xi

)

]

= 0

xi − x̃i + τ −
τyi

xi

= 0

(10)

Hence, the following quadratic equation is obtained

xi
2 +

(

τ − x̃i

)

xi − τyi = 0 (11)

Let a = 1, b = (τ − x̃i) and c = −τyi, the solution of

Eq. (11) has two real roots and we choose the positive one

due to the constraint of xi > 0. Therefore, the point-wise

solution of Eq. (9) is

x̂i =
(

I − τ∂F
)−1

(x̃i) =
x̃i − τ +

√

(τ − x̃i)2 + 4τyi

2
(12)
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where x̂i is the real positive root of Eq. (11). Note that, x̂i

is always positive, if τ > 0 and yi > 0, as
√

(τ − x̃i)2 + 4τyi > |τ − x̃i| ≥ 0 (13)

Hence, this update rule can assure x̂i > 0 in each iteration

if we ensure τ > 0 in each update step. The proof of Eq.

(13) and assurance of x̂i > 0 is given in Appendix 1.

Finally, from Eqs. (5), (6) and Eq. (12), we can summa-

rize the mathematical formulation to remove Poisson noise

using proximal gradient descent method with an objective

function composed of a smooth function and a convex (pos-

sibly non-smooth) term as follows

xt+1 =
x̃t+1 − τ +

√

(τ − x̃t+1)2 + 4τy

2
(14)

and

x̃t+1 = xt − τ∇G(xt) (15)

where x is estimate of the latent image, y is the observed

image corrupted by Poisson noise, t is iteration number and

G(x) can be treated as smooth function or a regularization

constraint. In Eq. (15), parameter τ plays a role of step-

size in the proximal gradient algorithm, which should be

carefully selected in order to obtain faithful results.

2.3. The proposed LRPD algorithm using split
Bregman framework

The proposed objective function for Poisson denoising

using low rank prior i.e., weighted nuclear norm (WNN)

prior as a regularizer is given by

Φ(x) = argmin
x

F (x) + F2(x) (16)

where F (x) = µ(x − y logx) be the data fidelity term de-

rived from the negative log-likelihood of the Poisson distri-

bution and F2(x) represents WNN prior, then Eq. (16) can

be rewritten as

Φ(x) = argmin
x

{

µ(x− y logx) +
∑

p∈ℵ
‖Rpx‖w,∗

}

(17)

where ‖ · ‖w,∗ denotes weighted nuclear norm, µ is a con-

stant, ℵ denotes the set of indices of all reference patches of

x. At first, the operator Rp collects all the patches similar to

the reference patch located at pth position in x and stacks

all those patches as column vectors to construct a matrix

Rpx which is assumed to be of low rank.

Solving the model in Eq. (17) is not straightforward due

to the date fidelity term and hence, we introduce an auxiliary

variable z to the prior term in Eq. (17) and the correspond-

ing constrained objective function is thus given by

Φ(x) = argmin
x

{

µ(x− y logx) +
∑

p∈ℵ
‖Rpz‖w,∗

}

s.t. z = x

(18)

To minimize Eq. (18), we use split Bregman algorithm

[46] to split it into an easily solvable subproblems. To con-

vert Eq. (18) into an unconstrained one, a quadratic penalty

term is added and the corresponding unconstrained objec-

tive function is thus given by

(xl+1, zl+1) = argmin
x,z

{

µ(xl − y logxl) +
∑

p∈ℵ
‖Rpz

l‖w,∗

+
λ

2
‖zl − xl − bl‖22

}

(19)

and

bl+1 = bl + (xl+1 − zl+1) (20)

where l represents the number of Bregman iterations and

λ is a constant used to control the quality of the output.

Splitting Eq. (19) into two separate subproblems, we get

xl+1 = argmin
x

{

µ(xl − y logxl) +
λ

2
‖zl − xl − bl‖22

}

(21)

zl+1 = argmin
z

∑

p∈ℵ
‖Rpz

l‖w,∗ +
λ

2
‖z1 − xl+1 − bl‖22

(22)

and

bl+1 = bl + (xl+1 − zl+1) (23)

Eq. (21) to Eq. (23) represents the variational approach of

the proposed LRPD algorithm developed to remove Poisson

noise from an image using split Bregman framework.

In Eq. (21), due to the data-fidelity term, direct gradient

descent method can not be used to solve it. Therefore, the

solution can be obtained by exploiting proximal gradient

method as presented in section 2.2. Let the terms F (x) =
µ(xl−y logxl) and G(x) = λ

2 ‖z
l−xl−bl‖22, comparing to

Eqs. (4), (5), (6) and Eq. (14), the solution of Eq. (21) can

be obtained using proximal gradient descent method and is

given by

xl+1 =
x̃l+1 − τµ+

√

(τµ− x̃l+1)2 + 4τµy

2
(24)

where x̃ = x−τ∇G(x) is forward gradient step. From Eq.

(15) we have, ∇G(x) = ∂
∂x

(

λ
2 ‖z

l − xl − bl‖22
)

and x̃l+1

will be updated as

x̃l+1 = xl − τ
∂

∂x

(

λ

2
‖zl − xl − bl‖22

)

= xl − τλ
(

xl − (zl − bl)
)

(25)

Next, the optimal solution of Eq. (22) is obtained using

weighted nuclear norm minimization(WNNM) [11], [43].
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The input image z is divided into several patches, and for

each pth patch, the operator Rp collects all the patches

similar to the pth reference patch and stacks all collected

patches together as column vectors to construct a matrix

Rpz corresponding to the pth reference patch which is as-

sumed to be low rank. The clean patch corresponding to the

pth reference patch is estimated from the constructed low

rank matrix Rpz using WNNM [11] and finally the whole

image z is reconstructed by aggregating all the estimated

clean patches. Therefore, to estimate the optimal solution

of z, we rewrite Eq. (22) in WNNM framework and the

corresponding modified minimization problem of Eq. (22)

is given by

Rpz
l+1 = argmin

Rpz

{

‖Rpz
l‖w,∗+

λ

2
‖Rpz

1 − (Rpx
l+1 +Rpb

l)‖2F

} (26)

where, Rpx
l+1 and Rpb

l are assumed to be low rank

matrices corresponding to the pth reference patch in

xl+1 and bl, respectively.

According to the Theorem 1 in [11], given the singular

value decomposition (SVD) of matrix (Rpx
l+1 +Rpb

l),
(

Rpx
l+1 +Rpb

l
)

= UpΣpV
T
p (27)

where Σp =

(

diag(σxb,1, ., σxb,n)
0

)

and (σxb,1, ., σxb,n)

are singular values of the low rank matrix
(

Rpx
l+1+Rpb

l
)

then the global optimum of the above problem is

Rpz
l+1 = Up

(

diag(d1, d2, ..., dn)
0

)

VT
p (28)

where (d1, d2, ..., dn) is the solution of the following con-

vex optimization problem:

min
d1,d2,...,dn

n
∑

i=1

(σxb,i − di)
2 +

2wi

λ
di

s.t. d1 ≥ d2 ≥ .... ≥ dn ≥ 0.

(29)

The closed-form solution of Eq. (29) according to the Re-

mark 1 in [11] is given by

di =

{

0, if c2 < 0
c1+

√
c2

2 , if c2 ≥ 0
(30)

where c1 = σxb,i − ǫ, c2 = (σxb,i + ǫ)2 − 8C
λ

, for

(i = 1, 2, .., n), ǫ > 0 is a very small value, C is a constant

set as
√

2Np and Np represents number of similar patches

considered to construct the low rank matrix.

After finding the solutions xl+1 and zl+1, we update the

variable bl+1 according to Eq. (23). The above steps are

together repeated for several Bregman iterations to obtain

the final estimate of the latent image from the Poisson noisy

image.

3. Experimental results

In this Section, we demonstrate the superiority of the

proposed LRPD algorithm over other state-of-the-art Pois-

son denoising algorithms. The performance of our method

is compared with several existing Poisson denoising tech-

niques, namely, non-local sparse PCA (NLSPCA) [31],

combined generalized Anscombe transform and BM3D

(GAT+BM3D) [18], Poisson unbiased risk estimate with

linear expansion threshold (PURE-LET) [25], hybrid Skel-

lam minimum risk shrinkage operator (HMRSO) [27] and

trained reaction diffusion models for Poisson denoising

(TRDPD) [34]. We evaluate the proposed LRPD method

both quantitatively and qualitatively on simulated and the

real-world Poisson noisy images. We conduct synthetic ex-

periments on the few images taken from the McGill cali-

brated color image database [52] and a few images from the

Berkeley segmentation dataset (BSD) [53]. In real-world

experiments, we test our algorithm on the real sensor data

provided by the authors of [27] captured using FUJIFILM

X-PRO 1 camera and the image captured using the labora-

tory microscope Nikon ECLIPSE LV150N.

In both simulated and real-world experiments, the same

Poisson noisy image is assumed as initial estimate of the de-

noised output. The parameters such as step size τ , constants

µ and λ are different for all experiments and we tune them

empirically to achieve better performance. We run fixed

number of iterations to estimate xl+1 in the first subprob-

lem, vl+1 is estimated using weighted nuclear norm mini-

mization (WNNM) proposed in [11] followed by updating

the variable bl+1 according to Eq. (23). All these steps are

together repeated for several Bregman iterations to obtain

final estimate of the denoised image. We choose values of

the parameters for WNNM, such as reference patch of size

7× 7, size of the search window to find the similar patches

is 30×30, number of non-local similar patches 80. The best

results obtained after optimally tuning the values of param-

eters τ , µ and λ are presented. To evaluate performance of

the proposed method with state-of-the-art techniques quan-

titatively, we use structural similarity index metric (SSIM)

[54] and peak signal-to-noise ratio (PSNR).

3.1. Synthetic experiments

To conduct synthetic experiments, we consider few im-

ages from the McGill calibrated color image database [52]

and few images from the Berkeley segmentation dataset

[53]. Initially, Poisson noisy images are generated synthet-

ically for different peak intensity values followed by de-

noising them using the proposed LRPD algorithm. In the

first simulated experiments, we consider zoomed portion of

the three images from the McGill calibrated color image

database [52] with average peak pixel intensity of 0.5 and

the corresponding results are shown in Fig. 1. The last col-

umn of Fig. 1 shows the superiority of the proposed LRPD
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(a) (b) (c) (d) (e) (f) (g) (h)
Figure 1. Results of zoomed portion of the images taken from McGill calibrated color image database [52] with average peak pixel intensity

of 0.5. (a) Clean images. (b) Noisy images. (c)-(h) Results obtained using state-of-the-art methods in [31], [18], [55], [27], [34] and the

proposed LRPD algorithm, respectively.

(a) (b) (c) (d) (e) (f) (g) (h)
Figure 2. Results of the images taken from the BSD dataset [53]. First, second and third rows show the results corresponding to the peak

pixel values = 1, 2 and 40, respectively. (a) Clean images. (b) Noisy images. (c)-(h) Results obtained using state-of-the-art methods in

[31], [18], [55], [27], [34] and the proposed LRPD algorithm, respectively.

algorithm. The sharp edges of the lines and small boxes are

efficiently estimated for the first image, fine structure of the

wheel is recovered for the second image and in the third im-

age, the brick structure on the wall, image details and text

on the board are more effectively reconstructed (zoom and

see) using the proposed method as compared to other state-

of-the-art Poisson denoising techniques.

In the next synthetic experiments, we consider few im-

ages taken from the BSD dataset [53] and conduct experi-

ments for different peak pixel values = 1, 2, 4, 20, and 40.

The results obtained for peak pixel values=1, 2 and 40 are

shown in Fig. 2. First and second columns of Fig. 2 show

the original and the corresponding Poisson noisy images,

the results obtained using state-of-the-art Poisson denoising

algorithms and our method are shown in Fig. 2 (c)-(h), re-

spectively. The superiority of the proposed LRPD algorithm

is visually discern from the last column of Fig. 2. The quan-

titative evaluation in terms of PSNR (in dB) and SSIM for

the images taken from the McGill database [52] and BSD

dataset [53] are summarized in Table 1 and 2, respectively.

In all our synthetic experiments, the results of NLSPCA

[31] looks smoothed estimate under both high and low de-

gree of Poisson noise level. Even though the GAT+BM3D

[18] method preserves image contrast and looks good at first

glance, careful observation reveals the presence of blocking

artifacts and the wrong texture in the denoised image. Un-

der low peak intensity, the blocking artifact and wrong tex-

tures are more dominant which leads to degraded denoised

image. The PURE-LET [55] and the HMRSO [27] meth-

ods have yielded better noise suppression under both low

Poisson noise level (i.e., larger peak value) and high noise

level (i.e., smaller peak values). However, artifact were

introduced in the denoised image and also the fine image

details were completely degraded. Although, the TRDPD

[34] method outperformed in some synthetic experiments,

it failed to recover the fine details and the denoised images
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suffer from smoothing artifacts. The main drawback of the

TRDPD [34] method is that it needs separate training of dif-

fusion model for each different peak value. In contrast with

all the existing techniques, our approach outperforms state-

of-the-art Poisson denoising methods, especially with re-

spect to recovery of sharp edges and fine image details even

though the images are corrupted by severe Poisson noise.

NLSPCA [31] GAT+BM3D [18] PURE-LET [55] HMRSO [27] TRDPD [34] Ours

Image 1 11.93 / 0.418 13.13 / 0.423 13.35 / 0.412 13.53 / 0.452 11.67 / 0.383 15.49 / 0.692

Image 2 18.71 / 0.465 20.83 / 0.552 20.73 / 0.529 20.63 / 0.519 20.55 / 0.548 20.87 / 0.553

Image 3 14.28 / 0.368 15.81 / 0.451 15.071 / 0.441 15.88 / 0.461 17.319 / 0.576 17.39 / 0.572

Table 1. Quantitative evaluation of state-of-the-art methods and

our method for the images taken from the McGill database [52].

NLSPCA [31] GAT+BM3D [18] PURE-LET [55] HMRSO [27] TRDPD [34] Ours

Peak = 1 24.76 / 0.858 24.01 / 0.881 24.05 / 0.659 24.17 / 0.582 26.13 / 0.900 26.52 / 0.914

Peak = 2 22.73 / 0.517 23.10 / 0.502 22.77 / 0.464 23.30 / 0.420 23.74 / 0.558 23.88 / 0.562

Peak = 4 21.09 / 0.634 23.29 / 0.655 22.31 / 0.567 23.26 / 0.501 23.83 / 0.714 23.74 / 0.683

Peak = 20 21.93 / 0.677 26.76 / 0.847 25.13 / 0.833 26.62 / 0.778 27.01 / 0.856 27.15 / 0.862

Peak = 40 22.23 / 0.598 28.67 / 0.799 27.40 / 0.704 28.87 / 0.760 29.06 / 0.809 29.12 / 0.813

Table 2. Quantitative evaluation of state-of-the-art methods and

our method for the images taken from the BSD dataset [53].

3.2. Real­world data experiments

In real-world data experiments, we use the real sensor

Poisson noisy image provided by the authors of [27]. The

image of the “aquarium” was captured by the authors of

[27] using FUJIFILM X-PRO 1 camera with an average

Poisson count value (peak pixel value) of 18.0411 and is

as shown in Fig. 3.

Figure 3. Real sensor image data captured by the authors of [27]

using FUJIFILM X-PRO 1 camera. Two different regions are

taken for testing and are marked as ‘Fish’ and ‘Arch’, respectively.

To check the effectiveness of the proposed LRPD al-

gorithm, we consider two different regions from the real

sensor noisy image marked as ‘Fish’ and ‘Arch’ regions as

shown in Fig. 3. The zoomed portions of the noisy image

and the corresponding results obtained using the state-of-

the-art methods and our method are shown in Fig. 4. First

and second rows of Fig. 4 show the results corresponding

to ‘Fish’ and ‘Arch’ regions, respectively.

In the next real-world experiment, we consider the

Poisson noisy image of a text-strip captured using NIKON

ECLIPSE LV150N microscope using 2.5× objective under

low illumination condition with an average Poisson count

value (peak pixel value) of 15.237. Fig. 5(a) show the

captured microscopic noisy image, Figs (b)-(f) shows the

results obtained using state-of-the-art methods and the

proposed LRPD method. respectively.

In Fig. 4 and Fig. 5, at first glance, GAT+BM3D results

appears to be visually superior, but the closer examination

reveals that it introduced false textures (we can clearly ob-

serve by zooming) into the background which is strictly not

acceptable in image recovery. Also the edge details, objects

corners are unnaturally smoothed to give it a waxy appear-

ance as observed by the authors of [27]. Even though the

PURE-LET method recovered the edge details, it also in-

troduced false texture and artifacts in the estimated results.

The HMRSO method produced better noise suppression

but failed to recover the sharp edge details. Even though

the TRDPD method outperformed in few synthetic experi-

ments, it failed to recover the image details in the real sensor

data and also introduced smoothed artifacts in the estimated

output. Since in real sensor data, the peak pixel values are

arbitrary and therefore, the TRDPD method fails to denoise

the real sensor image efficiently and it needs training of sep-

arate diffusion model for each peak value which is practi-

cally a tedious process. In comparison with all the existing

Poisson denoising techniques, the proposed LRPD method

outperforms in real-world experiments also in terms of pre-

serving the sharp edges and the fine image details more ef-

ficiently.

4. Conclusions

In the proposed algorithm, we developed a variational

approach to remove Poisson noise from the images using

low rank prior. We formulated the appropriate objective

function to overcome the drawback of variance stabilization

transform (VST) in the context of Poisson denoising by

exploiting proximal gradient descent method. To optimize

the proposed objective function split Bregman technique is

used. The ability of WNN prior is exploited in the proposed

work to recover sharp discontinuities and fine image details

more effectively even in the presence of severe Poisson

noise. Since the LRPD algorithm is developed in an

optimization framework, it is more advantageous as it

can also be used to denoise Poisson noisy images which

occurs in various real applications such as astronomical

imaging, biomedical and microscopic imaging, night

vision, etc. Both qualitative and quantitative evaluations

on various synthetic and real-world images concludes

that the proposed algorithm outperforms several existing

state-of-the-art Poisson denoising techniques.
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(a) Noisy image (b) PURE-LET (c) GAT+BM3D (d) HMRSO (e) TRDPD (f) Ours
Figure 4. Results of real-world Poisson noisy image captured by the authors of [27] using a FUJIFILM X-PRO 1 camera. First and

second rows show the results corresponding to ‘Fish’ and ‘Arch’ regions, respectively. (a) noisy images. (b)-(f) Results obtained using

state-of-the-art methods in [55], [18], [27], [34] and the proposed LRPD algorithm, respectively.

(a) Real noisy image (b) PURE-LET (c) GAT+BM3D (d) HMRSO (e) TRDPD (f) Ours
Figure 5. Results of real-world Poisson noisy image captured using NIKON LV150N microscope. (a) noisy image. (b)-(f) Results obtained

using the methods in [55], [18], [27], [34] and the proposed LRPD algorithm, respectively.

Appendix - 1

The proof of condition x̂ > 0, and Eq. 13 is given here

in Appendix 1. Let the point-wise solution is given by

x̂i =
x̃i − τ +

√

(τ − x̃i)2 + 4τyi

2

If τ > 0 and yi > 0, the term (τ − x̃i)
2 + 4τyi is positive

and hence,

(τ − x̃i)
2 + 4τyi > (τ − x̃i)

2 ≥ 0

take square root on both side
√

(τ − x̃i)2 + 4τyi > |τ − x̃i| ≥ 0

since,
√

(τ − x̃i)2 + 4τyi > |τ − x̃i|, we have
√

(τ − x̃i)2 + 4τyi − |τ − x̃i| > 0

therefore,

(τ − x̃i) +
√

(τ − x̃i)2 + 4τyi > 0

and, −(τ − x̃i) +
√

(τ − x̃i)2 + 4τyi > 0

this is always true even though the value of τ is very large

as compared to x̃i. Now for any value of τ > 0, even if

(τ > x̃i) or (τ < x̃i), the value of x̂i would be always

x̂i =
±(τ − x̃i) +

√

(τ − x̃i)2 + 4τyi

2
> 0

Therefore, the value of x̂i is always positive for any

value of τ > 0 and yi > 0 which assure x̂i > 0 in each

iteration if we ensure τ > 0.
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