
Fractal Residual Network and Solutions for Real Super-Resolution

Junhyung Kwak

NALBI Inc.

Seoul, Republic of Korea

snu11ee@gmail.com

Donghee Son

CASTIS Multimedia R&D Center

Seoul, Republic of Korea

son1113@snu.ac.kr

Abstract

The degradation function in single image super-

resolution (SISR) is usually bicubic with an integer scale

factor. However, bicubic is not realistic and a scale factor

is not always an integer number in the real world. We intro-

duce some solutions that are appropriate for realistic SR.

First, we propose down-upsampling module which allows

general SR network to use GPU memory efficiently. With

the module, we can stack more convolutional layers, result-

ing in higher performance. We also adopt a new regular-

ization loss, auto-encoder loss. That loss generalizes down-

upsampling module. Furthermore, we propose fractal resid-

ual network (FRN) for SISR. We extend residual in residual

structure by adding new residual shells and name that struc-

ture FRN because of the self-similarity like the fractal. We

show that our proposed model outperforms state-of-the-art

methods and demonstrate the effectiveness of our solutions

by several experiments on NTIRE 2019 dataset [1].

1. Introduction

Single image super-resolution (SISR) is an image

restoration problem to get a high-resolution (HR) image

from its low-resolution (LR) image downsampled with

some degradation function. SISR is one of the important

low-level computer vision tasks because it can be applied

in various fields such as medical image [15, 22], satellite

image [24], and surveillance [28]. Recently, deep learning

based methods boost performance in the computer vision

fields [3, 11, 17]. Similarly, deep neural networks has pro-

vided significant improvements in SISR [2, 4, 8, 9, 12, 13,

18, 19, 26, 27].

To handle the resolution difference between the LR im-

age and the HR image, there are two approaches in SISR

literature. The early methods of adopting deep learning for

super-resolution, such as SRCNN [2] and VDSR [8], aim

to learn the mapping function between interpolated LR im-

ages and their HR images. In other words, these models take

interpolated LR images as inputs. Later on, an efficient up-

HR LR EDSR∗ RCAN∗ FRN+ (Ours)

PSNR/SSIM 28.74/0.8839 30.68/0.9200 31.24/0.9260 31.79/0.9340

Figure 1: The result of our model on cam2 02 from NTIRE

2019 validation set compared with baseline models.

sampling layer is proposed in [16]. The proposed layer up-

samples a LR feature map to a HR feature map at the end of

the network.

However, most of these studies assume that the degrada-

tion function, which is used to generate LR images, is bicu-

bic downsampling. Bicubic downsampling is non-realistic

degradation function and hard to be applied in the real

world. In addition, we could not use the upsampling layer

because the scale factor is not always an integer in a realistic

situation.

There are some trials to emulate the realistic situation

C
O
N
V

D O W N

S A M P L I N G

! " # $

%
! " #

$

&
! " #

$

' $… …

C
O
N
V

U P

S A M P L I N G

C
O
N
V

()*
(+*Fractal Residual Architecture

C
O
N
V

I
N
V

P
I
X
E
L

C
O
N
V

I
N
V

P
I
X
E
L

Downsampling Module

C
O
N
V

C
O
N
V

P
I
X
E
L

S
H
U
F
F
L
E

Upsampling Module

P
I
X
E
L

S
H
U
F
F
L
E

Figure 2: Overall architecture of our proposed fractal residual network.

for SR, such as [20]. In [20], new datasets for the realistic

SR are provided. However, these datasets do not assume a

completely realistic situation. The datasets are generated by

using some operators can be represented as theoretic func-

tions. Also, the scale factor of the datasets is an integer. That

is to say, these datasets [20] cannot emulate the realistic sit-

uation perfectly. To approximate the realistic degradation

function more accurately, new dataset [1] is released. The

new dataset is generated by using DSLR cameras for reflect-

ing a realistic situation. The scale factor of the new dataset is

not an integer. With the real-data, we should use LR images

upsampled to the same size as their HR images, as earlier

deep learning based methods did.

In this paper, we propose two solutions for real SR. The

first solution is down-upsampling module for exploiting

GPU memory efficiently. The module consists of downsam-

pling module and upsampling module applied at the front

part and the back part of the model respectively. Downsam-

pling module reduces the size of input feature map. Upsam-

pling module expands the size of the feature map so that

it makes the size of the feature map same as that of the

original feature map. Excluding the first and the last layer

of the model, almost of convolutional operations in our

model take the size-reduced feature as input. Thereby, we

can stack convolutional layers deeper than the model with-

out down-upsampling module under the same GPU mem-

ory condition. The second solution is auto-encoder regu-

larization loss, which is added to L1 loss in the training

step. Auto-encoder loss helps the down-upsampling mod-

ule to extract useful feature for restoring HR images. The

improvement of performance by using proposed solutions

loss is described in Section 4.4.

Furthermore, we propose fractal residual network where

the residual in residual (RIR) patterns are fractally repeated.

Residual architecture can recover the high-frequency com-

ponents. Since a skip connection bypasses the low-

frequency components in the input image, the architec-

ture can focus on reconstructing the high-frequency compo-

nents. RIR structure proposed in RCAN [26] to reconstruct

the high-frequency components of the high-frequency com-

ponents by stacking the residual architectures in a larger

residual architecture. Inspired by RIR, we envelop the resid-

ual architectures in a larger residual architecture iteratively

to get residual in residual in residual. . . architecture. The

proposed model can learn more and more high-frequency

information because residual architectures are hierarchi-

cally repeated.

To show the superiority of our method, we evaluate our

proposed model on newly provided NTIRE 2019 dataset [1]

which is realistic SR data. In addition, we show that our

proposed solutions are effective for realistic SR via model

analysis.

2. Related Works

After the sensational success of the deep learning based

methods in computer vision [3, 11, 17], a lot of deep

learning-based methods for SISR have been studied [2, 8,

9, 13, 26, 27]. The first SISR model using deep learning

was proposed by Dong et al. [2]. They used three convo-

lutional layers to learn the mapping between bicubic in-

terpolated LR images and their HR images. Later on, Kim

et al. [8] stacked very deep convolutional layers and intro-

duced residual learning to train very deep network. Kim et

al. [9] also used recursive learning for SISR. Tai et al. pro-

posed DRRN [18] and MEMNET [19] with recursive block

and memory block for super-resolution respectively. Since

these models take bicubic interpolated LR images as inputs,

the computational complexity of the models increases.

To handle the issue, shi et al. [16] designed an efficient

upsampling layer often referred to as pixel shuffling layer.

Their work used a LR image itself as input, not interpolated

LR image. Most operations of the model are computed for

LR feature maps. Next, the pixel shuffling layer is applied at

the end of the network to upsample the last LR feature map

to a HR feature map for an integer scale factor. Therefore,

! " # $
%

… …

C
O

N
V

Fractal Residual Architecture

! " # $
& ! " #

$
' $

! " # %
%

… …

C
O

N
V

! " # %
(! " # %

' %

! " #)
%

C
O

N
V

! " #)
*

! " #
)
')

! " # +
%

C
O

N
V

! " #
+
,

! " # +
' +

… …

… …

…

Figure 3: The structure of fractal residual architecture.

the computational complexity of the model decreases. Since

the proposal of the pixel shuffling layer, it is used to reduce

the computational complexity in many SISR models [12,

13, 26, 27].

Inspired by Resnet [5], Ledig et al. [12] proposed the

SISR network composed of residual blocks. For efficient

memory usage, the residual block without batch normaliza-

tion [7] was proposed by Lim et al. [13]. They could make a

deeper model than previous works. Moreover, they reported

that L1 loss is better than L2 loss in terms of PSNR. After

that, most SR models [26, 27] used L1 loss as loss function.

To exploit hierarchical features, Zhang et al. [27] proposed

residual dense network (RDN). They used residual dense

block as a basic block, which is a combination of residual

block and dense block. Hu et al. [6] introduced Squeeze-

and-Excitation network which adopted channel attention

mechanism to recalibrate the feature responses. Motivated

by squeeze-and-excitation block [6], Zhang et al. [26] pro-

posed RCAN which incorporated channel attention into

SISR method. Another contribution of RCAN is residual

in residual (RIR) architecture. RIR architecture can recon-

struct the high-frequency components in a LR image more

than a conventional residual architecture.

3. Proposed Model

3.1. Overall Structure of Fractal Residual Network

In this section, we describe our proposed model, frac-

tal residual network (FRN) for SISR. FRN consists of five

parts as shown in Figure 2. 1) LR feature extraction layer,

2) Downsampling module, 3) Fractal residual architecture,

C
O
N
V

R
e
L
U

C
O
N
V

I
N
V

P
I
X
E
L

G
l
o
b
a
l

P
o
o
l
i
n
g

C
O
N
V

R
e
L
U

C
O
N
V

P
I
X
E
L

S
H
U
F
F
L
E

Figure 4: The architecture of RCAB PS. Pixel shuffling

layer and inverse pixel shuffling layer are added to RCAB.

4) Upsampling module, 5) Reconstruction layer.

Let ILR and ISR be the interpolated LR image and its

corresponding output image of FRN respectively. We used

just one convolutional layer for extracting feature XFE

from ILR as RCAN [26] did.

XFE = fFE(ILR) (1)

where fFE(·) is a convolutional operation. Then, XFE is

fed to downsampling module for memory efficiency. Down-

sampling module consists of two convolutional layers and

two inverse pixel shuffling layers as shown in Figure 2.

XDOWN = fDOWN (XFE) (2)

where fDOWN (·) is the operation of downsampling mod-

ule. The size of XDOWN is smaller than that of XFE due

to two inverse pixel shuffling layers in downsampling mod-

ule. Because of that, most of the layers in FRN take the

reduced feature as an input. We can build up a deeper net-

work by using downsampling module. The loss of spatial

information can occur due to the reduction of feature size.

However, since we use interpolated LR images which have

spatially low information density, there is not much loss of

spatial information. Furthermore, since our downsampling

module is trainable and reduces the size of a feature map in

the feature domain, it is more efficient than bicubic down-

sampling which is not trainable and reduces the size of an

image in the image domain.

Next, fractal residual architecture takes XDOWN as an

input.

XFRA = fFRA(XDOWN) (3)

where fFRA(·) is the operation of fractal residual archi-

tecture. Fractal residual architecture extracts the useful fea-

tures for reconstructing HR images. The details about frac-

tal residual architecture will be described in the next section

(see Section 3.2). Upsampling module increases the size of

the extracted feature. The feature map becomes the same

size as XFE . The module is composed of two convolutional

layers and two pixel shuffling layers [16] similar to down-

sampling module.

XUP = fUP (XFRA) (4)

where fUP (·) is the operation of the upsampling module.

Finally, ISR is obtained as the output of reconstruction

layer. The reconstruction layer transforms the feature map

to an image.

ISR = fREC(XUP) = fFRN (ILR) (5)

where fREC(·) is a convolutional layer and fFRN (·) de-

notes all operations of our FRN.

3.2. Fractal Residual Architecture

In this section, the details about fractal residual architec-

ture in FRN are described. Fractal residual architecture has

a self-similarity like the fractal structure. The similar struc-

ture is repeated with different level as shown in Figure 3.

The operation of fractal residual architecture is denoted

by fFRA(·). This operation can be presented in the follow-

ing formula.

fFRA(x) = fconv ◦ f
n0

FRB0
◦ · · · ◦ f1

FRB0
(x) + x (6)

where x is an input of fractal residual architecture,

f l
FRB0

(·) is the operation of the l-th outermost fractal resid-

ual block in fractal residual architecture and fconv is a

convolutional operation. We can represent the operations

f i
FRB0

(·) (for 1 ≤ i ≤ n0) as general form fFRB0
(·)

because all operations have the same form. We present

fFRB0
(·) with detail.

fFRB0
(x) = fconv ◦ f

n1

FRB1
◦ · · · ◦ f1

FRB1
(x) + x (7)

where x is an input of fFRB0
(·) and f i

FRB1
(·) (for 1 ≤ i ≤

n1) is the second outermost fractal residual blocks. We can

generalize the operations of fractal residual architecture.

fFRBk−1
(x) = fconv ◦ f

nk

FRBk
◦ · · · ◦ f1

FRBk
(x) + x (8)

In short, because of self-similarity in the architecture, we

name this architecture as “Fractal” residual architecture.

Fractal residual architecture contains lots of complex skip

connections. Because low-frequency components in the in-

put image can be bypassed via lots of skip connections,

the model can concentrate on reconstructing high-frequency

components in the input image.

We use RCAB PS (Residual Channel Attention Block

with Pixel Shuffling) as a basic block in fractal residual ar-

chitecture. The innermost blocks of fractal residual archi-

tecture are different from the above.

fFRBt
(x) = fRCAB PS(x) (9)

where fRCAB PS(·) is the operation of RCAB PS. We ex-

tend RCAB proposed in [26] by adding a pixel shuffling

layer and an inverse pixel shuffling layer (see Figure 4). It

can speed up the inference time without the performance

degradation.

!"# !$#

Feature Space
: The feature representing LR image

: The feature representing HR image

: Encoding

: Non – linear mapping

: Decoding

Figure 5: Illustration of relation between SR and

auto-encoder loss.

3.3. Loss Function

Conventionally, super-resolution networks have been in-

terpreted three parts 1) encoder, 2) non-linear mapper, 3)

decoder as shown in Figure 5. The encoder maps an image

to the feature representing the image. The non-linear map-

per transforms the feature representing the LR image to the

feature representing the HR image corresponding to its LR

image. The decoder reconstructs an image from the feature

map representing the image.

In our proposed model, LR feature extraction layer

and downsampling module correspond to the encoder (i.e.

fencoder = fDOWN ◦ fFE). The fractal residual architec-

ture is a non-linear mapper. Upsampling module and recon-

struction layer correspond to the decoder (i.e. fdecoder =
fREC ◦ fUP). As Zeng et al. mentioned in [25], the proper

encoder and decoder help the SR model to improve the per-

formance.

As shown in Figure 5, without using a non-linear map-

per, the input image should be restored as the output of the

decoder. Therefore, we propose auto-encoder loss to gener-

alize the encoder and decoder for useful feature extraction.

Only HR images are used for auto-encoder loss because it

helps to restore high-frequency components in the HR im-

age.

IAE = fdecoder ◦ fencoder(IHR) = fAE(IHR) (10)

where IHR is the high-resolution image and IAE is the re-

stored image without the non-linear mapper. By minimizing

the difference between IAE and IHR, we can get the gener-

alized encoder and decoder.

Let {Ii
LR

, Ii
HR

}N
i=1

be the training data where Ii
LR

is the

LR image and Ii
HR

is the HR image corresponding to its

LR image. First, we use L1 loss which is generally utilized

in the SR network [13, 27, 26]. Additionally, we use auto-

cam1 04 from NTIRE 2019 validation set [1]

HR

(PSNR / SSIM)

LR

(29.70 dB / 0.8812)

VDSR [8]

(30.34 dB / 0.9050)

EDSR [13]

(30.61 dB / 0.9093)

RCAN [27]

(30.66 dB / 0.9106)

RCAN∗

(30.97 dB / 0.9206)

FRN (Ours)

(31.55 dB / 0.9289)

FRN+ (Ours)

(31.74 dB / 0.9318)

cam2 04 from NTIRE 2019 validation set [1]

HR

(PSNR / SSIM)

LR

(24.33 dB / 0.8415)

VDSR [8]

(25.22 dB / 0.8592)

EDSR [13]

(26.04 dB / 0.8881)

RCAN [27]

(25.95 dB/ 0.8908)

RCAN∗

(26.00 dB / 0.8938)

FRN (Ours)

(26.17 dB / 0.8978)

FRN+ (Ours)

(26.40 dB / 0.9023)

cam1 07 from NTIRE 2019 validation set [1]

HR

(PSNR / SSIM)

LR

(27.29 dB / 0.8660)

VDSR [8]

(28.78 dB / 0.8934)

EDSR [13]

(29.88 dB / 0.9188)

RCAN [27]

(30.15 dB / 0.9187)

RCAN∗

(31.25 dB / 0.9267)

FRN (Ours)

(31.32 dB / 0.9308)

FRN+ (Ours)

(31.64 dB / 0.9357)

Figure 6: Qualitative comparison of our model with other works on NTIRE 2019 validation set [1].

method LR VDSR [8] EDSR [13] EDSR∗ RCAN [27] RCAN∗ FRN (ours) FRN+ (ours)

PSNR 27.78 28.38 29.10 29.36 29.36 29.60 29.85 30.06

SSIM 0.8712 0.8789 0.8989 0.9041 0.9013 0.9069 0.9108 0.9143

Table 1: Quantitative evaluation on NTIRE 2019 validation set. Red and blue indicate the best and the second best

respectively. Baseline model with ∗ means that down-upsampling module is added to the model and auto-encoder loss is

also used to train.

encoder loss to get the generalized encoder and decoder.

Loss =
1

N

N∑

i=1

||IiHR − IiSR||1 + ||IiHR − IiAE ||1 (11)

where ISR = fFRN (ILR) and IAE = fAE(IHR). We min-

imize the loss function to train our proposed FRN. The more

details of the training step will be described in Section 4.2

4. Experiments

4.1. Dataset and Metric

The NTIRE 2019 dataset [1] is the newly released image

dataset for the realistic super-resolution. The dataset con-

sists of 60 training images, 20 validation images, and 20

test images. The dataset is composed of interpolated LR

images and their corresponding HR images. To get realis-

tic super-resolution dataset, the dataset has been prepared

using DSLR cameras. We compare the performance on the

validation set because the ground truth images of the test set

are not provided.

All experimental results are evaluated with PSNR and

SSIM [23] and measured on RGB channels.

4.2. Implementation Details

In this section, we describe training and model hyper-

parameter details. We randomly extract 192 × 192 patches

and set the size of mini-batch as 8. We augment the patch

pairs with horizontal and vertical flips and 90◦ rotations

randomly. The optimizer used is Adam optimizer [10] with

β1 = 0.9, β2 = 0.999, and ǫ = 10−8. We set the learning

rate as 10−4 and use early-stopping at 1.6 × 105 iterations

because of overfitting resulting from not enough data.

We set the reduction ratio, the kernel size and the depth

of convolutional layers to the values same as RCAN [26].

For fractal structure, t = 4 and n0, n1, n2, n3 are 2, 4,

8, 8 respectively. All pixel shuffling and inverse pixel shuf-

fling scale is 2. All networks are implemented with the Py-

Torch [14]. We use NVIDIA GTX 1080 ti GPUs for ex-

periments. Our source code and trained model are publicly

available at https://github.com/Junshk/FRN.

4.3. Experimental Results on NTIRE 2019 dataset

We evaluate the performance of FRN on NTIRE 2019

dataset [1] which is newly provided for realistic SR.

The proposed model and several state-of-the-art models,

VDSR [8], EDSR [13], and RCAN [26], are compared

via quantitative and qualitative analysis. We evaluate not

only original EDSR and RCAN with scale factor 1 but

also modified EDSR and RCAN which applied our so-

lutions (both down-upsampling module and auto-encoder

loss). Adding “*” superscript to the model name means the

modified model that applied our contributions. We present

the method using self-ensemble [21] by putting “+” postfix

to the method name.

As shown in Table 1, FRN+ and FRN achieve the best

and the second best performance respectively. Our proposed

model outperforms the other models in terms of quantita-

tive comparison. The qualitative results are shown in Figure

6. Compared the other models, FRN not only can recon-

struct the high-frequency components, textures, and details

but also remove the noise in the interpolated LR image.

Furthermore, the modified baseline models achieve better

performance than the original baseline models, respectively.

As the proposed solutions are applied for baseline models,

the performance is improved. Thus, we demonstrate the ef-

fectiveness of our proposed solutions for realistic SR. The

more details about model analysis are described in the next

section (Section 4.4)

We also participated in NTIRE 2019 real super-

resolution challenge with a team name of LulluVision. The

results are measured on NTIRE 2019 test set. We submit-

ted our results to challenge. We ranked the 5th with 28.88

PSNR value and 0.84 SSIM value.

4.4. Model Analysis

We analyze the proposed model to demonstrate the effec-

tiveness of our contributions, 1) down-upsampling module,

2) auto-encoder loss, and 3) fractal residual architecture, via

experiments. For each contribution, we compare the model

with the contribution to the model without it. Moreover, we

do an experiment to show the effect of pixel shuffling and

inverse pixel shuffling in a basic block (RCAB PS) of FRN.

All experiments are performed on NTIRE 2019 dataset [1].

Down-upsampling # ! ! ! !

Auto-encoder loss # # ! # !

FRN # # # ! !

PSNR 29.36 29.57 29.56 29.75 29.85

Table 2: Ablation investigations of architecture,

down-upsampling module and auto-encoder loss. For a fair

comparison, RCAN in the third investigation is set deeper

than the original version.

The results are evaluated with PSNR on RGB channels.

1) Down-upsampling module: FRN without down-

upsampling module is not trainable because of OOM (out

of memory) problem. We use RCAN [26] instead of FRN in

this experiment. For a fair comparison, RCAN with down-

upsampling module does not use auto-encoder loss because

the model without down-upsampling module could not ap-

ply auto-encoder loss. Down-upsampling module provides

performance improvement from 29.36 dB to 29.57 dB (see

the first and the second columns in Table 2).

2) Auto-encoder loss: We compare our proposed loss

function (L1 + auto-encoder loss) with the only L1 loss to

validate the effect of auto-encoder loss. Except for the loss

function, the other conditions are same. FRN is used for

this experiment. Performance is improved from 29.75 dB

to 29.85 dB when auto-encoder loss is added to L1 loss.

In short, auto-encoder loss make down-upsampling module

(i.e. encoder and decoder) extract the useful feature for SR.

Thereby the performance is improved (see the fourth and

the fifth columns in Table 2).

3) Fractal residual architecture: We compare FRN with

the network which does not use fractal residual architecture.

We choose RCAN [26], state-of-the-art SR network, as a

baseline model. For a fair comparison, we make the number

of parameters in both models roughly same. The number of

parameters in FRN is about 45.5M. We increase the residual

group number of RCAN to 30 and the number of param-

eters in the modified RCAN is 46.4M. Down-upsampling

module and auto-encoder loss are applied to both models

for the same condition. Fractal residual architecture makes

improvement from 29.56 dB to 29.85 dB under the condi-

tion where the number of parameters in models is nearly

same (see the third and the fifth columns in Table 2).

4) RCAB PS: RCAB was proposed in [26]. To show

the effect of pixel shuffling and inverse pixel shuffling in

RCAB PS, we experiment with two models. Both mod-

els adopt our solutions, down-upsampling module, auto-

encoder loss, and fractal residual architecture. The only dif-

ference between each model is the presence of pixel shuf-

fling and inverse pixel shuffling in the basic block of frac-

tal residual architecture. There is little difference in PSNR

between the two models. However, the average inference

speed of the model with RCAB PS is faster than that of

Basic block PSNR Avg. inference time (sec)

RCAB 29.82 11.3

RCAB PS 29.85 9.1

Table 3: Comparison with RCAB PS and RCAB in terms

of PSNR and average inference time.

the model with RCAB on NTIRE 2019 validation set [1].

The average inference time is improved from 11.25 sec to

9.1 sec as shown in Table 3. Because the spatial size of the

feature map decrease, the time required for global average

pooling is reduced. It is a bottleneck of inference. Thus the

overall inference time is reduced.

5. Conclusion

In this paper, we propose fractal residual network (FRN)

and specific solutions for real super-resolution. FRN is

a much deeper model than previous super-resolution net-

works and the structure that adds long skip connection to

the lower level of residual blocks iteratively. As a result of

the fractal residual architecture, our model could learn the

high-frequency information more easily.

The first solution, down-upsampling module is an essen-

tial part for real super-resolution task because it reduces the

resolution of the feature map and increases the size of re-

ceptive fields without spatial information loss. The second

solution is auto-encoder loss. The loss is effective regular-

izer for the first solution despite its simplicity.

By adopting our strategies, the proposed method

achieves the performance improvement on realistic SR

compared with existing methods.

References

[1] Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei

Zhang. Toward real-world single image super-resolution:

A new benchmark and a new model. arXiv preprint

arXiv:1904.00523, 2019.

[2] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Image super-resolution using deep convolutional net-

works. IEEE transactions on pattern analysis and machine

intelligence, 38(2):295–307, 2016.

[3] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

580–587, 2014.

[4] Muhammad Haris, Gregory Shakhnarovich, and Norimichi

Ukita. Deep back-projection networks for super-resolution.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1664–1673, 2018.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[6] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7132–7141, 2018.

[7] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In International Conference on Machine Learn-

ing, pages 448–456, 2015.

[8] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1646–1654, 2016.

[9] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-

recursive convolutional network for image super-resolution.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1637–1645, 2016.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

[12] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4681–4690,

2017.

[13] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for sin-

gle image super-resolution. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 136–144, 2017.

[14] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban

Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-

ferentiation in pytorch. 2017.

[15] Andrea Rueda, Norberto Malpica, and Eduardo Romero.

Single-image super-resolution of brain mr images us-

ing overcomplete dictionaries. Medical image analysis,

17(1):113–132, 2013.

[16] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1874–1883, 2016.

[17] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[18] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-

resolution via deep recursive residual network. In Proceed-

ings of the IEEE Conference on Computer vision and Pattern

Recognition, pages 3147–3155, 2017.

[19] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-

net: A persistent memory network for image restoration.

In The IEEE International Conference on Computer Vision

(ICCV), Oct 2017.

[20] Radu Timofte, Shuhang Gu, Jiqing Wu, and Luc Van Gool.

Ntire 2018 challenge on single image super-resolution:

methods and results. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition Work-

shops, pages 852–863, 2018.

[21] Radu Timofte, Rasmus Rothe, and Luc Van Gool. Seven

ways to improve example-based single image super resolu-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1865–1873, 2016.

[22] Dinh-Hoan Trinh, Marie Luong, Francoise Dibos, Jean-

Marie Rocchisani, Canh-Duong Pham, and Truong Q

Nguyen. Novel example-based method for super-resolution

and denoising of medical images. IEEE Transactions on Im-

age processing, 23(4):1882–1895, 2014.

[23] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simon-

celli, et al. Image quality assessment: from error visibility to

structural similarity. IEEE transactions on image processing,

13(4):600–612, 2004.

[24] Deniz Yıldırım and Oğuz Güngör. A novel image fusion

method using ikonos satellite images. Journal of Geodesy

and Geoinformation, 1(1):75–83, 2012.

[25] Kun Zeng, Jun Yu, Ruxin Wang, Cuihua Li, and Dacheng

Tao. Coupled deep autoencoder for single image super-

resolution. IEEE transactions on cybernetics, 47(1):27–37,

2017.

[26] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng

Zhong, and Yun Fu. Image super-resolution using very deep

residual channel attention networks. In Proceedings of the

European Conference on Computer Vision (ECCV), pages

286–301, 2018.

[27] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and

Yun Fu. Residual dense network for image super-resolution.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2472–2481, 2018.

[28] Wilman WW Zou and Pong C Yuen. Very low resolution

face recognition problem. IEEE Transactions on image pro-

cessing, 21(1):327–340, 2012.

