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Abstract

Image dehazing continues to be one of the most challeng-

ing inverse problems. Deep learning methods have emerged

to complement traditional model based methods and have

helped define a new state of the art in achievable dehazed

image quality. Yet, practical challenges remain in dehaz-

ing of real-world images where the scene is heavily covered

with dense haze, even to the extent that no scene information

can be observed visually. Many recent dehazing methods

have addressed this challenge by designing deep networks

that estimate physical parameters in the haze model, i.e.

ambient light (A) and transmission map (t). The inverse of

the haze model may then be used to estimate the dehazed

image. In this work, we develop two novel network archi-

tectures to further this line of investigation. Our first model,

denoted as At-DH, designs a shared DenseNet based en-

coder and two distinct DensetNet based decoders to jointly

estimate the scene information viz. A and t respectively.

This in contrast to most recent efforts (include those pub-

lished in CVPR’18) that estimate these physical parame-

ters separately. As a natural extension of At-DH, we de-

velop the AtJ-DH network, which adds one more DenseNet

based decoder to jointly recreate the haze-free image along

with A and t. The knowledge of (ground truth) training

dehazed/clean images can be exploited by a custom regu-

larization term that further enhances the estimates of model

parameters A and t in AtJ-DH. Experiments performed on

challenging benchmark image datasets of NTIRE’19 and

NTIRE’18 demonstrate that At-DH and AtJ-DH can outper-

form state-of-the-art alternatives, especially when recover-

ing images corrupted by dense haze.

1. Introduction

Haze is an atmospheric phenomenon in which dust,

smoke, and other particulates obscure the clarity. Haze can

potentially incur dramatic degradation to the visibility of

scenes captured, esp. in inclement weather. While hazing

leads to a loss of quality for visual consumption, the pres-

ence of haze in digital images has further negative effects

on high-level computer vision tasks such as detection and

recognition[1] of objects.

Dehazing refers to the technique of using algorithmic

methods to process hazed images and produce (dehazed)

images with high visual quality. The need for effective de-

hazing algorithms has been fueled by emerging applications

in photography from mobile devices, autonomous driving

and navigation systems, etc.

Many methods have been proposed to counteract the

negative influence of haze and their starting point is the clas-

sical haze model introduced by [2] as below:

I = J · t+A · (1− t) (1)

where · represents element-wise multiplication, I is the ob-

served hazy image, J is the true scene radiance, A is the

ambient light intensity, and t is the transmission map. t is

a distance-dependent factor that affects the fraction of light

which is able to reach the camera sensor. t can be expressed

as t = e−βd, where β represents the attenuation coefficient

of the atmosphere and d represents the scene depth. The

image dehazing task is essentially a process of recovering

J based on I, which would inevitably lead to a heavily ill-

posed problem according to Eq. (1). It can be observed

from Eq. (1) that there are multiple possibilities for the so-

lution choices for any given hazy image as the input. It is

also clear that if the information about d is provided, the

task of recovering J will become much easier. This depth

information is however rarely available in practice.

Image dehazing has been actively researched over the

past two decades [3, 4, 5, 6, 7, 8, 9, 10, 11]. Existing

work can be categorized into multi-image and single im-

age dehazing. Restricted by the availability of the param-

eters that describe the scene information, much early re-

search focused on multi-image dehazing [12, 13]. The

availability of many images of the same scene under dif-

ferent weather/environmental conditions is however often

unrealistic.

As a result, in recent efforts, single image dehazing

has gained popularity [14, 15]. Most existing single im-

age dehazing methods attempt to recover J based on I via

the estimation of t, including applying dark channel pri-

ors and color regularizers, etc. Performance benefits of



these techniques over early methods has been demonstrated

[16, 17, 18, 19, 20, 21, 22].

Recently, Deep Learning (DL) methods have been

shown to achieve success in imaging inverse problems such

as image super-resolution [23, 24], deblurring [25], and in-

painting [26]. For single image dehazing, DL methods usu-

ally require I and J as training pairs to learn mappings be-

tween I and J, I and t, and/or I and A. A detailed review

of related literature is provided in Sec. 2. These methods

take advantage of the powerful generalization ability of the

deep networks to model the non-linear mapping function.

However, as the real-world I and J pairs are hard to come

by, synthetic datasets are often used during training.

In real-world scenes, the haze level can be much denser

than is the case in most synthetic training datasets. The

NTIRE2019-Dehaze Challenge dataset is representative of

real-world challenges. Even if parts of the image are well

recovered, no explicit visual information can be often be

seen in areas with the densest haze.

In this paper, we propose a Dense Scene Information

Estimation Network to directly tackle this issue. Our

first model, denoted as At-DH, designs a shared DenseNet

based encoder and two distinct DensetNet based decoders to

jointly estimate the scene information viz. A and t respec-

tively. State of the art success in dehazing has been shown

by approaches that use a custom designed deep network for

estimating model parameters – such as [27] – however, they

design separate networks to estimate A and t.

To incorporate more structural information in the learn-

ing process and overcome the difficulty of estimating t and

A in dense haze, we develop an extension of At-DH called

the AtJ-DH network, which adds one more DenseNet based

decoder to jointly recreate the haze-free image along with

A and t. The knowledge of (ground truth) training de-

hazed/clean images can be exploited by a custom regular-

ization term that further enhances the estimates of model

parameters A and t in AtJ-DH. Experiments performed on

challenging benchmark image datasets of NTIRE’19 and

NTIRE’18 demonstrate that At-DH and AtJ-DH can outper-

form state-of-the-art alternatives, especially when it comes

to dense haze. Based on PSNR and SSIM results, the AtJ-

DH ranks 1st and At-DH ranks 3rd in the NTIRE’19 Dehaz-

ing Challenge [28].

2. Related Work

Multiple deep learning based methods have been pro-

posed to estimate t and A from I to reconstruct J. For

example, Cai [29]. introduced an end-to-end CNN network

to estimate t with a novel BReLU unit. More recently, Ren

[30] also proposed a multi-scale deep neural network to es-

timate t. However, these methods all have the limitation

that they only put t into consideration in their CNN frame-

works without introducing any other essential information.

Li [1] proposed an all-in-one dehazing network to address

the problem, where a linear transpose is leveraged to encode

t and A into one variable.

The success of Generative Adversarial Networks

(GANs) [31] in synthesizing realistic images has led re-

searchers to explore more possibilities in the applications of

GANs. In [32], to further incorporate the mutual structure

information between the estimated t and the dehazed result,

the authors proposed a joint-discriminator based on GAN

to decide whether the corresponding dehazed image and the

estimated transmission map are real or fake. In [27], the

authors present a multi-scale image dehazing method us-

ing perceptual pyramid deep network based on the recently

popular dense blocks and residual blocks. The method in-

volves an encoder-decoder structure with a pyramid pooling

module in the decoder to incorporate contextual information

of the scene while decoding. In [33], the authors proposed

a bi-directional consistency loss to estimate t and A to re-

construct J based on their specially designed fully convo-

lutional neural network. In [34], a bilinear convolutional

neural network is used to estimate t and A with the help

of the proposed bilinear composition loss function which

directly model the correlations between t, A and J.

3. Scene Information Estimation Network

Our proposed deep network framework consists of a

shared encoder and multiple decoders. The encoder serves

as a general feature extractor and the decoders are trained

to estimate the scene information based on the features ex-

tracted from the encoder. Inspired by the success of dense

networks in various applications including dehazing [32],

we build our encoder and decoders with DenseNet blocks.

3.1. Network Building Blocks

The proposed network is targeted to estimate the scene

information from corrupted images with dense haze. The

estimation system along with the refinement blocks are con-

structed by using the following building blocks:

1) Encoder: the encoder is constructed based on the Densely

Connected Network (DCN) [35].

2) Decoder: the decoder has a similar structure as the en-

coder but with more batch normalization layers.

3) Refinement blocks: the refinement blocks in [32] is used

for refine the outputs at different scales.

The encoder blocks from ‘Base.0’ to ‘Dense.4’ in Ta-

ble 1 are initialized with pre-trained parameters from [35],

which is originally trained for image classification. These

connected pre-trained blocks also have the ability to obtain

representative features in dehazing tasks. The dense blocks

in the latter half of the DCN from [35] are not utilized since

the features obtained through it will be mapped into a lower-

dimension feature space only for classification. To make the

pre-trained dense blocks be better applied for dehazing, we



Table 1: Scene Information Estimation Network Encoder Structure

Base.0 Dense.1 Trans.1 Dense.2 Trans.2

Input input patch/image Base.0 Dense.1 Trans.1 Dense.2

Structure

[

7× 7 conv.

3× 3 max-pool

] [

1× 1 conv.

3× 3 conv.

]

× 6

[

1× 1 conv.

2× 2 avg-pool

] [

1× 1 conv.

3× 3 conv.

]

× 12

[

1× 1 conv.

2× 2 avg-pool

]

Output 64× 64× 64 64× 64× 256 32× 32× 128 32× 32× 512 16× 16× 256

Dense.3 Trans.3 Dense.4 Trans.4

Input Trans.2 Dense.3 Trans.3 Dense.4

Structure

[

1× 1 conv.

3× 3 conv.

]

× 24

[

1× 1 conv.

3× 3 conv.

]

× 6

[

1× 1 conv.

2× 2 avg-pool

] [

1× 1 conv.

3× 3 conv.

]

× 12

Output 16× 16× 1792 8× 8× 896 8× 8× 1344 16× 16× 256

Table 2: Scene Information Estimation Decoder Structure

Dense.5 Trans.5 Res.5 Dense.6 Trans.6 Res.6

Input [Res.4, Trans.2] Dense.5 Trans.5 [Trans.1, Res.5] Dense.6 Trans.6

Structure

[

batch norm

3× 3 conv.

]

× 7

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2

[

batch norm

3× 3 conv.

]

× 7

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2

Output 16× 16× 832 32× 32× 160 32× 32× 160 32× 32× 416 64× 64× 64 64× 64× 64

Dense.7 Trans.7 Res.7 Dense.8 Trans.8 Res.8

Input Res.6 Dense.7 Trans.7 Res.7 Dense.8 Trans.8

Structure

[

batch norm

3× 3 conv.

]

× 7

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2

[

batch norm

3× 3 conv.

]

× 7

[

1× 1 conv.

upsample 2

] [

3× 3 conv.

3× 3 conv.

]

× 2

Output 64× 64× 128 128× 128× 32 128× 128× 32 128× 128× 64 256× 256× 16 256× 256× 16

Refine.9 Refine.10 Refine.11 Refine.12 Refine.13 Output.14

Input [Input, Res.8] Refine.9 Refine.9 Refine.9 Refine.9 [Refine.9.10.11.12.13]

Structure 3× 3 conv.





32× 32 avg-pool

1× 1 conv.

upsample









16× 16 avg-pool

1× 1 conv.

upsample









8× 8 avg-pool

1× 1 conv.

upsample









4× 4 avg-pool

1× 1 conv.

upsample





[

3× 3 conv.

7× 7 conv.

]

× 2

Output 256× 256× 20 256× 256× 1 256× 256× 1 256× 256× 1 256× 256× 1 256× 256×X1

append the encoder with newly added blocks ‘Trans.4’ and

‘Res.4’ to enlarge the features generated by ‘Dense.4’. It

can help the encoder preserve more spatial feature informa-

tion from the pre-trained dense blocks which is then utilized

by decoders for further enhancement in dehazing.

Table 2 provides more details about the structure of the

decoder. The decoder is built to exploit the extracted fea-

tures from the encoder for dehazing. It contains 4 ‘Trans’

blocks, which stand for transformation block. Each trans-

formation block essentially plays the role of reordering and

enlarging the refined image/features. The reordering pro-

cess is accomplished by a 1 × 1 convolutional layer, and

the enlargement is done by the upsampling layer 2. We

added new residual blocks [36] in between two successive

dense blocks to incorporate more high-frequency informa-

tion which can assist in recovering more details in the re-

covered image. In addition to that, batch normalization lay-

ers are added to the dense blocks to normalize the train-

ing data so that the manifold of the network parameters

will be smoothed and the network will enjoy better train-

ing stability[37].

The bottom row of Table 2 details the structure of refine-

ment blocks as suggested by [27, 32]. These blocks first use

1The number of the final output channel is decided by the functionality

of each decoder. See Table 3 and 4 for details.
2the upsampling layer can be replaced by a transpose conv. layer.

average pooling layers at spatial size of 32 × 32, 16 × 16,

8× 8, and 4× 4 to extract local average information. Then,

the 1× 1 convolutional layer refines the outputs and an up-

sampling layer is used to enlarge the image into the desired

spatial size. These enlarged locally reorganized images are

then appended together and passed through the final refine-

ment layer which uses several convolutional layers to elim-

inate the blocking artifacts. This refinement practice would

allow the image information to be merged and retouched at

different scales.

3.2. At­DH Network

With the aforementioned building blocks, the proposed

At-DH network structure is described in Table 3 and shown

in the dash-lined part in Fig. 1. The encoder in At-DH is

constructed as described in Table 1 and the Decoder.A and

Decoder.t are constructed as illustrated in Table 2. The fea-

tures extracted by the encoder are densely connected to the

decoder. As shown in Table 2, ‘Dense.5’ utilizes the con-

catenated outputs from ‘Res.4’ and ‘Trans.2’ to have better

information flow as suggested in [35]. Similar connection

is used in ‘Dense.6’ as well.

In the At-DH model, the two decoders are trained to

generate the Â and t̂ such that combined with the input hazy

image I, the At-DH network can generate haze-free images
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Figure 1: The proposed the At-DH (within dashlines) and AtJ-DH network. A shared encoder is employed to extract image

features that are subsequently exploited by the two decoders (Decoder.A and Decoder.t) to jointly estimate the physical model

parameters. AtJ-DH employs an additional decoder, i.e. Decoder.J which estimates the haze-free image. Employing custom

regularization in the learning of AtJ-DH using the ground truth J further enhances the estimates Â and t̂. The architectural

details of the encoder and decoder are listed in Table 1, 2. At-DH and AtJ-DH network architectures are listed Tabel 3 and 4.

Table 3: At-DH Model Structure
Encoder Decoder.A Decoder.t

Input Input Encoder Encoder

Structure As in Table 1 As in Table 2 with X = 3 As in Table 2 with X = 1

Table 4: AtJ-DH Model Structure
Encoder Decoder.A Decoder.t Decoder.J

Input Input Encoder Encoder Encoder

Structure As in Table 1 As in Table 2 with X = 3 As in Table 2 with X = 1 As in Table 2 with X = 3

by the inverse haze model as following:

Ĵ =
I− Â · (1− t̂)

t̂
(2)

where Ĵ is the reconstructed haze-free image, Â := fA(I)
and t̂ := ft(I). fA(·) and ft(·) denote the outputs of De-

coder.A and Decoder.t, respectively. We can also recon-

struct the hazy image using the decoders’ outputs and the

haze-free image during the training by the inverse haze-

model as following:

Î = J · t̂− Â · (1− t̂) (3)

where Î is the self-reconstructed hazy image. The training

of these two decoders is accomplished by minimizing the

following loss function:

L = Lℓ2 + αLvgg (4)

where the Lℓ2 is the (re)construction loss between the hazy

images (I and Î) and the haze-free images (J and Ĵ) during

the training:

Lℓ2 = ‖Ĵ− J‖2
2
+ ‖Î− I‖2

2
(5)

where the Ĵ and Î are constructed following Eqs. (2) and

(3). Another important loss term in Eq. (4) is the perceptual

loss, which is used to ensure that the overall image content

is agree with the ground-truth image. To achieve this, the

high-level features extracted from the pre-trained VGG net-

work are used. The VGG based regularizer is given by:

Lvgg =
3

∑

i=1

‖gi(Ĵ)− gi(J)‖
2

2
+

3
∑

i=1

‖gi(Î)− gi(I)‖
2

2
(6)

where the gi(·) represents the operator formed by the pre-

trained feature extraction layers in the vgg16 model that

ends with layers ReLu1 1, ReLu2 2, and ReLu3 3. The

Lℓ2 and Lvgg are balanced by the parameter α.

3.3. AtJ­DH Network

The At-DH with self-regularization generates dehazed

images with enhanced visual quality. However, for areas

in images where the haze is so dense that any scene infor-

mation in I is visually obscured, the two decoders for A

and t do not suffice. Hence, we extend the proposed ‘At’

model by introducing a new J-decoder. Since the J-decoder

is trained by treating the hazy observation and correspond-

ing ground truth as training pairs, it is able to provide real

scene information during the training process.

Our proposed AtJ-DH network is visually illustrated in

Fig. 1 and its architecture is detailed in Table 4. Decoder.A

and Decoder.t are trained to estimate the A and t in the

haze model while Decoder.J is trained to directly recover



the haze-free image. The outputs of Decoder.J are concate-

nated together and sent to the refinement block which is de-

scribed as Refine.10 to Refine.13 units in Table 2. Several

convolutional layers are used to eliminate blocking artifacts

that may be generated by the refinement blocks.

In the AtJ-DH network, the outputs of the three de-

coders are defined as Â := fA(I), t̂ := ft(I) and

Jdirect := fJ(I) (7)

Compared with the At-DH network, the AtJ-DH network

has an additional Decoder.J (Eq. (7)), whose job is to re-

cover the haze-free image directly. By adding Decoder.J,

the network would have the ability to make reconstructed

scene information be more consistent with ground truth.

The separate network system formed by the encoder and

Decoder.J make it possible for Decoder.J to generate real

scene details even in areas which are full of dense haze.

During the training, Decoder.J provides further guide-

lines for Decoder.A and Decoder.t to produce better estima-

tions of the scene information. The training of the AtJ-DH

is regularized by three loss terms:

• Training Decoder.J by minimizing:

LJ = ‖Jdirect − J‖2
2
+ β

3
∑

i=1

‖gi(Jdirect)− gi(J)‖
2

2
(8)

where the first term is the standard ℓ2 loss function that is

commonly used in regression problems. The second term

is the VGG based perceptual loss similar to Eq. (6). With

the help of this loss function, Decoder.J essentially learns to

recreate the haze-free image based on the hazy input. The

ground truth information introduced by training Decoder.J

will be later utilized to guide Decoder.A and Decoder.t to

better estimate A and t which preserve the scene informa-

tion. β is a weight parameters that controls the relative im-

portance of the loss terms.

• Training Decoder.A and Decoder.t by minimizing:

LAt =‖Ĵ− J‖2
2
+ γ‖Î− I‖2

2

+ κ

3
∑

i=1

‖gi(Ĵ)− gi(J)‖
2

2
+ κ

3
∑

i=1

‖gi(Î)− gi(I)‖
2

2

(9)

where Î and Ĵ are given in Eq. (3) and (2). The LAt is the

same as the loss function of At-DH network, which consists

of the ℓ2 reconstruction loss and the vgg perceptual loss.

The γ and κ serve as the trade-off parameters to balance

different loss terms selected by cross-validation [38].

• Training Decoder.A, Decoder.t, and Decoder.J together by

minimizing:

LAtJ = ‖Jdirect · t̂+ (1− t̂) · Â− I‖2
2

(10)

As we discussed above, when the haze is too dense, it

will be difficult to use Decoder.A and Decoder.t alone to

estimate all the scene information. By combining with

Decoder.J, Decoder.A and Decoder.t can be learned to re-

(a) Haze free image (b) NTIRE18 hazy image (c) Synthetic dense haze

Figure 2: NTIRE18 image 27-indoor.png(upper) and 36-

outdoor.png, the synthetic dense-haze image adds more

haze based on the NTIRE18 hazy image.

construct the hazy image based on the guidance from the

ground truth information introduced by training Decoder.J.

It is noted that Decoder.J, A, and t are trained jointly at each

step so that the learned information from all three decoders

can be integrated for next training steps.

For both networks, the final dehazed images are gener-

ated using the estimated t and A following Eq. (2).

4. Dataset, Training, and Test Procedure

4.1. Datasets

To train At-DH and AtJ-DH, we use the NTIRE2019-

Dehaze dataset [39]. The images were collected by a pro-

fessional camera including professional fog generators, so

as to capture the same scene under both conditions (with

and without haze). The training data consists of 45 hazy im-

ages (with dense haze generated for both indoor and outdoor

environments) and their corresponding ground truth (haze-

free) images with exactly the same scene information.

To learn a network with more powerful generalization

ability, we also include the NTIRE2018-Dehaze dataset

[40] in training. Compared to the NTIRE2018 dataset, the

haze is much denser in the NTIRE2019 dataset. We devel-

oped a synthetic method to thicken the haze in NTIRE2018

training images in order to reach the same haze level as in

the NTIRE2019. We generated the synthetic dense-haze im-

age following the practice demonstrated in [29] as below:

Isyn = I · t+ (1− t) ·A (11)

where, Isyn is the synthetic dense-haze image, I is the

NTIRE2018 hazy image. A is chosen to be a fixed value

to reduce the uncertainty in variable learning. For indoor

images, we set A = [0.6, 0.6, 0.6], and for outdoor images

we set A = [0.80, 0.81, 0.86]3 to give a blueish atmosphere

light which is estimated by using method described in [21].

The t is selected uniformly between 0.01 and 0.3 to add

dense haze as smaller t yields more atmosphere informa-

tion. These values of A and t are chosen according to

the results of the cross-validation during the development

phase. As shown in Fig. 2, the aforementioned synthetic

method can generate images with dense haze. During the

training, patches of size 512 × 512 are extracted from the

training images. The augmentations are used as the combi-

nation of the following options: 1) horizontal flip, rotation

3For RBG channels, A is set to 0.80, 0.81, and 0.86 respectively.



by 90◦, 180◦, and 270◦; 2) scale to 0.7, 0.8, and 0.9 of the

original image size. Also, the images (whole image, not

patches) are resized to 512×512 and applied the same aug-

mentation strategies on these resized images and included

them for training.

4.2. Training

Learning the complete network for once is challenging

and can result instability in training as the network is highly

parameterized. Therefore, we adapted a two-stage training

strategy as described below:

Stage 1 - Pre-training of Encoder: We first pre-train

the encoder by combining it with a single decoder to make

that the output of the decoder can be reconstructed as the

ground truth. The structure of the encoder and the decoder

is the same as described in Tables 1 and 2. In this stage,

we used the NTIRE19 and synthetically dense-haze images

from NTIRE18 to train the encoder for 80 epochs.

Stage 2 - At/AtJ-DH training: In this stage we combine

the encoder trained from stage 1 with newly constructed de-

coders for estimating A, t, and J. For At-DH, the decoders

are as shown in Table 3 and trained using the losses detailed

in Section 3.2. For AtJ-DH, the decoders are as shown in

Table 4 and trained using the losses detailed in Section 3.3.

The training is conducted on two datasets. For the first 50

epochs the training data is the same as in Stage 1. For the

next 70 epochs, the training data is only from NTIRE19.

Adam optimizer [41] with initial learning rate of 1 ×
10−4 is used for training. The learning rate is reduced to

its 70% for every 35 epochs and reset in stage 2.

4.3. IRCNN Post­processing

While At/AtJ-DH is already able to recover scene infor-

mation from the dense-haze input, we also used an optional

IRCNN [42] denosier with σ = 15 to further improve the

results visually. IRCNN method combines the benefits of

both model based and learning based techniques for image

restoration applications. In this dehazing problem, we use

the pre-trained CNN denoiser and incorporate it as a post

processing unit after the output obtained by our proposed

At/AtJ-DH framework. We use At/AtJ-DH+ to indicate that

the post processing is present. Detailed results obtained via

At/AtJ-DH and At/AtJ-DH+ are listed in Section 5.2.

5. Experimental Results

In this section we present the experimental results of our

proposed At/AtJ-DH, that is, ablation study and comparison

w.r.t state-of-the-art methods. The evaluation metrics used

to quantify the performance are Peak Signal-to-Noise Ratio

(PSNR) and Structural Similarity Index (SSIM) [43] 4.

4Code is available at the project page: http://signal.ee.psu.

edu/research/ATJDH.html

5.1. Ablation Study

The performances of different configurations of the pro-

posed scene estimation network are investigated in this sec-

tion. Table 6, 5, and 7 report the results of At-DH and AtJ-

DH methods. As shown in the tables, by adding Decoder.J,

AtJ-DH further improves both the PSNR and SSIM scores,

and produces visually pleasing images (see Fig. 5).

5.2. Comparison with State­of­the­art Methods

This section illustrates the comparisons between our pro-

posed methods with the state-of-the-art methods on real-

world benchmark data sets I-HAZE, and O-HAZE [44, 45].

State-of-the-art Methods The state-of-the-art methods in-

cluded in the comparisons are: CVPR’09 [17, 46], TIP’15

[47], ECCV’16 [30], TIP’16 [29], CVPR’16 [22], ICCV’17

[1], CVPR’18 [27], and CVPRW’18 [32].

Evaluation Datasets The comparisons are conducted on

the I-HAZE (indoor) and O-HAZE (outdoor) validation

datasets [40]. Each of the dataset contains 5 pairs of haze

and haze-free image pairs. Detailed acquisition methods of

these real-world hazy image pairs are discussed in [40].

Fig. 3 and 4 show the experimental results of the state-

of-the-art methods compared with AtJ-DH conducted on

NTIRE2018 indoor and outdoor validation datasets. It can

be found that AtJ-DH generated much more visually pleas-

ing results. As shown in Table 5 and 6, At/AtJ-DH out-

performs other state-of-the-art methods when evaluated on

PSNR and SSIM. With the help of the post processing pro-

cedure described in Section 4.3, the final dehazed images

generated by AtJ-DH+ can obtain the highest scores.

5.3. NTIRE­2019 Dehazing Challenge

The haze presented in images from the NTIRE2019-

Dehaze dataset is much denser than images in the previous

literature. As shown in Fig. 5, the state-of-the-art meth-

ods’ performances drop largely when applied to the dataset

due to the reason that the dense haze has covered almost

all the scene information. Since AtJ-DH can estimate more

accurate scene information from the dense-haze image, the

dehazed images generated by AtJ-DH are much more vi-

sually pleasing. We evaluate the quantitative performances

of the methods on the NTIRE2019 validation set since their

ground-truth images are made available [39]. As shown in

Table 7, AtJ-DH outperforms all the other state-of-the-art

methods. If the post processing procedure described in Sec-

tion 4.3 is adapted, the final dehazed images generated by

AtJ-DH+ can achieve the highest PSNR and SSIM scores.

Table 8 includes the top-6 methods from the contest. It is

found that At-DH/+ and AtJ-DH/+ are among the top per-

forming methods in the NTIRE2019-Dehazing Challenge

and outperform other methods by a noticeable margin.



CVPR09[46] TIP15[47] ECCV16[30] TIP16[29] CVPR16[22] ICCV17[1] CVPR18[27] CVPRW18[32]HZ AtJ-DH GT

Figure 3: The visual results of NTIRE2018-outdoor validation dataset.

CVPR09[46] TIP15[47] ECCV16[30] TIP16[29] CVPR16[22] ICCV17[1] CVPR18[27] CVPRW18[32]HZ AtJ-DH GT

Figure 4: The visual results of NTIRE2018-indoor validation dataset.

CVPR09[46] TIP15[47] ECCV16[30] TIP16[29] CVPR16[22] ICCV17[1] CVPR18[27] CVPRW18[32]HZ AtJ-DH GT

Figure 5: The visual results of NTIRE2019 validation dataset.

6. Conclusion

We focus on developing deep learning architectures that es-
timate physical parameters in the haze model jointly as op-
posed to separately. Our At-DH network, uses a shared
DenseNet encoder and two distinct DensetNet decoders to
jointly estimate the scene information viz. A and t. As a
natural extension of At-DH, we develop the AtJ-DH net-
work, which adds one more DenseNet decoder to jointly
recreate the haze-free image along with A and t. Experi-

ments performed on challenging benchmark image datasets
of NTIRE’19 and NTIRE’18 demonstrate that At(J)-DH
can outperform state-of-the-art alternatives. Notably, in
NTIRE’19 results At(J)-DH methods offer nearly a 1 dB
gain in PSNR over the next best method. In AtJ-Dh we
recover the final dehazed image using enhanced estimates
of A and t in an inverse haze model; this dehazed im-
age may be fused intelligently with the output of Decoder.J
in the AtJ-DH network to further enhance performance.



Table 5: The PSNR/SSIM of different methods over NTIRE2018-outdoor validation dataset.
method 36.png 37.png 38.png 39.png 40.png avg.

CVPR09 [46] 18.1820/0.4474 16.0912/0.4983 14.1227/0.0835 12.8787/0.3575 14.2106/0.3864 15.0970/0.3546

TIP15 [47] 17.4660/0.4976 16.1686/0.4533 15.1391/0.1796 14.7964/0.4131 16.3732/0.5683 15.9887/0.4224

TIP16 [30] 16.5891/0.4862 15.7593/0.4334 13.2500/0.1890 12.7816/0.3935 16.5339/0.5597 14.9828/0.4123

CVPR16 [29] 16.9236/0.4267 14.9854/0.4776 15.5448/0.3390 17.6496/0.4751 17.0424/0.5350 16.4292/0.4507

ICCV17 [1] 17.0951/0.4516 16.4676/0.3886 16.1153/0.1194 15.0439/0.3388 15.9477/0.5043 16.1339/0.3606

CVPR18 [27] 17.1374/0.4385 15.2847/0.4173 14.6555/0.1143 15.2353/0.3530 17.7805/0.5198 16.0187/0.3686

CVPRW18 [32] 24.6703/0.7288 22.4079/0.6551 23.7469/0.7199 21.9055/0.6296 22.2878/0.6822 23.0037/0.6831

At-DH 25.0979/0.8050 23.4639/0.7627 24.8048/0.8053 22.0375/0.7519 24.8303/0.8044 24.0469/0.7859

At-DH+ 25.1437/0.8213 23.4302/0.7598 24.9171/0.8187 22.0731/0.7679 24.8260/0.8111 24.0780/0.7958

AtJ-DH 27.0772/0.8154 24.0295/0.7513 23.9662/0.7991 22.5974/0.7555 24.4090/0.8025 24.4159/0.7847

AtJ-DH+ 27.1721/0.8316 23.9785/0.7455 24.0495/0.8076 22.6578/0.7707 24.4443/0.8107 24.4604/0.7932

Table 6: The PSNR/SSIM of different methods over NTIRE2018-indoor validation dataset.
method 26.png 27.png 28.png 29.png 30.png avg.

CVPR09 [46] 8.2706/0.3545 12.8863/0.2014 12.7162/0.5485 12.1518/0.5411 13.4688/0.2753 11.8988/0.3842

TIP15 [47] 13.1816/0.6581 16.6858/0.3952 11.5135/0.5590 17.1496/0.7803 15.7567/0.3215 14.8574/0.5428

TIP16 [30] 10.1699/0.5498 14.5147/0.3094 13.3890/0.6349 11.9041/0.5369 15.5312/0.3412 13.1018/0.4744

CVPR16 [29] 12.4147/0.4800 14.7990/0.3639 13.2925/0.5489 14.6639/0.5296 13.9293/0.4057 13.8199/0.4656

ICCV17 [1] 10.8313/0.6185 16.8387/0.3943 12.7391/0.4692 15.3688/0.8054 17.2741/0.3095 14.6104/0.5194

CVPR18 [27] 15.3106/0.6283 16.0856/0.3512 9.8470/0.5540 22.2085/0.8013 15.4517/0.1977 15.7807/0.5065

CVPRW18 [32] 14.2680/0.6778 20.8952/0.7533 18.4479/0.6983 20.5845/0.8154 16.4299/0.5445 18.1251/0.6978

At-DH 20.5938/0.8760 22.9991/0.8490 19.9912/0.8313 22.9211/0.9001 18.5186/0.8056 21.0048/0.8524

At-DH+ 20.6302/0.9015 23.0601/0.8696 20.0012/0.8490 22.9313/0.9200 18.5464/0.8335 21.0338/0.8747

AtJ-DH 21.8144/0.8917 23.3963/0.8630 20.8504/0.8439 24.8057/0.9218 20.5668/0.8319 22.2867/0.8705

AtJ-DH+ 21.8553/0.9125 23.4660/0.8798 20.8737/0.8622 24.8174/0.9366 20.6111/0.8556 22.3247/0.8894

Table 7: The PSNR/SSIM of different methods over NTIRE2019 validation dataset.
method 46.png 47.png 48.png 49.png 50.png avg.

CVPR09 [46] 10.2792/-0.0030 14.7181/0.3669 14.1058/0.2821 10.4352/0.2112 11.0434/0.3764 12.1163/0.2467

TIP15 [47] 9.3752/0.0187 16.1040/0.4152 13.4858/0.2282 10.9173/0.2735 11.2999/0.2600 12.2364/0.2391

TIP16 [30] 8.1189/0.0432 12.8189/0.3496 12.3575/0.2172 10.5432/0.2403 10.5051/0.2119 10.8687/0.2124

CVPR16 [29] 9.5131/0.0130 13.9106/0.3744 12.9015/0.2796 10.1643/0.2208 11.6160/0.3645 11.6211/0.2505

ICCV17 [1] 10.1190/-0.0160 14.1507/0.2835 12.1667/0.1804 8.4235/0.2104 12.8605/0.3342 11.5441/0.1985

CVPR18 [27] 8.0126/0.0288 13.0654/0.3498 13.5508/0.1945 11.0016/0.2758 14.0006/0.4475 11.9262/0.2593

CVPRW18 [32] 8.8668/0.2272 15.1229/0.3635 15.6723/0.4603 11.8703/0.3592 15.0124/0.4305 13.3090/0.3681

At-DH 16.0246/0.2641 20.6051/0.7221 19.3801/0.5365 12.7537/0.4482 15.8842/0.5935 16.9296/0.5129

At-DH+ 16.0565/0.2809 20.6645/0.7435 19.4310/0.5657 12.7574/0.4677 15.8772/0.6122 16.9573/0.5340

AtJ-DH 16.4984/0.2690 20.8886/0.7242 19.7148/0.5382 12.9908/0.4562 16.4970/0.6086 17.1479/0.5226

AtJ-DH+ 16.5354/0.2848 20.9509/0.7449 19.7752/0.5667 12.9963/0.4749 16.4918/0.6263 17.1899/0.5395

Table 8: The average PSNR/SSIM of top methods over

NTIRE2019 test dataset.

team contest method PSNR SSIM

ours

AtJ-DH+ 20.258 0.657

AtJ-DH 20.212 0.635

At-DH+ 19.528 0.642

At-DH 19.479 0.615

other teams
method1 19.469 0.652

method2 18.521 0.640

References

[1] B. Li et al., “Aod-net: All-in-one dehazing network,” in

Proc. IEEE Conf. on Comp. Vis., 2017.

[2] E. J. McCartney, “Optics of the atmosphere: scattering by

molecules and particles,” New York, John Wiley and Sons,

Inc., 1976. 421 p., 1976.

[3] C. O. Ancuti, C. Ancuti, and C. D. Vleeschouwer, “Effective

local airlight estimation for image dehazing,” in Proc. IEEE

Conf. on Image Proc., 2018, pp. 2850–2854.

[4] C. O. Ancuti et al., “Color transfer for underwater dehazing

and depth estimation,” in Proc. IEEE Conf. on Image Proc.,

2017, pp. 695–699.

[5] C. O. Ancuti et al., “Locally adaptive color correction for

underwater image dehazing and matching,” in Proc. IEEE

Conf. on Image Proc., 2017, pp. 1–9.

[6] C. O. Ancuti and C. Ancuti, “Single image dehazing by

multi-scale fusion authors,” IEEE Trans. on Image Proc.,

vol. 22, no. 8, pp. 3271–3282, 2013.

[7] C. O. Ancuti, C. Ancuti, and P. Bekaert, “Effective single

image dehazing by fusion,” in Proc. IEEE Conf. on Image

Proc., 2010, pp. 3541–3544.

[8] C. Ancuti et al., “Night-time dehazing by fusion,” in Proc.

IEEE Conf. on Image Proc., 2016, pp. 2256–2260.

[9] W. Ren et al., “Gated fusion network for single image dehaz-

ing,” in Proc. IEEE Conf. on Comp. Vis. Patt. Recog., 2018,

pp. 3253–3261.

[10] C. Chen, M. N. Do, and J. Wang, “Robust image and video

dehazing with visual artifact suppression via gradient resid-



ual minimization,” in Proc. IEEE European Conf. on Comp.

Vision. Springer, 2016, pp. 576–591.

[11] R. Li et al., “Single image dehazing via conditional genera-

tive adversarial network,” in Proc. IEEE Conf. on Comp. Vis.

Patt. Recog., 2018, pp. 8202–8211.

[12] S. G. Narasimhan and S. K. Nayar, “Chromatic framework

for vision in bad weather,” in Proc. IEEE Conf. on Comp.

Vis. Patt. Recog., 2000, vol. 1, pp. 598–605.

[13] Z. Li et al., “Simultaneous video defogging and stereo recon-

struction,” in Proc. IEEE Conf. on Comp. Vis. Patt. Recog.,

2015, pp. 4988–4997.

[14] S. G. Narasimhan and S. K. Nayar, “Interactive (de) weath-

ering of an image using physical models,” in Proc. IEEE

Workshop Color and Photometric Methods in Comp. Vision.

France, 2003, vol. 6, p. 1.

[15] N. Hautière et al., “Towards fog-free in-vehicle vision sys-

tems through contrast restoration,” in Proc. IEEE Conf. on

Comp. Vis. Patt. Recog., 2007, pp. 1–8.

[16] R. T. Tan, “Visibility in bad weather from a single image,”

in Proc. IEEE Conf. on Comp. Vis. Patt. Recog., 2008.

[17] K. He, J. Sun, and X. Tang, “Single image haze removal

using dark channel prior,” IEEE Trans. on Pattern Analysis

and Machine Int., vol. 33, no. 12, pp. 2341–2353, 2011.

[18] L. Kratz and K. Nishino, “Factorizing scene albedo and

depth from a single foggy image,” in Proc. IEEE Conf. on

Comp. Vision, 2009, pp. 1701–1708.

[19] C. O. Ancuti, C. Ancuti, and P. Bekaert, “Effective single

image dehazing by fusion,” in Proc. IEEE Conf. on Image

Proc., 2010, pp. 3541–3544.

[20] G. Meng et al., “Efficient image dehazing with boundary

constraint and contextual regularization,” in Proc. IEEE

Conf. on Comp. Vision, 2013, pp. 617–624.

[21] R. Fattal, “Dehazing using color-lines,” ACM Trans. on

Graphics, vol. 34, no. 1, pp. 13, 2014.

[22] D. Berman, T. Treibitz, and S. Avidan, “Non-local image

dehazing,” in Proc. IEEE Conf. on Comp. Vis. Patt. Recog.,

2016, pp. 1674–1682.

[23] T. Guo et al., “Deep wavelet prediction for image super-

resolution,” in Proc. IEEE Conf. Workshop on Comp. Vis.

Patt. Recog., 2017.

[24] T. Guo et al., “Orthogonally regularized deep networks for

image super-resolution,” in Proc. IEEE Int. on Conf. Acous-

tics, Speech, and Signal Proc., 2018, pp. 1463–1467.

[25] S. Nah et al., “Deep multi-scale convolutional neural net-

work for dynamic scene deblurring,” in Proc. IEEE Conf. on

Comp. Vis. Patt. Recog., 2017, pp. 3883–3891.

[26] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting

with deep neural networks,” in Proc. Advances in Neural

Information Proc. Systems, 2012, pp. 341–349.

[27] H. Zhang and V. M. Patel, “Densely connected pyramid de-

hazing network,” in Proc. IEEE Conf. on Comp. Vis. Patt.

Recog., 2018, pp. 3194–3203.

[28] C. O. Ancuti, C. Ancuti, and R. T. et al., “Ntire 2019 chal-

lenge on image dehazing: Methods and results,” in Proc.

IEEE Conf. Workshop on Comp. Vis. Patt. Recog., 2019.

[29] B. Cai et al., “Dehazenet: An end-to-end system for single

image haze removal,” IEEE Trans. on Image Proc., vol. 25,

no. 11, pp. 5187–5198, 2016.

[30] W. Ren et al., “Single image dehazing via multi-scale con-

volutional neural networks,” in Proc. IEEE European Conf.

on Comp. Vision. Springer, 2016, pp. 154–169.

[31] I. Goodfellow et al., “Generative adversarial nets,” in Proc.

Advances in Neural Information Proc. Systems, 2014, pp.

2672–2680.

[32] H. Zhang, V. Sindagi, and V. M. Patel, “Multi-scale sin-

gle image dehazing using perceptual pyramid deep network,”

in Proc. IEEE Conf. Workshop on Comp. Vis. Patt. Recog.,

2018, pp. 902–911.

[33] R. Mondal, S. Santra, and B. Chanda, “Image dehazing

by joint estimation of transmittance and airlight using bi-

directional consistency loss minimized fcn,” in Proc. IEEE

Conf. Workshop on Comp. Vis. Patt. Recog., 2018, pp. 920–

928.

[34] H. Yang et al., “Image dehazing using bilinear composition

loss function,” in arXiv preprint arXiv:1710.00279, 2017.

[35] G. Huang et al., “Densely connected convolutional net-

works,” in Proc. IEEE Conf. on Comp. Vis. Patt. Recog.,

2017, pp. 4700–4708.

[36] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image

super-resolution using very deep convolutional networks,”

in Proc. IEEE Conf. on Comp. Vis. Patt. Recog., 2016, pp.

1646–1654.

[37] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating

deep network training by reducing internal covariate shift,”

arXiv preprint arXiv:1502.03167, 2015.

[38] V. Monga, Handbook of Convex Optimization Methods in

Imaging Science, Springer, 2017.

[39] C. O. Ancuti et al., “Dense haze: A benchmark for im-

age dehazing with dense-haze and haze-free images,” arXiv

preprint arXiv:1904.02904, 2019.

[40] C. Ancuti, C. O. Ancuti, and R. Timofte, “Ntire 2018 chal-

lenge on image dehazing: Methods and results,” in Proc.

IEEE Conf. Workshop on Comp. Vis. Patt. Recog., 2018, pp.

891–901.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” arXiv preprint arXiv:1412.6980, 2014.

[42] K. Zhang et al., “Learning deep cnn denoiser prior for image

restoration,” in Proc. IEEE Conf. on Comp. Vis. Patt. Recog.,

2017, pp. 3929–3938.

[43] Z. Wang et al., “Image quality assessment: from error visi-

bility to structural similarity,” IEEE Trans. on Image Proc.,

vol. 13, no. 4, pp. 600–612, 2004.

[44] C. Ancuti et al., “I-haze: a dehazing benchmark with real

hazy and haze-free indoor images,” in International Confer-

ence on Advanced Concepts for Intelligent Vision Systems.

Springer, 2018, pp. 620–631.

[45] C. O. Ancuti et al., “O-haze: a dehazing benchmark with real

hazy and haze-free outdoor images,” in Proc. IEEE Conf.

Workshop on Comp. Vis. Patt. Recog., 2018, pp. 754–762.

[46] K. He, J. Sun, and X. Tang, “Single image haze removal

using dark channel prior,” in Proc. IEEE Conf. on Comp.

Vis. Patt. Recog., 2009.

[47] Q. Zhu, J. Mai, and L. Shao, “A fast single image haze re-

moval algorithm using color attenuation prior,” IEEE Trans.

on Image Proc., vol. 24, no. 11, pp. 3522–3533, 2015.


