
GRDN:Grouped Residual Dense Network for Real Image Denoising and

GAN-based Real-world Noise Modeling

Dong-Wook Kim∗, Jae Ryun Chung∗, and Seung-Won Jung

Department of Multimedia Engineering

Dongguk University, 04620, Seoul, Korea

spnova12@gmail.com, wjdwofus1004@gmail.com, swjung83@gmail.com

Abstract

Recent research on image denoising has progressed with

the development of deep learning architectures, especially

convolutional neural networks. However, real-world image

denoising is still very challenging because it is not possible

to obtain ideal pairs of ground-truth images and real-world

noisy images. Owing to the recent release of benchmark

datasets, the interest of the image denoising community is

now moving toward the real-world denoising problem. In

this paper, we propose a grouped residual dense network

(GRDN), which is an extended and generalized architec-

ture of the state-of-the-art residual dense network (RDN).

The core part of RDN is defined as grouped residual dense

block (GRDB) and used as a building module of GRDN. We

experimentally show that the image denoising performance

can be significantly improved by cascading GRDBs. In ad-

dition to the network architecture design, we also develop a

new generative adversarial network-based real-world noise

modeling method. We demonstrate the superiority of the

proposed methods by achieving the highest score in terms of

both the peak signal-to-noise ratio and the structural simi-

larity in the NTIRE2019 Real Image Denoising Challenge -

Track 2:sRGB.

1. Introduction

In the field of image denoising, recent studies show

that learning-based methods are more efficient than pre-

vious handcrafted methods such as block matching 3D

(BM3D) [6] and its variants. It is essential for learning-

based methods to have a sufficient amount of dataset with

high quality. Because a pair of noisy and noise-free im-

ages can be easily constructed by adding synthetic noise

to noise-free images, a majority of previous learning-based

methods focus on the classic Gaussian denoising task and

pay the most attention to the architecture design of net-
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works, especially convolutional neural networks (CNNs).

However, due to the gap between synthetically generated

noisy images and real-world noisy images, it was found that

CNNs trained using synthetic images do not perform well

on real-world noisy images and sometimes even inferior to

BM3D [22].

Toward real-world image denoising, there have been two

main approaches. The first approach is to find a better

statistical model of real-world noise rather than the addi-

tive white Gaussian noise [3, 8, 10, 19, 23]. In particular,

a combination of Gaussian and Poisson distributions was

shown to closely model both signal-dependent and signal-

independent noise. The networks trained using these new

synthetic noisy images demonstrated the superiority in de-

noising real-world noisy images. One clear advantage of

this approach is that we can have infinitely many train-

ing image pairs by simply adding the synthetic noise to

noise-free ground-truth images. However, it is still arguable

whether the real-world noise can be modeled by statistic

models. The second approach is thus in an opposite di-

rection. From real-world noisy images, nearly noise-free

ground-truth images can be obtained by inverting an image

acquisition procedure [1, 4, 24, 22, 2]. To our knowledge,

smartphone image denoising dataset (SIDD) [1] is one of

the largest high quality image datasets on the second ap-

proach. However, the amount of provided images may not

be enough for training a large network and without a suf-

ficient knowhow it is difficult to generate ground-truth im-

ages from real-world noisy images. We thus adopt the sec-

ond approach but applied our own generative adversarial

network (GAN)-based data augmentation technique to ob-

tain a larger dataset.

The network architecture is of course the utmost impor-

tant. In CNN-based image restoration, dense residual blocks

(RDBs) [33, 32] have received great attention. In this pa-

per, we propose a new architecture called grouped resid-

ual dense network (GRDN). In particular, the proposed ar-

chitecture adopts the recent residual dense network (RDN)

as a component with a minor modification and defines it



Figure 1: The proposed network architecture: GRDN.

as grouped residual dense block (GRDB). By cascading

the GRDBs with attention modules, we could obtain the

state-of-the-art performance in real-world image denoising

task [28]. We achieved the best performance in terms of

the peak signal-to-noise ratio (PSNR) of 39.93 dB and the

structural similarity (SSIM) of 0.9736 in the NTIRE2019

Real Image Denoising Challenge - Track 2:sRGB.

2. Related Works

2.1. Image Restoration

Image denoising is one of the most extensively studied

topics in image processing. Owing to significant advances

in deep learning, CNN-based methods are now dominating

in image denoising. However, most previous learning-based

image denoising methods have focused on the classic Gaus-

sian denoising task. Toward real-world image denoising, the

first approach was to capture a pair of noisy and noise-

free images by using different camera settings [2, 22]. It

was shown in [22] that earlier learning-based methods were

comparable or sometimes even inferior to classic meth-

ods such as BM3D. We consider this is mainly because of

insufficient quality and quantity of training dataset. Con-

sequently, more abundant and elaborate datasets such as

Darmstadt noise dataset (DND) and SIDD [1] were de-

veloped, and recent learning-based methods [1, 3, 10, 23]

showed their superiority over classic methods for real-world

image denoising.

In addition to the efforts in generating high quality

datasets, a significant amount of research has been made

to find better network architectures for image denoising.

From the viewpoint of CNNs, network architectures devel-

oped for different image restoration tasks such as image de-

noising, image deblurring, super-resolution, and compress

artifact reduction share similarities. It has been repeatedly

demonstrated that one architecture developed for a certain

image restoration task also performs well in other restora-

tion tasks [30, 32, 23]. We thus examined many of the ar-

chitectures developed for different image restoration tasks,

especially super-resolution [7, 13, 16, 17, 14, 26, 33, 31,

11, 18]. Among them, RDN [33, 32] and residual channel

attention network (RCAN) [31] are most closely related to

our network architecture.

In particular, we attempt to take advantage of novel ideas

in RDN and RCAN. RCAN introduced residual in residual

(RIR) architecture, and the ablation study showed that the

performance gain by RIR was the most significant. Thus,

we use this RIR principle in our architecture design. In addi-

tion, RDN itself is an image restoration network but we use

it with modifications as a component of our network and

construct a cascaded structure of RDNs as our image de-

noising network. Recent studies also showed the effective-

ness of attention modules. Among many attention modules,

convolutional block attention module (CBAM) [28], an eas-

ily implantable module that sequentially estimates channel

attention and spatial attention, showed efficacy in general

object detection and image classification, and thus we in-

clude CBAM into our network.

2.2. GAN

The amount of training images in publicly available real-

world image denoising datasets such as SIDD and DND

may not be enough to train a deep and wide neural network.

One feasible way of augmenting these datasets is to exploit

the capability of GAN [9]. The first GAN-based real-world

noise modeling method [5] uses only real-world noisy im-

ages for training the noise generator, where the discrimina-

tor is trained to distinguish between real and simulated noise

signals. The noise generator is then used to add synthetic but

realistic noise to noise-free ground-truth images, and the de-

noising network is finally trained using the generated pairs

of ground-truth and noisy images. The real-world image de-

noising performance was significantly improved by using

the dataset generated by GAN.

We improve the previous GAN-based real-world noise

simulation technique [5] by including conditioning signals

such as the noise-free image patch, ISO, and shutter speed

as additional inputs to the generator. The conditioning on

the noise-free image patch can help generating more realis-

tic signal-dependent noise and the other camera parameters

can increase controllability and variety of simulated noise

signals. We also change the discriminator of the previous

architecture [5] by using a recent relativistic GAN [12]. Un-

like conventional GANs, the discriminator of the relativistic

GAN learns to determine which is more realistic between

real data and fake data. Our method is different from the



conventional relativistic GAN in that both the real and fake

data are used as an input to make the discriminator more

explicitly compare the two data.

(a)

(b)

Figure 2: Components of GRDN: (a) RDB and (b) GRDB.

3. Proposed Methods

3.1. Image Denoising Network

Our image denoising network architecture called GRDN

is shown in Fig. 1. Our designing principle is to distribute

burdens of each layer such that a deeper and wider net-

work can be well trained. To this end, residual connections

are applied in four different levels. Down-sampling and up-

sampling layers are included to enable a deeper and wider

architecture and CBAM [28] is also applied.

Inspired by RDN [33], we use RDB as shown in Fig. 2(a)

as a building module. In RDN, the features from cascaded

RDBs are concatenated together and followed by the 1×1

convolutional layer. We define this feature concatenation

part of RDN, as shown in Fig. 2(b), as GRDB and use it

as a building module of our GRDN. Note that the origi-

nal RDN [33] applies convolutional layers before and af-

ter GRDB and uses global residual learning for image de-

noising. However, we consider that RDN imposes a heavy

burden to the very last 1×1 convolutional layer of GRDB.

Therefore, we instead cascade GRDBs such that the fea-

tures from RDBs can be fused in multiple stages. Moti-

vated by many recent image restoration networks including

RDN [33], we also include the global residual connection

such that the network can focus on learning the difference

between the noisy and ground-truth images. Last, we ex-

ploit CBAM as a building module to further improve the

denoising performance. The position of the CBAM block

was empirically chosen as in-between the upconvolutional

layer and the last convolutional layer.

Figure 3: cERGAN generator.

Although GRDN is structurally deeper than RDN [33,

32], we used the same number of RDBs. Specifically, 16

RDBs were used in the original RDN for image denoising.

We use 4 stack of GRDBs and each GRDB consists of 4

RDBs, resulting 16 RDBs in GRDN.

3.2. GAN­based Real­world Noise Modeling

Motivated by the recent technique [5], we develop our

own generator and discriminator for real-world noise mod-

eling. Likewise with the previous technique [21], we use

residual blocks (ResBlocks) as a building module of the

generator. However, we made several modifications to im-

prove the performance of real-world noise modeling. Fig. 3

show the generator architecture. First, we include condition-

ing signals: the noise-free image patch, ISO, shutter speed,

and smartphone model as an additional input to the gen-

erator. The conditioning on the noise-free image patch can

help generating more realistic signal-dependent noise and



Figure 4: cERGAN discriminator.

the other camera-related parameters can increase control-

lability and variety of simulated noise signals. To train the

generator with these conditioning signals, we used the meta-

data of SIDD [1]. Second, spectral normalization (SN) [20]

is applied before batch normalization in the basic convolu-

tional units like the one used in [29]. Third, our ResBlock

includes the residual scaling [25, 18, 27]. SN and residual

scaling were empirically found to be useful in training our

generator.

Our discriminator architecture as shown in Fig. 4 is

also different from the previous GAN-based noise simula-

tion technique [5]. Enhanced super-resolution GAN (ES-

GAN) [27] showed that relativistic GAN [12] is effec-

tive in generating realistic image textures. Unlike original

GAN[9], the discriminator of relativistic GAN learns to

determine which is more realistic between real data and

fake data. Let C(x) denote the non-transformed discrimi-

nator output for input image x. The standard discrimina-

tor can then be expressed as D(x) = σ(C(x)), σ is the

sigmoid function. The discriminator of relativistic average

GAN (RaGAN) adopted in ESGAN is defined as:

DRaGAN (xr, xf ) = σ(C(xr)− E[C(xf )]), (1)

DRaGAN (xf , xr) = σ(C(xf )− E[C(xr)]), (2)

where xr and xf denote real data and fake data, respec-

tively, and E[·] represents the expectation operator, which is

applied to all of the data in the mini-batch [27].

The discriminator of the proposed network, defined as

conditioned explicit relativistic GAN (cERGAN), is given

as

DcERGAN (xc, xr, xf ) = σ(C(xc, xr, xf )), (3)

DcERGAN (xc, xf , xr) = σ(C(xc, xf , xr)), (4)

where xc denote the conditioning signal. Specifically, we

make each conditioning data have the same size as the train-

ing patch by replicating values, and thus our xc consists of

4 patches: 3 constant patches from smartphone code (e.g.

Google Pixel = 0, iPhone 7 = 1, etc), ISO level, and shut-

ter speed, and one noise-free image patch. In addition to xc,

we also use both xr and xf as an input of the discriminator.

Note that ESGAN uses either xr or xf as an input of the

discriminator.

The loss functions of the generator and discriminator, de-

noted as LcERGAN
G and LcERGAN

D , respectively, are finally

defined as follows:

LcERGAN
G =

1

2
E[(DcERGAN (xc, xr, xf ))

2]+

1

2
E[(DcERGAN (xc, xf , xr)− 1)2],

(5)

LcERGAN
D =

1

2
E[(DcERGAN (xc, xr, xf )− 1)2]+

1

2
E[(DcERGAN (xc, xf , xr))

2].

(6)

In other words, if the second input is xr and the third input

is xf , the discriminator is trained to predict a value close

to 1, i.e., xr is more realistic than xf . If the two inputs are

switched, the discriminator is trained to predict a value close

to 0, i.e., xf is less realistic than xr. The generator is trained

to fool the discriminator. By requiring the network to ex-

plicitly compare between real data and fake data, we could

simulate more realistic real-world noise.

4. Experiments

We implemented all of our models using PyTorch li-

brary with Intel i7-8700 @3.20GHz, 32GB of RAM, and

NVIDIA Titan XP.



1st 2nd 3rd 4th 5th 6th 7th

Model RDN GRDN GRDN GRDN GRDN GRDN GRDN

CBAM - - X X - X X

Patch size 48 48 48 96 96 96 96

# of RDBs 16 16 16 16 16 20 16

# of filters 64 64 64 64 64 64 80

PSNR (dB) 39.37 39.41 39.46 39.62 39.63 39.65 39.67

Table 1: Comparison of image denoising models.

4.1. Datasets

We used the training and validation images of NTIRE

2019 Real Image Denoising Challenge, which is a subset

of SIDD dataset [1]. Let ChDB denote the dataset we used

for our experiment. Specifically, 320 high-resolution im-

ages and 1280 cropped image blocks with the size 256×256

were used for training and validation, respectively. The pro-

vided images were taken by five smartphone cameras - Ap-

ple iPhone 7, Google Pixel, Samsung Galaxy S6 Edge, Mo-

torola Nexus 6, and LG G4. Because the ground-truth im-

ages of the test dataset are not publicly available, we re-

port the performance of image denoising models using the

validation dataset in this Section. Since we noticed non-

marginal degradations around image borders in ground-

truth images, we excluded the first and last 8 rows/columns

when generating training patches. General data augmenta-

tion techniques such as scaling, flipping, and rotation were

not applied.

4.2. Image Denoising

4.2.1 Implementation details

We augmented the provided training dataset by two ways.

First, we used the author-provided source code of [10] for

adding synthetic noise to the ground-truth images. We also

applied our own GAN-based noise simulator described in

Sec.3.2 to generate additional synthetic noisy images.

In each training batch, we randomly extracted 16 pairs

of ground-truth and noisy image patches. We trained using

Adam [15] with β1 = 0.9, β2 = 0.999. The initial learning

rate was set to 10−4 and then decreased to half at every

2× 105 iteration. We trained the network using L1 loss. We

trained our model for approximately 5 days.

We used 4×4 filters for up/down-convolutional layer and

1×1 filters for fusing the features concatenated from RDBs.

Otherwise, we used 3×3 filters. Zero-padding was used

and dilation was not used for all convolutional layers. Each

RDB has 8 pairs of convolutional layers and ReLU activa-

tion layers.

4.2.2 Comparison to RDN

First, we compared our GRDN model with RDN [32]. The

experimental result is shown in Table 1. We re-trained RDN

using ChDB. The 1st and 2nd columns in Table 1 corre-

spond to RDN and proposed GRDN. It can be seen that the

PSNR of our model is 0.04 dB higher than that of RDN.

Note that RDN and GRDN have the same number of RDBs,

and thus the number of parameters is similar. Specifically,

our basic GRDN model has 22M parameters while RDN

has 21.9M parameters.

4.2.3 Experiments on patch size

Since the original image resolution is very high (more than

12M pixels), the largest possible patch size needs to be used

to include sufficient image contents. We thus increased the

patch size to 96 × 96, which was the largest possible size in

our experimental environment. By comparing the 2nd and

5th columns of Table 1, we can see that the significant per-

formance gain of 0.22dB was obtained by increasing the

patch size.

4.2.4 Experiments on CBAM module

CBAM [28] is a simple but effective module for CNNs.

Because it is a lightweight and general module, it can be

easily implanted to any CNN architectures without largely

increasing the number of parameters. In particular, CBAM

can be placed at bottlenecks of the network. Since we have

down-sampling and up-sampling layers, we examined dif-

ferent positions and combinations of CBAMs. We con-

cluded that for our model the best position of CBAM is after

the up-sampling layer. We believe this indicates that CBAM

enhances important features from the up-sampled data. It

also helps to construct a final denoised image for the last

convolution layer which comes after. The effectiveness of

CBAM was found to be dependent on the complexity of the

network. Comparing the 2nd and 3rd columns of Table 1,

CBAM increased the PSNR by 0.05 dB. However, after in-

creasing the patch size, the gain by CBAM became diluted.

Comparing the 5th and 6th columns of Table 1, CBAM even

decreased the PSNR by 0.01 dB.



(a)

(b)

(c)
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Figure 5: Experimental results on real-world noise mod-

eling: (a) The real-world noisy image patches in ChDB,

(b) the ground-truth image patches, (c) difference between

noisy and ground-truth image patches, and (d) noise patches

generated by cERGAN.

4.2.5 Hyper parameter adjustment

We compared networks with different numbers of filters and

GRDBs. Comparing the 6th and 7th columns of Table 1,

a less deeper but more wider network performed 0.02 dB

better. Therefore, the model on the 7th column is the best

performing model under our hardware constraints.

4.3. Real­world Noise Modeling

For training the generator and discriminator of cER-

GAN, we cropped image patches with the size 48×48 from

real-world noisy images and their ground-truth images from

ChDB. We used the batch size of 32 and Adam optimizer

with β1 = 0 and β2 = 0.9. The generator and discrimina-

tor were trained for 340k iterations. The initial learning rate

was set as 0.0002 for both discriminator and generator, and

we linearly decayed the learning rate after 320k iterations

such that the learning rate became 0 after the last iteration.

Fig. 5 illustrates some of noise image patches generated by

the proposed cERGAN. As can be seen in Figs. 5(c) and (d),

the proposed cERGAN can generate noise patches close to

real-world noise.

The effectiveness of simulated noisy images was evalu-

ated by comparing the proposed image denoising network

trained with/without the simulated data. Here, the tested

Figure 6: Convergence analysis of image denoising network

with different dataset.

network corresponds to the 4th column of Table 1. We first

attempted to train our image denoising network using only

the synthesized real-world noisy images obtained by cER-

GAN. The average PSNR was obtained as 38.63 dB in

ChDB validation set, which is inferior to the one we ob-

tained using only the provided ChDB dataset (39.62 dB in

Table 1).

Second, we used the author-provided source code of

[10] for adding statistically modeled real-world noise to

ground-truth images of ChDB. Our image denoising net-

work trained using these dataset only resulted in 36.17 dB,

which demonstrates that the proposed GAN-based noise

modeling at least performs better than the statistic noise

modeling method [10].

Last, we combined the original ChDB dataset with the

synthetic datasets generated by the proposed cERGAN and

conventional method [10]. Here, we could test only one con-

figuration: 90% from ChDB, 5% from simulated ChDB us-

ing [10], and 5% from simulated ChDB using cERGAN.

Fig. 6 shows that the PSNR obtained using the augmented

dataset increases more stably. The resultant PSNR was ob-

tained as 39.64 dB, which is slightly higher than the PSNR

obtained using the original dataset (39.62 dB).

5. NTIRE2019 Image Denoising Challenge

This work is proposed for participating in the

NTIRE2019 Real Image Denoising Challenge - Track

2:sRGB. The challenge aims to develop an image denoising

system with the highest PSNR and SSIM. The submitted

image denoising network corresponds to 7th column of Ta-

ble 1. One minor change in the submitted model is that we

included skip connections for every 2 GRDBs. For training,



(26.32 / 0.7576) (35.49 / 0.9812) (39.11 / 0.9899) (39.59 / 0.9902)

(19.05 / 0.3623) (29.86 / 0.9314) (37.05 / 0.9749) (37.13 / 0.9748)

(17.56 / 0.2444) (26.27 / 0.8255) (33.50 / 0.9305) (33.76 / 0.9347)

(18.73 / 0.2757) (28.12 / 0.8385) (29.44 / 0.8688) (31.38 / 0.8846)

(a) (b) (c) (d) (e)

Figure 7: Comparison of image denoising methods: (a) Ground-truth images, (b) noisy images, (c) denoised images using

BM3D with the standard deviation of 50, (d) denoised images using RDN, and (e) denoised images using our proposed

network. Below each noisy and denoised image, its quality is provided as (PSNR (dB) / SSIM). The results are best viewed

in the electronic version.

Method PSNR SSIM

GRDN (Ours) 39.931743 0.973589

2nd method 39.883139 0.973113

3rd method 39.818198 0.972963

4th method 39.675235 0.972554

5th method 39.610533 0.972637

Table 2: Performance comparison on the test dataset

of NTIRE 2019 Real Image Denoising Challenge -

Track2:sRGB.

we used the augmented ChDB using the technique men-

tioned in Sec. 4.3. Our model ranked 1st place for real im-

age denoising both in terms of PSNR and SSIM. As shown

in Table 2, our model outperformed the 2nd rank method by

0.05 dB.

6. Conclusion

In this paper, we proposed an improved network ar-

chitecture for real-world image denoising. By using resid-



ual connections extensively and hierarchically, our model

achieved the state-of-the-art performance. Furthermore, we

developed an improved GAN-based real-world noise mod-

eling method.

Although we could evaluate the proposed network only

to real-world image denoising, we believe that the proposed

network is generally applicable. We thus plan to apply the

proposed image denoising network to other image restora-

tion tasks. We also could not fully and quantitatively justify

the effectiveness of the proposed real-world noise modeling

method. A more elaborate design is clearly necessary for

better real-world noise modeling. We believe that our real-

world noise modeling method can be extended to other real-

world degradations such as blur, aliasing, and haze, which

will be demonstrated in our future work.
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