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Abstract

In this paper, we present new data pre-processing and

augmentation techniques for DNN-based raw image de-

noising. Compared with traditional RGB image denois-

ing, performing this task on direct camera sensor readings

presents new challenges such as how to effectively handle

various Bayer patterns from different data sources, and sub-

sequently how to perform valid data augmentation with raw

images. To address the first problem, we propose a Bayer

pattern unification (BayerUnify) method to unify different

Bayer patterns. This allows us to fully utilize a heteroge-

neous dataset to train a single denoising model instead of

training one model for each pattern. Furthermore, while

it is essential to augment the dataset to improve model

generalization and performance, we discovered that it is

error-prone to modify raw images by adapting augmenta-

tion methods designed for RGB images. Towards this end,

we present a Bayer preserving augmentation (BayerAug)

method as an effective approach for raw image augmen-

tation. Combining these data processing technqiues with a

modified U-Net, our method achieves a PSNR of 52.11 and

a SSIM of 0.9969 in NTIRE 2019 Real Image Denoising

Challenge, demonstrating the state-of-the-art performance.

1. Introduction

Image denoising is one of the fundamental problems in

image processing and computer vision, and restoring high

quality images from extremely noisy ones remains to be

challenging. This can be even worse when it comes to im-

ages taken from mobile devices. Due to the use of rela-

tively low-cost sensors and lenses, images captured by mo-

bile cameras can be severely corrupted by high level noise,

This work is supported by The National Key Research and Develop-

ment Program of China (2018YFC0831700).

Figure 1. Demonstration of our proposed (a) Bayer pattern unifi-

cation and (b) Bayer preserving augmentation. Our method unifies

and augments the Bayer raw images without affecting the content,

while improper pre-processing or augmentation would disturb the

spatial relationship of the raw images and therefore result in arti-

facts.

especially in low-light scenarios. Many denoising methods

have been proposed to address this problem, including tra-

ditional methods such as NLM [6] and BM3D [10] as well

as more recent deep neural network (DNN) based denoising

models [26, 9, 31, 19, 28, 23, 27], but their performances are

still far from satisfactory on mobile devices.

Recently, thanks to the public raw image denoising

datasets [1, 8, 4], denoising raw image data has received

more and more attentions and has shown promising results
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[8, 17, 12]. Raw images are direct readings from images

sensors, with camera filter arrays (CFAs) arranged in spe-

cific patterns such as the Bayer pattern [5]. These digi-

tal signals are further post-processed to obtain RGB im-

ages through a complex pipeline including lens shading cor-

rection, white balancing, demosaicking, gamma correction,

etc. [14]. Therefore, original noise properties that exist in

raw images are often distorted in RGB images, making the

noise harder to remove afterwards. This means that there

are potentially better denoising methods that can be devel-

oped on the raw image data [8], compared with many works

done in RGB domain. In this work, we study the problem of

raw image denoising using DNN, and our focus is on how

to train an effective raw image denoising model by proper

data pre-processing and data augmentation.

First of all, to perform raw image denoising with DNN

models, it is a common practice to pack a Bayer raw image

into a 4-channel RGGB image, and feed it into neural net-

works [8]. With data collected from cameras with different

Bayer patterns, a simple solution is to train one model for

each pattern. However, this decreases the size of the effec-

tive training set and thereby hurts the performance. To fully

utilize all training data to achieve better performance, we

propose a Bayer pattern unification (BayerUnify) technique

to eliminate the differences among Bayer patterns. As il-

lustrated in Fig. 1 (a), flipping and cropping operations are

employed to turn a specific CFA pattern into another one,

with which we can unify all training images into the same

pattern. As a result, all the training data can be used together

to optimize a single model to achieve the best possible re-

sult.

Data augmentation is a common approach in deep learn-

ing to improve model performance by increasing the diver-

sity of a training dataset. However, data augmentation of

raw images is not as straightforward as that of RGB im-

ages. An example in shown in Fig. 1 (b). Simply flipping

the packed 4-channel raw images is erroneous because it re-

sults in an image that is impossible in real world. This phe-

nomenon can also be found in other types of augmentation

operations such as cropping, transposition, etc. To tackle

this problem, we introduce a Bayer preserving augmenta-

tion (BayerAug) technique that allows proper augmentation

for raw images. As shown in Fig. 1 (b), extra operations are

required to correctly flip a raw image.

Both BayerUnify and BayerAug techniques are simple,

yet effective ways for increasing the training data size and

diversity for raw image denoising. We apply these tech-

niques to train models based on our modified U-Net [25],

and achieve state-of-the-art results in NTIRE 2019 Real Im-

age Denoising Challenge (Track 1) [2]. We conduct detailed

experiments and analysis in Sec. 4 to validate the proposed

techniques.

To summarize, our contributions include:

• We propose a novel Bayer pattern unification tech-

nique (BayerUnify) to transform different Bayer pat-

terns into an unified one, enabling training and infer-

ence of a single denoising model using data collected

from different digital cameras.

• We introduce a Bayer preserving augmentation tech-

nique (BayerAug) to allow effective augmentation for

raw images for further performance improvement.

• We build DNN models based on U-Net for raw image

denoising, and apply the above techniques to achieve

the best results in NTIRE 2019 Real Image Denoising

Challenge (Track 1). Extensive experiments are con-

ducted to demonstrate the effectiveness of proposed

method.

2. Related Works

Image desnoising is a fundamental low-level image pro-

cessing problem that has been studied for decades. Classi-

cal approaches include non-local means (NLM) [6], sparse

coding [11, 22, 3], 3D transform-domain filtering (BM3D)

[10], and others [13, 24]. Image priors are often required to

design these methods. In recent years, convolutional neural

networks (CNN) allows end-to-end training of discrimina-

tive models that have achieved great success in this field. As

an earlier work, [7] applied multi-layer perceptron (MLP)

to achieve comparable results with BM3D. Later on, more

advanced network architectures are proposed. For exam-

ple, [29] uses residual learning and batch normalization to

achieve great performance improvement. [26] applies mem-

ory blocks to tackle the long-term dependency problems

in previous CNN architectures. A large number of CNN

works are continuously proposed [9, 19, 28, 23, 27, 30, 20]

to tackle this long-standing problem.

While there are many single image denoising approaches

focusing on RGB images, raw image denoising has attracted

much less attention due to the lack of training data. Some

works use CNN to process the noisy raw images to produce

clean RGB images [8, 17, 12] and achieve impressive vi-

sual results. In these works, the CNN models not only deal

with the denoising problem, but concurrently handle other

problems such as demosaicking and so on. For pure raw to

raw image denoising, it is feasible to directly apply RGB

denoising methods on raw images as demonstrated in [1],

but the performance is limited. Recently, with more pub-

licly available raw image datasets [1, 8, 4], it is expected

to see more efforts put on solving the raw image denoising

problem. In this paper, we mainly resolve the specific is-

sues of data pre-processing and augmentation with Bayer

raw images.



Figure 2. Unify Bayer pattern via cropping in the training phase.

Figure 3. Unify Bayer pattern via padding and disunify via crop-

ping in the testing phase.

3. Proposed Method

3.1. Bayer Pattern Unification (BayerUnify)

The Bayer patterns of raw images fall into different cat-

egories. To apply a single CNN to denoise raw images with

different Bayer patterns, it is essential to align the order of

the channels since different channels capture different re-

gions of wavelength. In the meantime, the structural infor-

mation laid in adjacent pixels from different channels has to

be maintained. Based on these principles, we propose mul-

tiple ways to convert a raw image from one Bayer pattern to

another, which are applicable to different scenarios.

3.1.1 Training: Unify via Cropping

In the training stage, we unify raw images with different

Bayer patterns via cropping. By scarifying a minor num-

ber of pixels, it enables us to use raw images from different

cameras to train a single denoising model, and thereby in-

creases the number of available training samples.

We first introduce our notations of Bayer patterns. We

represent each pattern by the sequence of its channels within

each 2× 2 block, in the order of top-left, top-right, bottom-

left, and bottom-right. Typically, there are 4 possible for-

mats, namely RGGB, BGGR, GRBG, and GBRG. For clar-

ity, we use BGGR as the target format to illustrate our

method.

Cropping odd number of rows or columns creates offsets

which alter the Bayer pattern. As shown in Fig. 2, cropping

the first row and the last row changes a C1C2C3C4 image

into a C3C4C1C2 image (e.g. GRBG to BGGR). Likewise,

cropping the first and the last column alters C1C2C3C4 into

C2C1C4C3 (e.g. GBRG to BGGR). These two operations

together convert C1C2C3C4 into C4C3C2C1 (e.g. RGGB

to BGGR). Hence, one can normalize any Bayer pattern to

an unified one by cropping.

3.1.2 Testing: Unify via Padding, Disunify via Crop-

ping

We have shown that one can train a Bayer-pattern-specific

network with raw images of different patterns. Moreover, it

is possible to denoise images of different patterns with the

trained network. Due to the fact that every pixel of the in-

put images needs to be processed, instead of cropping some

pixels from the input images, we unify their Bayer patterns

via padding some pixels. After network denoising, we sim-

ply remove these extra pixels to disunify the output images.

This process is illustrated in Fig. 3.

Padding alters the Bayer pattern in a similar way to crop-

ping. Padding one row of pixels to the top and the bottom

changes a C1C2C3C4 image into a C3C4C1C2 image (e.g.

GRBG to BGGR); padding one column to the left and to

the right turns C1C2C3C4 into C2C1C4C3 (e.g. GBRG to

BGGR); padding to all four edges transforms C1C2C3C4

into C4C3C2C1 (e.g. RGGB to BGGR).

Hence, we can apply padding to convert any pattern to

the desired one. As a straightforward disunification, remov-

ing the padded pixels reverses this conversion. Note that

we apply reflection padding (aka “reflect” for numpy.pad or

“BORDER REFLECT 101” for OpenCV) to make sure the

additional pixels come from the correct channel.

3.2. Bayer Preserving Augmentation (BayerAug)

When training a neural network for vision and graphic

tasks on RGB images, it is common to apply flipping and

cropping as data augmentation methods. They increases the

effective number of samples dramatically while being very

concise. However, for Bayer raw images, flipping opera-

tions may affect the Bayer pattern. As illustrated in Fig. 4

(a) and (b), a horizontal flip switches the Bayer pattern from

C1C2C3C4 to C2C1C4C3, and a vertical one switches the

pattern from C1C2C3C4 to C3C4C1C2.

Therefore, we combine both flipping and cropping to

perform data augmentation while preserving the Bayer pat-

tern of the image. After flipping an image, we apply crop-

ping to reverse the change of Bayer pattern. We illustrate



Figure 4. An example of Bayer preserving augmentation. Since

flipping an raw image affects its Bayer pattern, to obtain a hori-

zontal flipped BGGR image from a BGGR image, we first perform

a horizontal flipping (BGGR→GBRG), and then crop its first and

last column (GBRG→BGGR).

this process in Fig. 4 (c).

As another type of flipping, a transposition has differ-

ent effects on different patterns, depending on the channels

of the diagonal components. Generally, the transpose of a

C1C2C3C4 image would be in the pattern of C1C3C2C4.

For a RGrGbB input, its transpose would be in RGbGrB,

which is roughly the same format (assuming the different

between Gr channel and Gb channel is subtle). However,

for a GRBG input, its transpose would be in GBRG, a to-

tally different pattern. For this reason, we can safely per-

form transposition to augment RGGB and BGGR images,

but not in GRBG or GBRG.

Training with patches instead of the entire images is an-

other common trick used in model training. Different from

the cropping operations in BayerUnify, to correctly obtain

patches from the entire Bayer raw image without changing

its Bayer pattern, we need to avoid any offset. This could be

done by simply cropping even numbers of rows (columns).

With combinations of the discussed three flipping meth-

ods and one cropping method, we are able to perform data

augmentation on Bayer raw images without any flaw. Note

that they can be applied on both homogeneous datasets [8]

and heterogeneous datasets [1], enhancing the generaliz-

ability of the obtained model.

4. Experiment

4.1. Dataset

We evaluate our method on the Smartphone Image De-

noising Dataset (SIDD) [1]. Its training set contains 320

pairs of noise-free images and noisy images, which cover

3 different Bayer patterns and 10 different scenes. Its vali-

dation set and testing set consist of 40 pairs of image from

8 different scenes. Both raw images and sRGB images are

Set Scene # GRBG # BGGR # RGGB Total

Train 2-10 40 126 98 264

Test 1 60 32 20 56

Table 1. Our train/test split of SIDD dataset.

available.

To compare the generalizability of the obtained models,

we need to avoid testing on a trained scene. Therefore,

we divided the original SIDD training set into two parts:

all “Scene 1” image pairs as our testing partition, and the

remaining pairs as our training partition. The details are

shown in Table 1.

4.2. Network Architecture and Training Details

Table 2 shows the modified U-Net [25] architecture used

in our experiments. As proposed by [8], we packed the raw

images into 4 channels as the network input. Differently,

we trained the networks to produce 4-channel outputs, and

unpacked them to obtain denoised raw images.

In our experiments, all the networks were trained with

L1 loss and AdamW optimizer [21] with initial learning rate

of 2e− 4 and weight decay of 2e− 5. Patch size and mini-

batch size were set to 512 and 4 respectively. We trained

each model for 200, 000 iterations, and divided the learning

rate by 10 on plateaus. We detected the plateaus and se-

lected the best models using the PSNR scores on the scene

1 patches of the official validation set. For testing, we fed

the entire images to the network, and measured the average

PSNR scores of the outputs.

4.3. Results and Analysis

To show the effectiveness of our proposed BayerUnify

and BayerAug, we compared them with naive training

methods. The results of the obtained models are shown in

Table 3.

GRBG/BGGR/RGGB Only. As our baseline, we trained

one network for each Bayer pattern. Since the number of

samples available for training each model is insufficient,

this method resulted in a limited performance.

BayerUnify. Another network was trained with our pro-

posed Bayer pattern unification (Sec. 3.1). In the training

phase, we applied cropping to convert all 264 training pairs

to BGGR format. In the testing phase, we employ padding

to unify and cropping to disunify the test cases. Thanks to

the increase of training samples, our method outperforms

the previous baseline.

BayerUnify+BayerAug. We further trained a network

with both Bayer pattern unification and Bayer preserving



Name # Out Type

Input 4 Input Image

EncConv1 1 32 Conv 3× 3

EncConv1 2 32 Conv 3× 3

Pool1 32 Maxpool 2× 2

EncConv2 1 64 Conv 3× 3

EncConv2 2 64 Conv 3× 3

Pool2 64 Maxpool 2× 2

EncConv3 1 128 Conv 3× 3

EncConv3 2 128 Conv 3× 3

Pool3 128 Maxpool 2× 2

EncConv4 1 256 Conv 3× 3

EncConv4 2 256 Conv 3× 3

Pool4 256 Maxpool 2× 2

EncConv5 1 512 Conv 3× 3

EncConv5 2 512 Conv 3× 3

Deconv4 256 Deconv 3× 3

Add4 256 Deconv4 + EncConv4 2

DecConv4 1 256 Conv 3× 3

DecConv4 2 256 Conv 3× 3

Deconv3 128 Deconv 3× 3

Add3 128 Deconv3 + EncConv3 2

DecConv3 1 128 Conv 3× 3

DecConv3 2 128 Conv 3× 3

Deconv2 64 Deconv 3× 3

Add2 64 Deconv2 + EncConv2 2

DecConv2 1 64 Conv 3× 3

DecConv2 2 64 Conv 3× 3

Deconv1 32 Deconv 3× 3

Add1 32 Deconv1 + EncConv1 2

DecConv1 1 32 Conv 3× 3

DecConv1 2 32 Conv 3× 3

DecConv1 3 4 Conv 3× 3

Add0 4 Input + DecConv1 3

Table 2. Network architecture used in our experiments. The net-

work takes packed 4-channel raw images as input. Prior to each

convolution except EncConv1 1, a PReLU [15] is applied as a pre-

activation.

Method GRBG BGGR RGGB

GRBG Only 43.46 - -

BGGR Only - 49.50 -

RGGB Only - - 51.59

BayerUnify 43.92 49.88 51.85

BayerUnify+BayerAug 44.02 49.92 51.95

Table 3. PSNR of different methods. As shown, our proposed

BayerUnify and BayerAug improve the performance on unseen

testing samples.

Figure 5. Demonstration of common errors in raw image pre-

processing and augmentation. Modifying raw images improperly

may disarrange the spatial relationship of the pixels.

Method GRBG BGGR RGGB

Naı̈veUnify 42.78 49.74 51.83

BayerUnify 43.92 49.88 51.85

BayerUnify+Naı̈veAug 43.83 49.76 51.81

BayerUnify+BayerAug 44.02 49.92 51.95

Table 4. PSNR of different pre-processing and augmentation meth-

ods. As shown, pre-processing and augmenting raw images via

problematic methods (Naı̈veUnify and Naı̈veAug) result in degra-

dation of the network performance.

augmentation (Sec. 3.2). In the training phase, after unifica-

tion, we augmented the data via flipping and cropping. The

result shows that our data augmentation boosted the gen-

eralizability of the obtained model, and consequently im-

proved its performance on the unseen scene.

Since data pre-processing and augmentation on raw im-

ages are not as straightforward as they are on RGB images,

it is easy to introduce errors when handling them. Next,

we discuss some common errors that we mention in Fig. 1,

and show how they dampen the performance. The details of

these inappropriate modifications are illustrated in Fig. 5,

and the results of them are listed in Table 4.

Naı̈veUnify. A common error in raw image pre-

processing is to permute the order of the packed 4-channel

input. Demonstrated in Fig. 5 (a), while converting the for-

mat, it disorganizes the structure information in the origi-

nal image. To evaluate, we ran a model with training and

testing data unified (to BGGR) with this method. Com-

pared to BayerUnify, this method obtains a lower perfor-

mance, which shows the importance of our valid raw data

pre-processing method.

Naı̈veAug. In raw data augmentation, it is plausible to flip

the packed 4-channel images as we do to 3-channel RGB

images. However, as shown in Fig. 5 (b), it also disar-



rays the spatial signal and generates images that are very

wandered from the original dataset. We validated this aug-

mentation method based on the correctly unified dataset

(BayerUnify). As shown in Table 4, this method dampens

the results instead of improving them.

4.4. Challenge Submission

After validating our proposed BayerUnify and BayerAug

with a specific train-test separation and a relatively small

network, we present our solution in NTIRE 2019 Real Im-

age Denoising Challenge (Track 1) [2]. We applied our pro-

posed methods together with an enhanced network architec-

ture and a model ensembling strategy. Based on the network

we mentioned in Sec. 4.2, we increased the network com-

plexity by enlarging the width of earlier stages, and replac-

ing vanilla convolutional layers with residual blocks [16]

(with PReLU, without BN [18]). The network architecture

is shown in Table 5. In the training stage, we split the 320

training pairs into different categories and trained a model

for each one, with both BayerUnify and BayerAug. In the

testing stage, we performed BayerUnify to normalize the in-

put patches into BGGR images, classified them according to

their metadata, and inferred them using the corresponding

models. Our proposed solution achieved a PSNR of 52.11

and a SSIM of 0.9969 on the official test set. We show our

results in validation set in Fig. 6.

5. Conclusion

We have presented effective data pre-processing and

augmentation methods specifically designed for Bayer raw

images, namely BayerUnify and BayerAug. Our results

show that the proposed methods ensembled with advanced

network architecture can achieve state-of-the-art perfor-

mance in raw image denoising problem. We also believe

raw image processing with deep learning techniques is a

promising direction.
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