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Abstract

This paper proposes a DenseNet with deep Residual

Channel Attention (DRCA) for single image super resolu-

tion. Recent works have shown that skip connections be-

tween layers improve the performance of the convolutional

neural network such as ResNet and DenseNet. We have in-

terpreted the role of ResNet (feature value refinement by ad-

dition) and DenseNet (feature value memory by concatena-

tion). The contribution of the proposed network is dense

connections between residual groups rather than convolu-

tion layers. In terms of feature value refinement and mem-

ory, the proposed method refines the feature values suffi-

ciently (by residual group) and memorizes the refined fea-

ture values intermittently (by dense connections between

residual groups). Experimental results show that the pro-

posed DRCA (14.2M) achieved better performance than the

state-of-the-art methods with fewer parameters.

1. Introduction

Convolutional neural network (CNN) based methods

have achieved impressive performance in various image

applications such as classification and single image su-

per resolution (SISR). ResNet [5] and DenseNet [7] have

the advantages in back-propagation with strong gradients

using skip connections and give good performances on

classifications. Also, in SISR, these blocks are success-

fully used and improve the performance in terms of the

peak signal-to-noise ratio (PSNR) and structural similarity

(SSIM) [25]. After the first CNN-based SISR method (SR-

CNN [3]) was introduced, deep network [10], Laplacian

pyramid [13], residual network [14], dense network [22],

and back-projection network [4] based on back-projection

algorithm [2] have been successfully applied to SISR.

Recent networks have been deeper and deeper, and thus

some problems arise. Szegedy et al. [20] addressed that

deep network can die early in the training and this phe-

nomenon can be prevented by adding scaling layer after

convolution layer. EDSR [15], the winner of NTIRE2017

Super-Resolution Challenge [21], used the deeper and

wider architecture of the SRResNet with scaling layer [20],

in which the scaling factor was set to 0.1.

Channel attention (CA) computes channel weights from

0 to 1 and successfully increases the performance of clas-

sification networks such as ResNet, VGG16, and Incep-

tion [6]. Because CA works as the scaling layer with train-

able scaling factor, CA can be well performed for SISR net-

work. Zhang et al. [28] applied CA to SISR with residual-

in-residual learning (RCAN) and achieved the state-of-the

art performance.

Recently, combining ResNet and DenseNet has been

used in SISR. Zhang et al. proposed RDN [29] that consists

of residual dense blocks (RDB). Wen et al. [26] also com-

bined ResNet and DensNet (DRNet) that consists of densely

connected residual blocks which are similar to those of

RDN. RRDB [23] combined residual-in-residual learning

[28] and dense connection [7]. However, these hybrid meth-

ods gave worse performance than RCAN [28] that uses

ResNet only.

We propose one of combining methods of ResNet and

DenseNet, however, we focus on the role of ResNet and

DenseNet. We interpret that ResNet refines the fea-

ture value by addition and DenseNet memorizes the fea-

ture value by concatenation. Previous combining meth-

ods (RDN, DRNet, and RRDB) densely connect convolu-

tion layers, whereas the proposed method densely connects

residual groups rather than convolution layers. The pro-

posed DenseNet with Residual Channel Attention is called

DRCA. Using our interpretation, the proposed DRCA suf-

ficiently updates the feature values by residual blocks in the

residual group and memorizes the refined feature values in-

termittently by dense connections between residual groups.

Although the proposed method is one of combinations of

ResNet, DenseNet, and channel-attention, this small differ-

ence achieved better performance than the state-of-the-art

methods.



Figure 1. Performance comparison in terms of the PSNR versus

the number of trainable parameters for scale factor 4 (+ and * in-

dicate self-ensemble [15] and different train dataset (DF2K), re-

spectively).

Fig. 1 shows the performance comparison of the pro-

posed and state-of-the-art methods in terms of the PSNR

versus the number of parameters on Urban100 dataset [8],

where the proposed DRCA+* achieved better performance

than the state-of-the-art methods (+ and * indicate self-

ensemble [15] and different train dataset (DF2K dataset),

respectively).

Our contributions are as follows:

• We propose DRCA by effectively combining the

DenseNet architecture with residual learning.

• The proposed DRCA (14.2M) achieves better perfor-

mance with fewer parameters and faster run-time than

the state-of-the art method (RCAN, 15.8M).

2. Related work

Because the proposed network combines ResNet and

DenseNet with CA, we briefly review DenseNet, ResNet,

and CA. Most SISR methods consist of three steps: ini-

tial feature extraction, non-linear mapping, and reconstruc-

tion. The key contribution of existing SISR methods is how

to construct non-linear mapping: e.g., by residual learning

(SRResNet and EDSR), dense connectivity (SRDenseNet),

back-projection unit (D-DBPN), residual dense block (DR-

Net and RDN), and residual in residual (RCAN). The pro-

posed method performed non-linear mapping by dense con-

nections between residual groups.

Let ILR and ISR be the low-resolution (LR) input im-

age and the output SR image, respectively. The desired

high-resolution (HR) image (ground truth) is denoted by

IHR. Most SISR methods was trained by supervised learn-

ing which minimized the error between ISR and IHR. The

initial feature f1 extracted from input ILR is given by f1 =
F1(ILR) where F1(·) represents the first convolution layer.

2.1. DenseNet

Dense connectivity ensures maximum information paths

between layers by connecting all layers [7]. The output fea-

tures of all convolution layers in the dense blocks are con-

catenated along the channel axis. Let xi−1 and xi be the

input and output of thei-th densely connected convolution

layer, respectively. The output xi of the i-th convolution

layer Fi can be obtained by

xi = Fi([xi−1,xi−2, · · · ,x0]) (1)

where [·] represents feature concatenation along the channel

axis and the input x0 is the initial feature f1. Because the in-

put of the convolution layer is repeatedly concatenated, the

number of channels of the inputs for the next convolution

layer consistently increases with growth rate k.

2.2. ResNet

He et al. [5] introduced residual learning. Let x and

F (x) be the network input and output, respectively, then

desired underlying mapping H (x) is to be learned. Resid-

ual learning trains H (x)− x = F (x) rather than H (x) as

in most CNNs. The desired mapping H (x) is cast into

H (x) = F (x) + x which can be implemented with skip

connections.

2.3. Channel­attention

CA was introduced as squeeze and excitation block for

classification [6]. In CA, a weight is multiplied to each

channel and the weights are trainable parameters. In clas-

sification, residual learning with CA gives better perfor-

mance. Zhang et al. [28] also argued that CA improves the

performance of SISR.

Fig. 2 shows the block diagram of CA. CA consists of

squeeze section and excitation section. Squeeze works as

global pooling: formally, input feature x ∈ R
H×W×C is

averaged channel-wise to generate z ∈ R
1×1×C , e.g., at

the c-th channel:

zc = Fgp(x
c) =

1

H ×W

H∑

i=1

W∑

j=1

xc(i, j), 1 ≤ c ≤ C

(2)

where Fgp(·) represents global pooling, and H, W, and C

denote the height, width, and the number of channels of the

input feature x, respectively. Then, channel-wise weights s

are computed by



Figure 2. Block diagram of CA.

s = f(Fsq2(δ(Fsq1((z))))), (3)

where f denotes the sigmoid activation, δ indicates the

rectified linear unit (ReLU) [12], and Fsq1(·) and Fsq2(·)
are 1 × 1 convolution layers with channel reduction pa-

rameter r. Finally, the input and the obtained weights,

s = [s1, s2, · · · , sC ], are multiplied channel-wise to give

x̃
c = scxc, 1 ≤ c ≤ C (4)

where the output feature x̃ = [x̃1, x̃2, · · · , x̃C ] of CA has

the same dimension as the input feature x ∈ R
H×W×C .

3. Proposed method

In DenseNet, an increased number of dense connections

indicates an increase of the number of channels (growth rate

k). Huang et al. [7] argued that direct connections from any

layers to all subsequent layers improve the information flow

between layers. However, too large channel dimension due

to many dense connections degrades the performance of the

network if there is no bottleneck layer [7]. Furthermore, the

transition layer is located between dense blocks to reduce

the number of channels. Tong et al. [22] argued that the

skip connections between dense blocks improve the perfor-

mance of network in terms of the PSNR for SISR.

Fig. 3 shows the overall framework of the proposed

DRCA. The proposed DRCA densely connects residual

groups rather than convolution layers. Because the bottle-

neck layers or the transition layers can be overloaded by

many dense connections, we construct the proposed DRCA

with a small number of residual groups (five or six residual

groups). First, the proposed DRCA extracts the initial fea-

ture with one convolution layer and this feature is densely

connected to all residual groups and the last projection layer

(1 × 1 convolution layer). Similar to most ResNet-based

SISR methods, we use long skip connection. Upsample

block consists of convolution layer and pixel shuffle layer

(PSL) [19]. We use PSL with a scale factor of 2. For ×4
enlargement, two upsample blocks are used sequentially,

which is the same as in EDSR and RCAN.

3.1. Residual group

Residual group consists of residual channel-attention

blocks (RCAB). In the proposed network, because resid-

Figure 3. Block diagram of the proposed network with composite

blocks.

ual groups are densely connected, the first RCAB include

projection unit (RCABP) to reduce the number of channels

in the residual group. For example, let k be the number of

channels of the initial feature f1 and also the growth rate

of dense connection between residual groups. The num-

ber of input channels of the i-th residual group is i × k

and each residual group generates k channel features. To

the element-wise sum with different number of channels

between input and output, RCABP reduces the number of

channels from i × k to k by using 1 × 1 convolution layer

at the residual connection and at the first convolution layer

in the residual block. RCABP is located at the first in each

residual group and works as a bottleneck layer [7] as shown

in Fig. 3. Details of RCAB and RCABP are also shown in

Fig. 3.

3.2. Difference from previous methods

Difference from RDN [29], RRDB [23], and DRNet

[26]. Our method, RDN, RRDB, and DRNet combine

ResNet and DenseNet for SISR. Fig. 4 shows basic blocks

of RDN, RRDB, and DRNet. The basic block of RRDB

consists of three dense blocks (Fig. 4(b)) with residual in

residual connections [28]. For simplicity, we show the de-

tails of dense block in RRDB only. All of previous combin-

ing methods densely connect convolution layers, whereas



Figure 4. Basic units of RDN, RRDB, and DRNet. (a) RDB in

RDN [29]. (b) Dense block in RRDB [23]. (c) DRBlock in DRNet

[26].

the proposed method densely connects residual groups. As

shown in Figs. 4(a) and 4(b), RDN and RRDB reduce the

number of channels at the last of the basic block by using

the projection layer to pass the features to the next basic

block. In other words, these methods have the transition

layer in every basic block, which may degrade the perfor-

mance as reported in SRDenseNet [22]. DRNet reduces the

number of channels at the bottleneck of each convolution

layer as shown in Fig. 4(c).

Furthermore, the proposed method uses global dense

connections with local residual connections, whereas the

other hybrid methods use global residual connections with

local dense connections. Dense connections realize a con-

tiguous memory mechanism by passing the concatenated

features of the previous layers to the next layer [29]. Be-

cause RDN, RRDB, and DRNet densely connect the con-

volution layers only inside the basic block, the contiguous

memory mechanism is only used inside the basic block.

However, the proposed method densely connects from ini-

tial feature extraction to residual groups and the last pro-

jection layer, and thus most parts of the proposed method

realize the contiguous memory mechanism. Moreover, the

proposed method concatenates the features after a sufficient

update by many convolution layers in the residual group,

whereas the previous methods concatenate the features af-

ter one update by one convolution layer.

Difference from RCAN [28]. Our method and RCAN

use residual groups. The key difference is connections

between residual groups. Our residual groups are con-

nected using dense connection whereas the residual groups

in RCAN [28] are connected using residual connection, and

thus the proposed method can be called residual in dense

Method Connections between

convolution layers

Connections between

basic blocks

Use

BN?

RDN Dense Residual No

DRNet Dense Residual No

RRDB Dense Residual No

RCAN Residual Residual No

Ours Residual Dense Yes

Table 1. Differences between the proposed method and the previ-

ous methods (RDN, DRNet, RRDB, and RCAN).

connections. Table 1 summarizes the differences between

the proposed method and previous methods.

3.3. Implementation details

We set the number of residual groups to five and the

number of RCABs to 36 (one RCABP and 35 RCABs) for

each residual group. Then, the total number of RCABs is

180. The kernel size of all convolution layers except for the

projection layer is set to 3 × 3.The size of zero padding is

set to one to keep the same size between input and output

features. At the first convolution layer of RCABP in the i-

th residual group, the number of channels is reduced from

i× k to k. The channel reduction ratio r in CA is set to 16,

which is the same as in RCAN [28]. The number of initial

channels and the growth rate k are set to 64. The number

of channels in PSL [19] is set to 4k, which is the same as

in conventional SISR methods [14, 15, 28, 29]. Similar to

EDSR and RCAN, we first train ×2 enlargement network

and then use this network as pre-trained network for ×4 en-

largement network. The ReLU is used as activation unit. In

contrast to recent SISR methods [15, 23, 24, 28, 29], we use

batch normalization (BN) [9].

4. Experimental results and discussions

We implemented the proposed networks with the

PyTorch [18] framework and trained using NVIDIA

GTX 1080 Ti. Training takes 10 days. The

source code is available online: https://github.

com/dong-won-jang/DRCA. We showed results

with/without self-ensemble [15] and discussed pros and

cons of self-ensemble.

4.1. Training

We trained the proposed networks using DIV2K [21].

The LR images were obtained by bicubic downsampling

of HR images using MATLAB. The batch size and input

image size were set to 16 and respectively. The input im-

ages were randomly cropped, rotated (90, 180, and 270

degrees), and flipped during training. The learning rate

was set to 10−4 and decreased by a factor of 2 for every



2 × 105 back-propagation iterations; training was termi-

nated at 106 iterations. We used L1 loss as training loss

and Adam optimizer [11] with β1 = 0.9, β2 = 0.999, and

ǫ = 10−8. Furthermore, Wang et al. [23] reported the influ-

ence of training dataset. Although using the same network

and the same training procedure, different training dataset

can make a big performance difference (by 0.3dB in ×4 en-

largement). Similar to Wang et al. s method, we trained

the proposed DRCA on DIV2K dataset [21] only and on

the merged dataset with DIV2K and Flickr2K [15], namely

DF2K dataset. Similar to Wang et al., the proposed net-

work trained on DF2K dataset gave better performance than

trained on DIV2K dataset. For fair comparisons, in the rest

of the paper, results trained on DF2K dataset is represented

as *.

4.2. Ablation study

We studied the influence of the number of residual

groups with the total number of RCABs fixed. The first

model consists of five residual groups with 36 RCABs,

whereas the second model consists of six residual groups

with 30 RCABs. Then, the total number of RCABs is 180

for both models. We use BN only for the first model. In this

case, the number of parameters is approximately 14.18M.

For the second model, we remove BN. In this case, the num-

ber of parameters is approximately 14.15M.

Table 2 shows quantitative comparisons of our two mod-

els using five datasets: Set5 [1], Set14 [27], BSD100 [16],

Urban100 [8], and Manga109 [17]. These dataset im-

ages can be classified into natural scenes (Set5, Set14, and

BSD100), urban scenes (Urban100), and Japanese manga

(Manga109). Although the numbers of parameters of two

models are similar, the performances of these models are

different. Five residual groups with BN is better than six

residual groups without BN for all datasets. In the rest of

the paper, the results of DRCA are obtained by five residual

groups with 36 RCABs.

Dataset DRCA(G=5, R=36) DRCA(G=6, R=30)

PSNR (dB) SSIM PSNR (dB) SSIM

Set5 32.68 0.9009 32.61 0.8997

Set14 28.91 0.7898 28.88 0.7886

BSD100 27.80 0.7444 27.78 0.7434

Urban100 26.94 0.8111 26.84 0.8082

Manga109 31.37 0.9182 31.29 0.9179

Table 2. Quantitative comparison depending on the numbers of

residual groups (G) and RCABs (R) (scale factor: 4).

4.3. Quantitative comparisons

For quantitative comparisons, the PSNR and SSIM were

used. These metrics were computed on Y channel only in

the transformed YCbCr color space. Similar to [4, 14, 15,

28, 29], we cropped the boundary by the same number of

pixels as the scale factor before evaluation, e.g., four pixels

in case of ×4 enlargement.

We compared the proposed method with 11 state-of-

the-art methods for two enlargement cases: VDSR [10],

LapSRN [13], SRResNet [14], SRDenseNet [22], EDSR

[15], D-DBPN [4], RDN [29], DRNet-L [26], RCAN [28],

ProSR [24], and RRDB [23]. The results of SRResNet

and SRDenseNet were computed by re-implementation [26]

for the same training dataset. We used self-ensemble [15]

which was the average resulting image of 8 geometric trans-

formations including original image during test phase. In

the rest of the paper, self-ensemble was represented as +.

The best and the second best were emphasized by bold and

underline, respectively.

Table 3 shows the quantitative comparisons for ×2 and

×4 enlargement. Quantitative results not provided in the

papers [24,26] were indicated by hyphens. For ×2 enlarge-

ment, there is keen competition between RCAN+ and the

proposed DRCA+ in terms of the PSNR and SSIM. Either

the proposed DRCA+ or RCAN+ is usually the best. For ×4
enlargement, the proposed DRCA+* outperforms the others

in terms of the PSNR and SSIM. Without self-ensemble,

the proposed DRCA achieved the best performance in most

datasets. Because Set5, Set14, and BSD100 usually consist

of natural scenes with small height and width, the perfor-

mance difference between the state-of-the-art methods and

the proposed method on these datasets is fairly smaller than

that of Urban100 and Manga109 datasets.

4.4. Qualitative comparisons

Both self-ensemble and DF2K dataset improve the quan-

titative performance in terms of the PSNR and SSIM, how-

ever, self-ensemble may generate aliasing problem. To dis-

cuss pros and cons of self-ensemble, the only recent state-

of-the-art SISR methods were used for qualitative compar-

isons. To show which method is clearly better or worse, we

show cropped and enlarged images.

Figs. 5 and 6 show high frequency regions in Urban 100

dataset. For image “img 076” of Urban100 for ×4 enlarge-

ment, EDSR, RDN, and DRNet generated blurred pattern in

solid box and reconstructed reasonable structure in dashed

box in HR image. RRDB and RCAN slightly restored struc-

ture in solid box, whereas generated undesirable structure

in dashed box. The proposed DRCA well reconstructed

reasonable structure in solid box, whereas our method also

suffered from undesirable edges in dashed box. This arti-

fact can be reduced by self-ensemble and extra train dataset

such as DF2K. Self-ensemble is average resulting image of



Method Scale Set5 Set14 BSD100 Urban100 Manga109

PSNR

(dB)

SSIM PSNR

(dB)

SSIM PSNR

(dB)

SSIM PSNR

(dB)

SSIM PSNR

(dB)

SSIM

Bicubic 2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339

VDSR [10] 2 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140 37.22 0.9750

LapSRN [13] 2 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101 37.27 0.9740

EDSR [15] 2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773

D-DBPN [4] 2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775

RDN [29] 2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780

DRNet-L [26] 2 38.12 0.9604 34.07 0.9213 32.35 0.9016 33.09 0.9366 - -

ProSR [24] 2 - - 34.00 - 32.34 - 32.91 - - -

RCAN [28] 2 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786

RCAN+ [28] 2 38.33 0.9617 34.23 0.9225 32.46 0.9031 33.54 0.9399 39.61 0.9788

DRCA (ours) 2 38.28 0.9615 34.13 0.9230 32.39 0.9023 33.25 0.9382 39.40 0.9779

DRCA+ (ours) 2 38.32 0.9617 34.25 0.9235 32.43 0.9027 33.41 0.9392 39.55 0.9784

Bicubic 4 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866

VDSR [10] 4 31.35 0.8830 28.02 0.7680 27.29 0.7251 25.18 0.7540 28.83 0.8870

LapSRN [13] 4 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900

SRResNet [14] 4 32.07 0.8930 28.56 0.7809 27.57 0.7352 26.08 0.7839 - -

SRDenseNet [22] 4 32.04 0.8927 28.52 0.7800 27.54 0.7346 26.05 0.7830 - -

EDSR [15] 4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148

D-DBPN [4] 4 32.47 0.8990 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

RDN [29] 4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151

DRNet-L [26] 4 32.61 0.8993 28.96 0.7896 27.80 0.7426 26.87 0.8075 - -

ProSR [24] 4 - - 28.94 - 27.79 - 26.89 - - -

RRDB [23] 4 32.60 0.9002 28.88 0.7896 27.76 0.7432 26.73 0.8072 31.16 0.9164

RRDB* [23] 4 32.73 0.9011 28.99 0.7917 27.85 0.7455 27.03 0.8153 31.66 0.9196

RCAN [28] 4 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

RCAN+ [28] 4 32.73 0.9013 28.98 0.7910 27.85 0.7455 27.10 0.8142 31.65 0.9208

DRCA (ours) 4 32.68 0.9009 28.91 0.7898 27.80 0.7444 26.94 0.8111 31.37 0.9182

DRCA* (ours) 4 32.73 0.9015 28.98 0.7913 27.86 0.7458 27.11 0.8156 31.74 0.9220

DRCA+ (ours) 4 32.75 0.9017 28.99 0.7913 27.86 0.7459 27.15 0.8156 31.71 0.9214

DRCA+* (ours) 4 32.78 0.9021 29.05 0.7926 27.90 0.7467 27.28 0.8190 31.95 0.9236

Table 3. Quantitative comparisons with the state-of-the-art methods for scale factor of 2 and 4 (Best and second best were highlighted).

Results using DF2K dataset and self-ensemble were denoted with * and +, respectively.

8 different geometric transformations [15]. If there are no

undesirable edges in the other transformation, undesirable

structure can be reduced as shown in RCAN+ and DRCA+

of Fig. 5. Furthermore, extra train dataset improved the per-

formance as shown in RRDB* and DRCA*. The proposed

DRCA+* restored image with the best PSNR and SSIM and

reasonable structure.

Self-ensemble can reduce undesirable structure by aver-

aging. However, if some geometric transformation gener-

ates undesirable edges, self-ensemble may generate unde-

sirable edges as shown in RCAN+ of Fig. 6. For image

“img 073” as shown in Fig. 6, most existing methods suf-

fered from aliasing and blurring artifacts in the left build-

ing (dashed box in HR image). RCAN produced no alias-

ing in the left building, however, RCAN+ generated unde-

sirable edges. In contrast, the proposed DRCA recovered

them faithfully and any artifact was observed by using self-

ensemble as shown in DRCA+ and DRCA+*.

For image “253027” of BSD100 for ×4 enlargement as

shown in Fig. 7, DRNet and RRDB generated aliasing in

mane of the left zebra and most methods blurred cheek of

the left zebra (solid box in HR image). Furthermore, most

methods failed to recover stripe patterns in the right ze-

bra (dashed box in HR image). Without self-ensemble, the

proposed DRCA was not the best in terms of the PSNR,

whereas it recovered well without blurred pattern and alias-



Figure 5. Qualitative comparisons with the state-of-the-art methods on “img 076” from Urban100 dataset.

Figure 6. Qualitative comparisons with the state-of-the-art methods on “img 073” from Urban100 dataset.

ing. Furthermore, the proposed DRCA recovered stripe on

abdomen faithfully in the right zebra. With self-ensemble,

RCAN+ slightly recovered the stripe pattern on the back of

the right zebra. DRCA+ slightly blurred the stripe pattern



Figure 7. Qualitative comparisons with the state-of-the-art methods on “253027” from BSD100 dataset.

on the abdomen of the right zebra. However, RCAN+ and

DRCA+ achieved higher PSNR and SSIM than RCAN and

DRCA, respectively. Self-ensemble commonly increased

the PSNR and SSIM even though self-ensemble blurred

high-frequency regions. Unlike in Figs. 5 and 6, for im-

age “253027”, DRCA+ is better than DRCA+*.

4.5. Run­time

We measured average run-time of RCAN and the pro-

posed DRCA using Urban100 dataset with scale factor 4.

RCAN achieved 0.932s/image and the proposed method

performed 0.892s/image with i5 CPU and GTX1080Ti. The

proposed DRCA achieved better performance with fewer

trainable parameters and less computation than RCAN.

5. Conclusion

We proposed SISR methods by combining DensNet and

ResNet: densely connected residual groups rather than con-

volution layers. The deeper residual group extracted better

features without increasing the number of channels of out-

put features. Compared with the state-of-the-art methods

using five datasets, the proposed network gave better results

with fewer parameters and less computation. So, dense con-

nections between deep residual groups improved network

efficiency. We are careful to say that the proposed network

is good for other applications. If the network learns the

mapping between input image and output image with su-

pervised learning, we expect the proposed DRCA can per-

form well in various applications, such as image denois-

ing, image dehazing, and image contrast enhancement. Fu-

ture work will focus on the detailed investigation of the role

of ResNet and DenseNet with multiple streams or grouped

convolutions and on selection of the ratio between the num-

ber of residual groups and the number of RCABs.
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