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Abstract

Nowadays, deep convolutional neural networks(CNNs)

based methods have achieved favorable performance in

synthetic noisy image denoising, but they are very limited in

real photographs denoising since it’s hard to obtain ground

truth clean image to generate paired training data. Besides,

the existing training datasets for real photographs denois-

ing are too small. To solve this problem, we construct a new

dataset and obtain corresponding ground truth by averag-

ing, and then extend them through noise domain adaptation.

Furthermore, we propose a attentive generative network

by injecting visual attention into the generative network.

During the training, visual attention map learns noise re-

gions. The generative network will pay more attention to

noise regions, which contributes to balancing between noise

removal and texture preservation. Extensive experiments

show that our method outperforms several state-of-the-art

methods quantitatively and qualitatively.

1. Introduction

Image denoising is one of the most basic tasks in im-

age processing. Owing to images are easily corrupted by

noise in the process of acquisition and transmission, they

cannot be used directly for high-level tasks such as object

recognition, remote sensing imaging and medical imaging

..., etc. In most cases, the distribution of noise in real-world

photographs is uncertain and is much different from Gaus-

sian distribution due to factors such as in-camera processing

pipeline and environment. In this paper, we focus on blind

denoising of real photographs.

Many image prior based methods have been proposed

for removing image noise of a certain type and promising

results have been achieved(e.g., BM3D [4], LSSC [9] and

NCSR [5]). However, on one hand, the image priors are

designed mostly by human knowledge, which would fail to

capture full-extent features of images. On the other hand,

Figure 1. Restoration results of one real noisy image from DND

[11]. From left to right and top to bottom: the reconstructed im-

ages by BM3D, GCBD, Noise2Noise and our proposed method.

real-world noisy images often exhibit noises of multiple

types, making the situation more complicated.

Owing to the great success of deep CNNs, discriminative

learning based methods [13, 15, 7, 16] have achieved state-

of-the-art performance toward known noise like Gaussian

noise. Under the assumption that noise type is known, they

can generate synthetic noisy image to form paired training

data and train a deep network to obtain remarkable denois-

ing results. However, such a pair of clean and real noisy

images are hard to get for real photographs. Actually, what

we can get is noise images which are deviated from syn-

thetic Gaussian noise images. These days, some datasets

are proposed for real photographs denoising such as DND

[11] and Nam [10], but they are proposed for testing and

are too small for training. Therefore, such learned based

methods perform poorly on real photographs due to lack of

paired training data.

The contributions of this paper are as follows: Firstly,

we construct a new benchmark dataset which contains real-

world noisy images. And corresponding ground truth clean



Figure 2. The process of expanding the benchmark with noise do-

main adaptation. The source domain and target domain represent

noise image.

Figure 3. Some example images in our constructed dataset.

images are obtained by averaging and expanding them

through noise domain adaptation. Secondly, an attention

map is used to guide the generator focusing on noise region,

which reduces over-smoothing on noiseless region. Exper-

iments on two real noisy photographs dataset and one syn-

thetic datasets show that our method outperforms several

state-of-the-art methods in terms of both quantitative met-

rics and visual quality.

2. Benchmark

In this section, we introduce the details of capturing a

small part of noisy images on different scenes and how to

obtain corresponding ground truth images. Then, how the

limited benchmark are expanded with noise domain adapta-

tion is discussed.

2.1. The Based Benchmark Construction Process

In the process of constructing basic datasets, we use four

cameras from three different camera brands, including Sony

(A7R, RX100 IV), Canon (600D), and Nikon (D800). Each

scene is captured with 5 different ISO settings, i.e., 800,

1,600, 3,200, 6,400, 12,800. For each ISO setting, we set

Table 1. Cameras and camera setting used in our new dataset.
Camera #scenes Sensor size(mm) ISO

Sony A7R 10 36 × 24 128-6.4k
Sony RX100 IV 10 13.2 × 8.8 128-6.4k

Canon 600D 12 22.3 × 14.9 128-12.8k
Nikon D800 12 35.9 × 24 128-12.8k

the shutter speed, the aperture, and the ISO value to ensure

that the scenes are in a natural lighting condition. In sum-

mary, we capture totally 40 different scenes by using 4 cam-

eras in different camera settings. All images are captured in

RAW format. For generating ground truth image, to avoid

the problem of slightly different illuminations and human

bias as illustrated in [1, 11], we obtain the ground truth by

capturing images of the same static scenes for 500 times and

average the captured images. (The first image is selected as

noise image.) The camera is fixed by a tripod. The data

collection is automatically done with shutter release after

the button is pressed by a person. Hence, the misalignment

problem can be nearly avoided in the acquisition process of

500 images for one scene. Besides, to remove outliers, we

remove the images with misalignment and inconsistent lu-

minance. After generating ground truth, we construct train-

ing datasets based on pairs of noise image and its ground

truth noise-free image. The detailed description of cameras

and camera settings is shown in Table 1.

2.2. Expanding the Benchmark with Noise Domain
Adaptation

Owing to we having to shot the scene for 500 times to

get one noisy image’s ground truth, thus creating such suf-

ficient datasets is prohibitively expensive and difficult. The

purpose of noise domain adaptation is to expand the train-

ing datasets. By mapping a source noisy image to a target

noisy image and the two images share the same ground truth

noise-free image, the training datasets will be expanded.

These two noisy images are shot either at the same scene

with different viewpoint or at different scene with similar

environment style. The mapping process is shown in Fig.

2. The noise images referenced in section 2.1 are named

source domains. More formally, let Xs = {xs
i , y

s
i }

Ns

i=0
rep-

resent a dataset including noisy images (source domain) x

and their ground truth images y. Firstly, for source domain

xs
i , we shot some noisy images with some shifts and differ-

ent ISO in the same scene, the dataset consist of these noisy

images is named target domain. Let Xt = {xt
i}

Nt

i=0
repre-

sent a dateset without ground truth samples from the target

domain. Secondly, the generator function G(xs) → xa in

noise domain adaptation model maps a source domain im-

age xs to an adapted image xa. Given the generator func-

tion G, it is possible to create a dataset Xa = {G(xs
i ), y

s
i }

of any size. For the process of domain adaptation (DA), we

employ the architecture as proposed in [2]. Some example

images in the dataset are shown in Fig. 3. The dataset will



Figure 4. The architecture of our proposed attentive denoising GAN. The generator consists of a pyramid residual connected attention map

estimation network and an attentive denoising CNN. The discriminator consists of a series of convolution layers and a DnCNN, and guided

by the attention map.

be publicly available after the paper be published.

3. Attentive denoising GAN

A pixel in a noise region is not only influenced by one

point but by its whole context. A binary attentive mask M

is obtained as follows: if the pixel belongs to noise pixel

we set the value to 1 while if the pixel belongs to noise-free

pixel we set the value to 0. For synthetic data, we record

the noise pixel indexes during generating noise images. For

real-world data, we subtract the noise image with its corre-

sponding clean image, and then use a threshold to determine

whether a pixel belongs to noise region.

The overall architecture of attentive denoising generative

adversarial networks(ADGAN) are shown in Fig. 4. Fol-

lowing the idea of generative adversarial networks [6], The

ADGAN includes two parts: the generative and discrimi-

native networks. Given a noisy image, the generative net-

work attempt to produce an image as real as possible to fake

the discriminator, while the discriminative network tries to

distinguish whether the image is fake or real. Beyond the

standard GAN architecture, visual attention computation is

incorporated in the generator to accurately localize noisy

regions.

3.1. Generative Network

As shown in Fig. 4, the generator consists of two sub-

networks: an pyramid residual connected attention map es-

timation network(PRCAMENet) and an attentive denoising

CNN(ADCNN). The purpose of PRCAMENet is to find

noise regions that the ADCNN needs to get attention, so that

it can avoid over-smoothing over the premise of denoising

performance.

Pyramid Residual Connected Attention Map Estimation

Network. In order to make use of the features from multi-

ple layers of a CNN, the network is constructed based on

a residual connected encoder-decoder structure, where the

residual block is used as the basic structure. The reason to

use residual block lies in that when the original mapping is

more like an identity mapping result, the residual mapping

will be much easier to calculate. Besides, owing to the fea-

tures from different scales are not used to directly estimate

the final attention map, the result will lack global informa-

tion with different scales. To solve this problem, inspired

by usefulness of nonlocal context information in segmen-

tation and classification tasks [14, 17], a three-level pyra-

mid pooling module with pooling sizes 1/4, 1/8 and 1/16

is adopted to refine the learned features by considering the

global information into the optimization. Then, all three-

level features are up-sampling to the original feature size

and are concatenated with the original feature before esti-

mating. The feature size at the end of encoding part is 1/16

of the input size. To reconstruct the attention map into the

original size, we stack four residual blocks with the refined

up-sampling blocks as the decoding module. Besides, the

features corresponding to the same dimension are concate-

nated. The loss function is defined as the mean squared

error(MSE) between the output attention map A and the

ground truth binary mask M.

Attentive Denoising CNN. The purpose of ADCNN is to

balance denoising performance and texture preservation un-

der the guidance of attention map. The input to ADCNN is

the concatenation of the input noisy image and the attention

map from PRCAENet. Given ADCNN with depth D, the

layers are divided into three types as shown in Fig. 4. For

the first layer, 32 filters of size 3 × 3 × 2c Conv are ap-

plied to generate 32 feature maps and followed by ReLU.

Here c indicates the number of image channels. Since the

noisy image and the attention map are concatenated in the

3rd channel, we denote 2c here. From the 2nd layer to the

(D−1)th layer, 32 filters of size 3×3×32 Conv are applied,

which is followed by batch normalization(BN) and ReLU.

For the last layer, c filters of size 3 × 3 × 32 are used to

reconstruct the output. D is set to 15. For ADCNN, we use

L2 loss. Overall, the loss of our generator can be written as:

LG(F,A,M, T ) =log(1−D(F )) + LMSE(A,M)

+ LMSE(F, T )
(1)

where F is the output of the whole generator, A is the out-

put of the PRCAMENet, M is corresponding ground truth

binary mask, T is the ground truth image and D is the dis-

criminator.

3.2. Attentive Discriminative Network

To differentiate fake images from real ones more accu-

rately, we adopt global and local image-content consistency



by constructing an attentive discriminator. Specifically, we

use (Conv+BN +ReLU) to extract features from the in-

terior layers of the discriminator, and feed them into a sim-

ple CNN-based network (DnCNN [15]). The loss function

Lmap is calculated between DnCNN’s output and the atten-

tion map generated by our PRCAMENet. Moreover, before

feeding the output of DnCNN into the next layers of the dis-

criminator, they are multiply with the input of DnCNN to

guide the discriminator to focus more on the regions signed

by the attention map. Finally, a full connected layer is used

to decide whether the image is real or fake. The whole loss

function of the discriminator is expressed as follows:

LD(F,R,A) =− log(D(R))− log(1−D(F ))

+ αLmap(F,R,A)
(2)

where

Lmap = LMSE(Datt(F ), A) + LMSE(Datt(R),0) (3)

where Datt represents the process of producing a 2D atten-

tion map by the discriminator. R is image drawn from real

images and F is the output of the generator. 0 represents a

2D map containing only 0 values. α is set to 0.01.

4. Experimental Results

In this section, we demonstrate the denoising per-

formance by conducting experiments on two real-world

datasets and two synthetic datasets.

4.1. Experimental Data

Training Data. Our constructed dataset involves 40 dif-

ferent scenes captured by 4 different cameras of different

settings. 5k paired training images are generated using

noise domain adaptation. Since the images are of large size

(3000× 3000), we crop some regions from these images of

size 512× 512.

Testing Data. In real-world data experiments, DND [11]

and Nam [10] are used. In the experiments on synthetic

data, the evaluations are conducted on BSD68 [12] and

Set12 [5].

4.2. Parameter Setting and Network Training

During training, ADAM is used as the optimization al-

gorithm with learning rate of 10−3 for both generator and

discriminator and batch size of 64. We train the network for

100 epochs.

4.3. Evaluation with Synthetic and Real­world
Noise

We evaluate the performance of our methods against

several state-of-the-art noise removal methods: BM3D [4],

GCBD [3] and Noise2Noise [8].

Figure 5. Restoration results of one real noisy image from

Nam[10]. From left to right and top to bottom: the noise im-

age, the ground truth, the reconstructed images by BM3D, GCBD,

Noise2Noise and our proposed method.

Table 2. The quantitative results from the DND benchmark [11].
Method BM3D GCBD Noise2Noise Ours
PSNR 34.51 37.72 37.57 38.13
SSIM 0.8507 0.9408 0.9360 0.9580

Table 3. The quantitative results from the Nam benchmark [10].
Method BM3D GCBD Noise2Noise Ours
PSNR 39.84 40.02 40.41 41.38
SSIM 0.9657 0.9687 0.9731 0.9810

Table 4. The PSNR and SSIM results of all the compared methods

on BSD68 and Set12 under noise level σ = 20 on Gaussian noise.
Method BM3D GCBD Noise2Noise Ours
BSD68 32.15(0.9013) 32.78(0.9088) 32.85(0.9093) 33.01(0.9210)
Set12 31.04(0.8651) 31.87(0.8980) 31.90(0.8989) 32.03(0.9005)

Real-World Noise. On DND [11], The competing methods

are evaluated in sRGB space. PSNR and SSIM results are

shown in Table 2. ADGAN outperforms the other methods

with a large margin. Fig. 1 shows the visually compari-

son results. BM3D and GCBD fail to remove all noise, and

Noise2Noise suffers from the problem of over-smoothing.

Compared with other methods, ADGAN does well in bal-

ancing noise removal and texture preservation. On Nam

[10], the quantitative and qualitative comparisons are shown

in Table 3 and Fig. 5. ADGAN outperforms the other meth-

ods by about 0.5 dB at least. For ablation study, the per-

formance of our network get worse when attention map is

removed.

Synthetic Noise. BSD68 and 12 commonly used images

are evaluated under a noise level σ = 20 on Gaussian

noise. The comparison results are shown in Table 4. Obvi-

ously, our method achieves the best denoising performance

on synthetic noise.

5. Conclusion

In this paper, we present an attentive based GAN for real-

world photographs denoising. Firstly, we capture pairs of

images under wide scene and parameters setting and obtain

corresponding ground truth by averaging. Then we extend



them by using noise domain adaptation to guarantee the

datasets are adequate for the network training. Secondly,

attentive denoising GAN is proposed for real photographs

denoising, where the generator produces the attention map

via a PRCAMENet and applies the map along with the input

image to generate a noise-free image through the AD-CNN.

Our discriminator then assesses the validity of the generated

output locally and globally. Extensive experiments demon-

strate that our method outperforms several state-of-the-art

methods quantitatively and qualitatively. Furthermore, our

network is effective in balancing noise removal and struc-

ture preservation.
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