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Abstract

Deep learning based single image super-resolution

methods use a large number of training datasets and have

recently achieved great quality progress both quantitatively

and qualitatively. Most deep networks focus on nonlinear

mapping from low-resolution inputs to high-resolution out-

puts via residual learning without exploring the feature ab-

straction and analysis. We propose a Hierarchical Back

Projection Network (HBPN), that cascades multiple Hour-

Glass (HG) modules to bottom-up and top-down process

features across all scales to capture various spatial cor-

relations and then consolidates the best representation for

reconstruction. We adopt the back projection blocks in

our proposed network to provide the error correlated up-

and down-sampling process to replace simple deconvolu-

tion and pooling process for better estimation. A new Soft-

max based Weighted Reconstruction (WR) process is used

to combine the outputs of HG modules to further improve

super-resolution. Experimental results on various datasets

(including the validation dataset, NTIRE2019, of the Real

Image Super-resolution Challenge) show that our proposed

approach can achieve and improve the performance of the

state-of-the-art methods for different scaling factors.

1. Introduction

Single Image Super-Resolution (SISR) attracts a lot of

attention in the research community in the past few years.

It is a fundamental low-level vision problem where the aim

is to form a high-resolution (HR) image Y from a low-

resolution (LR) image X. Usually, SISR is described as

an ill-posed problem X = HY + µ, where H is a down-

sampling operator, µ is additive white Gaussian noise with

standard deviation σ.

To resolve the ill-posed problem, Super-Resolution (SR)
images can be obtained in the perspective of model-based
optimization [35, 8, 7, 5, 9] and discriminative learning
methods [6, 16, 29, 18, 20, 10]. The model-based opti-

mization can be formulated as,

Ŷ = argmin
Y

1

2
‖X−HY‖2 + λΩ(Y) (1)

where λ is the regularization factor that controls the sig-

nificance of the regularization term Ω(Y). Though model-

based optimization methods are flexible to handle different

SR condition and noise, they are usually time-consuming

and require various priors.

On the contrary, discriminative approaches use external
or internal paired LR-HR training samples to directly learn
the nonlinear relationship. The objective is given by

min
Θ

�(Ŷ,Y)s.t.Ŷ = argmin
Y

1

2
‖Y −WX‖2 + λΩ(W) (2)

where W is the mapping model for reconstruction. The

fidelity term argmin
Y

1

2
‖Y −WX‖2 determines the distor-

tion of reconstruction and similarly, the regularization term

Ω(W) controls the complexity of the mapping model. In

the previous research works, patch-based approaches use

classification tools , like kNN [4], to classify the patches

from natural images and capture the mapping relationship

for clustered patches. Taking the advantage of non-local

statistical priors from external datasets, there are many suc-

cessful approaches that achieve good SR performance by

off-line training classifiers and regressors for efficient on-

line reconstruction. For example, Timofte et al. [30, 31]

proposed the adjusted anchored neighbor regression (ANR

and A+) which uses clustering on encoded sparse dictio-

nary to search nearest neighbor dictionary atoms for LR

patch reconstruction. Siu et al. [15, 14, 21, 22] proposed

random forests for binary classification to obtain fast and

high qualified image SR and hierarchical decision trees to

further boost up image SR performance.

Since Dong et al. [6] proposed the first deep convolu-

tion neural network (CNN) for image SR, a large number of

CNN based SR approaches have been proposed to signifi-

cantly improve the image SR performance. Along with the

development of other computing vision fields, i.e., image

classification, object detection and so on, more deep and



complex models are adopted in image SR. For example,

VDSR [16] uses a 20-layer convolution network for dif-

ferent up-sampling factors. Tai et al. [29] proposed a deep

recursive residual network by using recursive blocks to ex-

plore long-term correlations between LR and HR images.

LapSRN [18] uses Laplacian pyramid networks to grad-

ually super-resolve LR with different up-sampling factors.

Most recently, Haris et al. [10] proposed Deep Back Projec-

tion Network (DBPN) for image SR by iteratively comput-

ing reconstruction errors then, fusing them back for model

tuning.

Inspired by [10], we design a Hierarchical Back Projec-

tion Network (HBPN) for image SR. As shown in Figure 1,

our work have following contributions:

• Enhanced back projection blocks. We propose an

enhanced back projection block, including the new

Up-sampling Back Projection block (UBP) and Down-

sampling Back Projection block (DBP). Both UBP

and DBP embed the back projection mechanism in

the residual block to update up-sampling and down-

sampling errors for better results. The key modifica-

tion is two 1×1 convolution layers within the back

projection block to fine tune the LR and HR features.

Details are explained in Section 3.

• Hierarchical SR HourGlass (SR-HG) module. We

stack multiple stages of SR-HG modules to capture

various spatial correlations by repeated bottom-up and

top-down process across all scales. Different from HG

structure used in other applications [24, 25], we re-

place the pooling and deconvolution layer by enhanced

back projection blocks for better feature down- and up-

sampling process.

• Softmax based Weighted Reconstruction (WR). To

encourage different SR-HG modules super-resolve LR

images in a hierarchical order, each SR-HG module

outputs one coarse SR result and one weighting map.

At the final WR stage, we propose to use Softmax layer

to normalize weighting maps from different SR-HG

modules to obtain the global weighting map. Finally,

we consolidate all coarse SR results by using the global

weighting map to output the final SR image.

2. Related Work

In order to compare the different SR reconstruction mea-

surements, we can divide the convolutional neural network

based SR approaches into distortion based SR and percep-

tion based SR.

2.1. Distortion based image super-resolution

As discussed in Section 1, to resolve Equation 2, the end-

to-end CNN model is a very direct and efficient method.

By inputting LR images, we can define a mean squared er-

rors based loss function to target on optimizing the con-

volutional parameters to obtain the SR outputs with min-

imal distortion. Considering the mismatch of dimension

between LR and HR images, there are different designs

of CNN models for SR. In the early stage of CNN for

image SR, researchers inherited the knowledge on tradi-

tional machine learning based SR approaches by initially

up-sampling LR images to the desired size by simple inter-

polation, i.e., Bicubic, and then learn the mapping model

between the up-sampled LR and HR images. SRCNN [6]

and many other CNN approaches [16, 29, 18, 20, 10] use

this idea to build networks using cascaded convolution pro-

cess. In order to grasp long-term correlation of pixels for

reconstruction, we need to stack more convolution layers

to cover a larger receptive field. However, building deeper

convolution networks can encounter computation explod-

ing and gradient vanishing problems. To resolve the former

problem, Kim et al. [17] and Tai et al. [29] proposed to use

recursive convolution networks to increase recursion depth

rather than convolution depth without introducing new pa-

rameter for computation. For the latter problem, residual

learning [11] is introduced in CNN models to add short-

cuts to avoid gradient vanishing. In recent SR works, Lim

et al. [20] proposed a state-of-the-art CNN network using

residual blocks to achieve good SR performance on various

datasets.

Rather than using initial interpolation to up-sample LR

image to feed into CNN for training, there have also been

some novel CNN works that build up-sampling process into

CNN models. The deconvolution with stride larger than 1

is used in CNN working as an up-sampling process, Lai et

al. [18] proposed a Laplacian Pyramid network to gradually

super-resolve LR image by different scales. Shi et al. [27],

on the other hand, proposed the sub-pixel convolution pro-

cess to work as a pixel based interpolation for enlargement.

Recently, Haris et al. [10] further studied the residual learn-

ing on image SR and proposed the back projection based

residual block that can efficiently learn LR and HR feature

maps iteratively to feedback residual errors.

2.2. Perception based image super-resolution

Rather than targeting on minimizing mean squared errors

based loss function, perception based image SR focuses on

visual quality over data fidelity. Since a pioneer work on us-

ing the Generative Adversarial Network (GAN) for image

SR [19], there are a lot of studies on using adversarial loss

as a measurement for SR performance. By replacing the

ln-norm minimization by distribution divergence, we force

the SR networks to learn the meaningful features rather than

pixel differences. The idea of using GAN for image SR can

be described as: the generator and discriminator learn from

each other to generate a “fake” SR image that gives mini-
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Figure 1. Proposed HBPN structure. In a bottom-up and top-down manner, it can explore various scales to extract hierarchical features for

image SR.

mal distance on the high-level feature space (features used

commonly extracted from VGG19 [28]). Wang et al. [33]

further investigated this study. They modified the generator

by using Residual-in-Residual Dense Block to improve SR

performance in terms of PSNR (one measurement of distor-

tion) and then they fine tuned the network by using adver-

sarial loss to generate SR image with better visual quality.

From recent studies of GAN for image SR, one of the

key issues is still the design of generators. A good generator

should be able to extract rich feature maps for estimation by

any criteria. Our proposed network can also be considered

as a perception based image SR by using adversarial loss.

However, the measurement of visual quality was only used

in 4× image SR [19, 26, 33]. To make a good comparison,

we still use distortion based evaluation (PSNR, SSIM, etc.)

to make analysis among different approaches.

3. Hierarchical Back Projection Network

Before introducing our proposed work, let us first define

some terms. As defined in Section 1, given a RGB LR im-

age X with size h × w, we want to super-resolve it by α×
to the dimension αh × αw, the HR image Y. The super-

resolved image is the SR image Ŷ.

3.1. Back projection

Let us first revisit the back projection approach that has
been commonly used in image SR. Back projection was first
proposed to utilize multiple LR images to estimate one SR
image. [10] comes up with using back projection to refine
SR image to improve the quality. It is an efficient iterative
process to improve the data fidelity of SR by minimizing the
loss between the original LR image and the down-sampled
SR image. Mathematically, description of the back projec-
tion is

Ŷt+1 = Ŷt − λH
−1(HŶt −X) (3)

where H
−1 is the inverse operator of H which repre-

sents the up-sampling operation process. For estimating

the SR residues, we need to assume a certain known down-

t t

Figure 2. Back Projection procedure.

sampling and up-sampling operators. λ is the trade-off pa-

rameter to control the ratio of the residual information to

gradually improve the SR quality. t is the iteration num-

ber. A simple back projection process is shown in Fig-

ure 2. Back projection has been widely used in many SR

approaches as a final refinement to reduce the distortion in

terms of PSNR. However, it is observed that the down- and

up-sampling operators need to be pre-determined as fixed

parameters for estimation which may not obtain optimal re-

sults. To resolve this problem, [10] proposes to embed the

back projection into CNN model to learn the unknown pa-

rameters by training. By using multiple proposed back pro-

jection blocks, it can expand the iterative process as a cas-

cading process using more parameters to minimize the SR

residual information. Our study further develops this work

by coming up with a hierarchical back projection network to

learn LR and HR features across different scales to extract

more compact and robust features for reconstruction.

3.2. Enhanced back projection blocks

Let us propose our Enhanced back projection blocks,

which contain both new Up-sampling Back Projection

(UBP) and Down-sampling Back Projection (DBP) blocks.

The UBP is the forward back projection process that es-

timates HR residues while the UBP is the backward back

projection process that estimates LR residues. The details



of two blocks are shown in Figure 3.
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Figure 3. Proposed Enhanced back projection blocks: (a) the UBP

block that up-samples the LR feature maps by 2× and reduces the

number of feature maps by half, and (b) the DBP block that down-

samples the HR feature maps by half and increases the number of

feature maps by 2×.

The process of UBP block can be described by rewriting
Equation 3 as,

xl+1 = ΩDxl +D (λxl −CDxl) (4)

Similarly, the process of DBP block can be considered
as the backward of UBP that estimates the LR residues as
Equation 5,

xl+1 = ΩCxl +C (λxl −DCxl) (5)

There are two key modifications between our proposed

Enhanced back projection blocks and that in DBPN [10]:

global weighting model Ω and residual weighting model λ.

They all use 1×1 convolution layers to work as the weight-

ing process.

For the residual weighting model λ, it resembles the

trade-off parameter in Equation 3 that provides the regu-

larization on the update of SR residues. Without followed

by any activation function, this 1 × 1 convolution layer is

a linear weighted model that can tune the residual informa-

tion without increasing any computation burden.

For the global weighting model, it has two jobs: first,

to work as a weighted model to tune the down- and up-

sampled features for update so that we can introduce one

extra freedom of parameters for training; second, to adjust

the channel (number) of feature maps for addition. For ex-

ample, from (a) in Figure 3, the global weighting model

reduces the number of feature maps by half. From (b) in

Figure 3, the global weighting model doubles the number

of feature maps for addition.

3.3. Hierarchical SR HourGlass (SR-HG) module

For the proposed SR-HG module, we adopt the Hour-

Glass structure to cascade multiple enhanced back projec-

tion blocks in bottom-up and top-down manner. The Hour-

Glass structure is commonly used in many computing vi-

sion fields. By down-sampling the size of feature maps

while increasing the number of feature maps, we can extract

denser and deeper features for various applications. The key

differences of our proposed SR-HG module are three folds:

1) replacing pooling process by DBP blocks to avoid infor-

mation loss, 2) replacing the single convolution process by

DBP blocks to down-sample the feature maps and 3) output

a coarse SR image and a weighting map.

Figure 4. Proposed SR-HG module structure.

The complete structure of SR-HG is shown in Figure

4. For each SR-HG module, it contains 3 DBP blocks for

down-sampling process and 3 UBP blocks for up-sampling

process. For DBP and UBP blocks with same feature di-

mension, we use 1×1 convolution as local shortcuts (green

blocks) to share the features. For different SR-HG blocks,

we use 1× 1 convolution as global shortcuts (pink and blue

blocks) to share features across different modules. For each

SR-HG module, there are two branches (dash lines in Fig-

ure 4) to generate one coarse SR result and one weighting

map to describe the contribution of the coarse SR. There are

global and local shortcuts that share the features across dif-

ferent HourGlass modules and spatial scales. Each SR-HG

module contains 3 UBP blocks for up-sampling and 3 DBP

blocks for down-sampling and each UBP/DBP block up-

/down-samples the input data by 2×. Totally, the input data

are first down-sampled by 8× and then up-sampled by 8×.

In the meantime, the number of features are first increased

by 8× and then decreased by 8× so that the network can

learn denser and more compact features for reconstruction.

3.4. Softmax based Weighted Reconstruction (WR)

For the final reconstruction, instead of concatenating

coarse SR results from different SR-HG modules to gener-

ate the final SR by one convolution layer, we propose a Soft-

max based Weighted Reconstruction (WR) that makes use

of the weighting maps to estimate the contribution of coarse

SR results. It can be regarded as an adaptive weighted ad-

dition of coarse SR results. The comparison between WR

process and plain process is shown in Figure 5. It concate-

nates the weighting maps from SR-HG modules and learns a

global probability map using a Softmax normalization. The



coarse SR results are weighted by the probability map to

generate the final SR image.

Figure 5. Proposed Weighted Reconstruction module.

For the plain process, it simply concatenates the coarse

SR results together and learns one convolution layer to out-

put the SR results without considering the internal corre-

lation between coarse SR results. In the WR module, the

Softmax layer is used to normalize the weighting maps from

SR-HG modules in the range of [0, 1]. Then the final SR

image is the weighted sum of the coarse SR results. By us-

ing Softmax normalization, we force each SR-HG module

to learn the SR image at different scales.

4. Experimental Results

4.1. Implementation and training setups

Different from DBPN [10] which has different struc-

tures and configurations for different up-sampling enlarge-

ment, the proposed HBPN network uses the same structure

as shown in Figure 1. In UBP and DBP blocks, we use

6× 6 convolution filters with two striding and two padding

for down- and up-sampling. For shortcut connections, we

use 3×3 convolution filters with one striding and 1 padding.

We initialize the weights based on [12]. The testing data in-

clude Set5 [3], Set14 [34], BSD100 [2], Urban100 [13]

and Manga109 [23] on 2×, 4× and 8× SR enlargement.

The training data include 800 2K images from DIV2K

[32] and 2650 2K images from Flickr [20]. Each image

was rotated and flipped for augmentation to increase the

images by 8×. The LR images were down-sampled and

initially up-sampled by bicubic function in MATLAB on

different scaling factors. We extracted LR-HR patch pairs

from images of size 256 × 256. In order to achieve better

SR performance, for different SR scaling factors, we trained

our model by using different LR-HR training patches. The

learning rate is set to 0.0001 for all layers. The batch size

is 8 for every 5×105 iterations and 32 for the rest 5×105 it-

erations to achieve better results. For optimization, we used

Adam with the momentum to 0.9 and the weight decay of

0.0001. All experiments were conducted using Caffe, MAT-

LAB R2016b on two NVIDIA GTX1080Ti GPUs.

4.2. Model analysis

Scaling factors of UBP and DBP. For each SR-HG

module, we used DBP blocks to down-sample the feature

maps to the smallest size and UBP blocks as mirror reflec-

tion to up-sample feature maps to the original size. For

input data with size M × N × 3, we used T DBP blocks

to down-sample the input to obtain feature maps with size
M

2T
× N

2T
× (64 · 2T−1). To demonstrate the capability of

this bottom-up and top-down structure, we conducted mul-

tiple networks HG-1, HG-2, HG-3 (which is the proposed

HBPN model) and HG-4 for 4× enlargement on Set5 to

make comparison.

Figure 6. Back projection blocks analysis with different networks.

The results are shown in Figure 6. We compare different

SR-HG blocks using different numbers of UBP and DBP to

down- and up-scale features. Using HG-3 shows the best

performance comparing with other networks. Due to the

model complexity, HG-1 and HG-2 can converge faster than

HG-3 and HG-4. As the best performance, HG-3 achieves

32.66 dB in terms of PSNR which is 0.2 dB and 0.4 dB

better than HG-2 and HG-4.

Number of SR-HG modules. Generally, a deeper net-

work can train more parameters to learn deeper feature rep-

resentation for good performance. By stacking more and

more SR-HG modules, [10] shows that the network with

more HG blocks can produce a better prediction. In our

experiments, we conduct multiple networks with different

number of SR-HG modules: S (2 SR-HG modules), M (3

SR-HG modules, which is the proposed HBPN model) and

L (4 SR-HG modules).

From Figure 7, we can see that network L (4 SR-HG

module) gives the highest PSNR result. For network S (2

SR-HG module), its performance is lower than network M

and network L. For network L (4 SR-HG module), it re-

quires extra 33% parameters as compared with network M

but only achieves slight (0.1 dB) improvement in PSNR.

This result shows that our proposed HBPN has the best

trade-off between performance and number of parameters.

To further study the significance of each SR-HG module,

let us visualize the activation maps of the output of each

SR-HG module in our HBPN network.



Figure 7. The number of SR-HG modules analysis. Note that we

compare networks using different numbers of SR-HG modules for

repeated feature extraction.

Figure 8. Visualization of activation maps, weighting maps and in-

termediate outputs. For better observation, please check the elec-

tronic version of this figure.

In the Figure 8, the first row shows three activation maps

of each SR-HG output on image butterfly. We believe that

the reason why CNNs outperform other patch-based learn-

ing approaches is that CNNs use activation layers to intro-

duce the nonlinearity in the network to improve the feature

representation power of filters. Hence, we show the acti-

vation maps rather than the output feature maps to show

how activation layer works. In our design, we use the

PReLU function that assigns weight 1 to non-zero values

and very small weights to negative values. We can visual-

ize the weights as the activation maps. In our experiments,

we chose the last PReLU layer of each SR-HG module to

make comparison. We can observe that the activation map

of the SR-HG-1 module has high activation across some of

the feature maps while zero activation on others because the

first layer only focuses on reconstructing the low-frequency

information on averaging the whole image. This can be ob-

served on the output of SR-HG-1 of Figure 8. For SR-HG-2

and SR-HG-3, there are more activated values on the acti-

vation maps, that focus on edge and texture regions. We

calculated the percentage of activated values on SR-HG-1,

Table 1. Comparison of the network using plain concatenation

block or WR reconstruction block, including PSNR and SSIM for

scale 2×, 4× and 8× SR on Set5 and Set14. Red indicates the

best results.

Algorithm Scale
Set5 Set14

PSNR SSIM PSNR SSIM

Plain model 2 37.95 0.959 33.61 0.917

WR model 2 38.13 0.961 33.78 0.921

Plain model 4 32.33 0.889 28.55 0.731

WR model 4 32.55 0.900 28.67 0.785

Plain model 8 26.89 0.761 24.81 0.632

WR model 8 27.17 0.785 24.96 0.642

SR-HG-2 and SR-HG-3 and found the value decreases from

30.55%, 25.46% to 22.35%, which explains that the con-

volutional filters focus more on the edge and texture recon-

struction.

The effect of WR process. Finally, we compare the WR

process and the plain concatenated process in Table 1. We

design the plain concatenated process and WR process with

the structure as shown in Figure 5. They use the same SR-

HG modules for feature extraction and the only difference is

the final reconstruction process. The results were conducted

on Set5, Set14 dataset of 2×, 4× and 8× enlargement.

From Table 1, we can see that using WR process can

significantly improve the PSNR by at least 0.11 dB. The ef-

fectiveness of WR process can be further explained in Fig-

ure 8. In the second and third rows of Figure 8, we visualize

the weighting maps of each SR-HG module and coarse SR

outputs. For the first SR-HG module, the weighting map

focuses on the low-frequency domain that reconstructs the

main components of the image. For the second and third

SR-HG modules, the weighting maps give high attentions

to the edge regions. From the coarse SR output of each

SR-HG module, we can also match the results with their

weighting maps. Note that the output of SR-HG-2 focuses

on the edge reconstruction on G and B channels and the out-

put of SR-HG-3 focuses on the edge reconstruction on the R

channel. From the aspect of gradient based edge detection,

SR-HG-2 focuses on the first-order edge reconstruction (see

the single-line edges on the output of SR-HG-2) while SR-

HG-3 pays attention on the second-order edge reconstruc-

tion (see the double-line edges on the output of SR-HG-3).

This can prove that using more SR-HG modules can explore

deeper features in terms of the order of the pixel gradient.

From Table 1, it can be found that using WR process

is very efficient that can gain 0.2 dB and 0.1 higher than

the plain process in terms of PSNR and SSIM, respectively.

We also show the weighting maps to possibly indicate the

contribution of coarse SR results. We name the weighting

maps at different stages of SR-HG modules as W1, W2 and

W3. The weighting maps are visualized by normalizing the

pixel values in the range of [0, 255]. The weighting map

corresponds to the SR-HG results giving different weights

to the pixel values. The first weighting map gives a large



Table 2. Quantitative evaluation of state-of-the-art SR approaches, including PSNR and SSIM for scale 2×, 4× and 8×. Red indicates the

best and blue indicates the second best results.

Algorithm Scale
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 33.65 0.930 30.34 0.870 29.56 0.844 27.39 0.841 31.05 0.935

A+ [31] 36.54 0.954 32.40 0.906 31.22 0.887 29.23 0.894 35.33 0.967

CRFSR [22] 37.29 0.957 32.61 0.909 31.61 0.891 30.48 0.907 36.78 0.970

SRCNN [6] 36.65 0.954 32.29 0.903 31.36 0.888 29.52 0.895 35.72 0.968

VDSR [16] 37.53 0.958 32.97 0.913 31.90 0.896 30.77 0.914 37.16 0.974

DRRN [29] 2× 37.74 0.959 33.23 0.913 32.05 0.897 31.23 0.919 37.92 0.976

SRResNet [19] - - - - - - - - - -

LapSRN [18] 37.52 0.959 33.08 0.913 31.80 0.895 30.41 0.910 37.27 0.974

EDSR [20] 38.11 0.960 33.92 0.919 32.32 0.901 32.93 0.935 39.10 0.977

DBPN [10] 38.09 0.960 33.85 0.919 32.27 0.900 32.96 0.931 39.10 0.978

HBPN(Ours) 38.13 0.961 33.78 0.921 32.33 0.902 33.12 0.938 39.30 0.979

Bicubic 28.42 0.810 26.10 0.704 25.96 0.669 23.64 0.659 25.15 0.789

A+ [31] 30.30 0.859 27.43 0.752 26.82 0.710 24.34 0.720 27.02 0.850

CRFSR [22] 31.10 0.871 27.87 0.765 27.05 0.719 24.89 0.744 28.12 0.872

SRCNN [6] 30.49 0.862 27.61 0.754 26.91 0.712 24.53 0.724 27.66 0.858

VDSR [16] 31.35 0.882 28.03 0.770 27.29 0.726 25.18 0.753 28.82 0.886

DRRN [29] 4× 31.68 0.888 28.21 0.772 27.38 0.728 25.44 0.764 29.46 0.896

SRResNet [19] 32.05 0.891 28.53 0.780 27.57 0.735 26.07 0.784 - -

LapSRN [18] 31.54 0.885 28.19 0.772 27.32 0.728 25.21 0.756 29.09 0.890

EDSR [20] 32.46 0.897 28.80 0.788 27.71 0.742 26.64 0.803 31.02 0.915

DBPN [10] 32.47 0.898 28.82 0.786 27.72 0.740 26.60 0.795 31.13 0.914

HBPN(Ours) 32.55 0.900 28.67 0.785 27.77 0.743 27.30 0.818 31.57 0.920

Bicubic 24.39 0.657 23.19 0.568 23.67 0.547 21.24 0.516 21.68 0.647

A+ [31] 25.52 0.692 23.98 0.597 24.20 0.568 21.37 0.545 22.39 0.680

CRFSR [22] 26.07 0.732 23.97 0.600 24.20 0.569 21.36 0.550 22.59 0.688

SRCNN [6] 25.33 0.689 23.85 0.593 24.13 0.565 21.29 0.543 22.37 0.682

VDSR [16] 25.72 0.711 24.21 0.609 24.37 0.576 21.54 0.560 22.83 0.707

DRRN [29] 8× 26.18 0.738 24.42 0.622 24.59 0.587 21.88 0.583 23.60 0.742

SRResNet [19] - - - - - - - - - -

LapSRN [18] 26.15 0.738 24.35 0.620 24.54 0.586 21.81 0.582 23.39 0.735

EDSR [20] 26.97 0.775 24.94 0.640 24.80 0.596 22.47 0.620 24.58 0.778

DBPN [10] 27.21 0.784 25.13 0.648 24.88 0.601 22.69 0.622 24.96 0.799

HBPN(Ours) 27.17 0.785 24.96 0.642 24.93 0.602 23.04 0.647 25.24 0.802

NTIRE2019 Validation

Algorithm PSNR SSIM

Bicubic 29.548 0.844

Using the proposed plain HBPN 33.41 0.889

HBPN with Weighted Reconstruction 33.88 0.920

weights on the whole image and small weights on the edges.

The second and third weighting maps give higher weights to

the non-edge regions (first-order edge detection) and edge

regions (second-order edge detection), respectively.

4.3. Comparison with the state-of-the-art SR ap-
proaches

To prove the effectiveness of the proposed methods, we

conducted experiments by comparing with most (if not all)

state-of-the-art SR algorithms: Bicubic, A+ [31], CRFSR

[22], SRCNN [6], VDSR [16], DRCN [17], LapSRN

[18], SRResNet [19], EDSR [20] and DBPN [10]. PSNR

and SSIM are used to evaluate the proposed method and

others. Generally, PSNR and SSIM are calculated by con-

verting RGB image to YUV and only the Y-channel im-

age taken for consideration. During the testing, we ro-

tated and flipped LR images for augmentation to gener-

ate several augmented inputs, and then applied the inverse

transform and averaged all the outputs together to form the

final SR results. For different scaling factors s , we ex-

clude s pixels at boundaries to avoid boundary effect. For

SR results, SRCNN, VDSR, SRResNet, EDSR and DBPN

were reimplemented and provided by the authors of [10]

and LapSRN was provided by the authors of [18]. Note

that, this of our proposed approach also participated in the

NTIRE2019 Real Image Super-resolution Challenge [1].

Table 2 also includes the validation testing results of this

dataset. For this competition, it targets at real daily im-

ages, with down-sampling process using different degrada-

tion and distortions, and all images were taken by DSLR

cameras in natural environments. However, all the state-

of-the-art SR algorithms in the literature have been trained

by using bicubic down-sampled images. It would then be

inappropriate to use our HBPN model to make compari-



Figure 9. Visual quality comparison among different SR algorithms on 8× super-resolution.

son with approaches in the literature with the NTIRE2019

validation dataset. Hence we just mainly listed out the re-

sults of our model using or without using the final stage of

the proposed Weighted Reconstruction model for compari-

son. For more visual quality comparison, it is available at

https://github.com/Holmes-Alan/HBPN.

We show the quantitative results in Table 2. Our pro-

posed HBPN method outperforms other state-of-the-art ap-

proaches in all scales. Among these approaches, our pro-

posed work can outperform EDSR and DBPN by large im-

provement (0.1-0.6 dB) on 8× enlargement and improve the

SR quality about 0.1-0.4 dB on 2× and 4× enlargement.

Note that the PSNR and SSIM on BSD100, Urban100 and

Manga109 using DBPN are different from [10] because we

calculated the results on the whole image (rather than di-

viding images into four parts and calculating separately) by

running their released code for fair comparison. For vi-

sual comparison, 2× and 4× enlargement are difficult to

distinguish the improvement of the proposed method. We

show 8× enlargement in Figure 9, including the 86016.png

image from BSD100, 084.png image from Urban100 and

UchiNoNyansDiary.png and MadouTaiga.png images from

Manga109. Figure 9 shows that both DBPN and EDSR can-

not reconstruct well the fine texture of 86016.png. On the

other hand, our result can predict a clearer pattern of the

sand. On the edge pattern of the roof on 084.png, DBPN

fails to reconstruct the concrete texture. Our approach can

predict the horizontal and diagonal strides of the roof. The

last two images of our approach on Manga109 give better

visual quality in comparison with different approaches. On

UchiNoNyansDiary.png, there is a Japanese character on

the right upper corner that cannot be clearly reconstructed

by SRCNN and LapSRN. DBPN, on the other hand, gives a

result containing holes on that stride that is misunderstand-

ing. Our result actually can predict a sharper character.

Similarly on MadouTaiga.png, the Japanese character in-

side the red box can better be observed on our result. Other

SR approaches either generate blur edges on the strides or

miss the stride pattern.

From all the results, we can see that our proposed HBPN

approach can achieve better SR performance both quantita-

tively and qualitatively. It not only preserves the edge com-

ponents, but also reconstructs the fine textures at different

scaling factors.

5. Conclusion

We have proposed a Hierarchical Back Projection Net-

work for image Super-Resolution on different up-scaling

factors. Different from the previous SR study, we focus

on feature extraction by conducting a HourGlass structure

to learn the features in a bottom-up and top-down manner.

The back projection mechanism is embedded into the net-

work to update the low-resolution and high-resolution fea-

ture maps to reduce the errors. Meanwhile, we propose a

self-weighting process that each HourGlass module gen-

erates one intermediate SR result along with its weight-

ing map. By using the proposed Weighted Reconstruction

block, we normalize the weighting maps to tune the con-

tribution of each intermediate SR results for generating the

final SR images. Results on quantitative and quality evalu-

ation show its advantages over other approaches. Further-

more, we have also visualized the trained feature maps to

illustrate the power of feature representation of each Hour-

Glass module.
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