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Abstract

In this paper, we present new data pre-processing and
augmentation techniques for DNN-based raw image de-
noising. Compared with traditional RGB image denois-
ing, performing this task on direct camera sensor readings
presents new challenges such as how to effectively handle
various Bayer patterns from different data sources, and sub-
sequently how to perform valid data augmentation with raw
images. To address the first problem, we propose a Bayer
pattern unification (BayerUnify) method to unify different
Bayer patterns. This allows us to fully utilize a heteroge-
neous dataset to train a single denoising model instead of
training one model for each pattern. Furthermore, while
it is essential to augment the dataset to improve model
generalization and performance, we discovered that it is
error-prone to modify raw images by adapting augmenta-
tion methods designed for RGB images. Towards this end,
we present a Bayer preserving augmentation (BayerAug)
method as an effective approach for raw image augmen-
tation. Combining these data processing techngiues with a
modified U-Net, our method achieves a PSNR of 52.11 and
a SSIM of 0.9969 in NTIRE 2019 Real Image Denoising
Challenge, demonstrating the state-of-the-art performance.

1. Introduction

Image denoising is one of the fundamental problems in
image processing and computer vision, and restoring high
quality images from extremely noisy ones remains to be
challenging. This can be even worse when it comes to im-
ages taken from mobile devices. Due to the use of rela-
tively low-cost sensors and lenses, images captured by mo-
bile cameras can be severely corrupted by high level noise,

This work is supported by The National Key Research and Develop-
ment Program of China (2018 YFC0831700).

4321

Syf.ding@knights.ucf.edu

BayerUnify
G R G R GRGR
. G . G g Render
—_—
GRGR p i
[BcBc
1-ch GRBG 4-ch BGGR
» :
% g Permute g Render p ' |
—p — ‘
4-ch GRBG 4-ch BGGR -
(a) Bayer Pattern Unification
N
BayerAug
BlcBlc | _Flip cBlcB Crop c[Ble 5 Render
G R G R R GRG R G[RlG
1-ch BGGR 1-ch GBRG 1-ch BGGR
)
P(?
%‘ g Flip g Render a
o [
i B i
4-ch BGGR 4-ch BGGR :

(b) Bayer Preserving Augmentation

Figure 1. Demonstration of our proposed (a) Bayer pattern unifi-
cation and (b) Bayer preserving augmentation. Our method unifies
and augments the Bayer raw images without affecting the content,
while improper pre-processing or augmentation would disturb the
spatial relationship of the raw images and therefore result in arti-
facts.

especially in low-light scenarios. Many denoising methods
have been proposed to address this problem, including tra-
ditional methods such as NLM [6] and BM3D [10] as well
as more recent deep neural network (DNN) based denoising
models [26, 9, 31, 19, 28, 23, 27], but their performances are
still far from satisfactory on mobile devices.

Recently, thanks to the public raw image denoising
datasets [1, 8, 4], denoising raw image data has received
more and more attentions and has shown promising results



[8, 17, 12]. Raw images are direct readings from images
sensors, with camera filter arrays (CFAs) arranged in spe-
cific patterns such as the Bayer pattern [5]. These digi-
tal signals are further post-processed to obtain RGB im-
ages through a complex pipeline including lens shading cor-
rection, white balancing, demosaicking, gamma correction,
etc. [14]. Therefore, original noise properties that exist in
raw images are often distorted in RGB images, making the
noise harder to remove afterwards. This means that there
are potentially better denoising methods that can be devel-
oped on the raw image data [8], compared with many works
done in RGB domain. In this work, we study the problem of
raw image denoising using DNN, and our focus is on how
to train an effective raw image denoising model by proper
data pre-processing and data augmentation.

First of all, to perform raw image denoising with DNN
models, it is a common practice to pack a Bayer raw image
into a 4-channel RGGB image, and feed it into neural net-
works [8]. With data collected from cameras with different
Bayer patterns, a simple solution is to train one model for
each pattern. However, this decreases the size of the effec-
tive training set and thereby hurts the performance. To fully
utilize all training data to achieve better performance, we
propose a Bayer pattern unification (BayerUnify) technique
to eliminate the differences among Bayer patterns. As il-
lustrated in Fig. 1 (a), flipping and cropping operations are
employed to turn a specific CFA pattern into another one,
with which we can unify all training images into the same
pattern. As aresult, all the training data can be used together
to optimize a single model to achieve the best possible re-
sult.

Data augmentation is a common approach in deep learn-
ing to improve model performance by increasing the diver-
sity of a training dataset. However, data augmentation of
raw images is not as straightforward as that of RGB im-
ages. An example in shown in Fig. 1 (b). Simply flipping
the packed 4-channel raw images is erroneous because it re-
sults in an image that is impossible in real world. This phe-
nomenon can also be found in other types of augmentation
operations such as cropping, transposition, efc. To tackle
this problem, we introduce a Bayer preserving augmenta-
tion (BayerAug) technique that allows proper augmentation
for raw images. As shown in Fig. 1 (b), extra operations are
required to correctly flip a raw image.

Both BayerUnify and BayerAug techniques are simple,
yet effective ways for increasing the training data size and
diversity for raw image denoising. We apply these tech-
niques to train models based on our modified U-Net [25],
and achieve state-of-the-art results in NTIRE 2019 Real Im-
age Denoising Challenge (Track 1) [2]. We conduct detailed
experiments and analysis in Sec. 4 to validate the proposed
techniques.

To summarize, our contributions include:

e We propose a novel Bayer pattern unification tech-
nique (BayerUnify) to transform different Bayer pat-
terns into an unified one, enabling training and infer-
ence of a single denoising model using data collected
from different digital cameras.

e We introduce a Bayer preserving augmentation tech-
nique (BayerAug) to allow effective augmentation for
raw images for further performance improvement.

e We build DNN models based on U-Net for raw image
denoising, and apply the above techniques to achieve
the best results in NTIRE 2019 Real Image Denoising
Challenge (Track 1). Extensive experiments are con-
ducted to demonstrate the effectiveness of proposed
method.

2. Related Works

Image desnoising is a fundamental low-level image pro-
cessing problem that has been studied for decades. Classi-
cal approaches include non-local means (NLM) [6], sparse
coding [11, 22, 3], 3D transform-domain filtering (BM3D)
[10], and others [13, 24]. Image priors are often required to
design these methods. In recent years, convolutional neural
networks (CNN) allows end-to-end training of discrimina-
tive models that have achieved great success in this field. As
an earlier work, [7] applied multi-layer perceptron (MLP)
to achieve comparable results with BM3D. Later on, more
advanced network architectures are proposed. For exam-
ple, [29] uses residual learning and batch normalization to
achieve great performance improvement. [26] applies mem-
ory blocks to tackle the long-term dependency problems
in previous CNN architectures. A large number of CNN
works are continuously proposed [9, 19, 28, 23, 27, 30, 20]
to tackle this long-standing problem.

While there are many single image denoising approaches
focusing on RGB images, raw image denoising has attracted
much less attention due to the lack of training data. Some
works use CNN to process the noisy raw images to produce
clean RGB images [8, 17, 12] and achieve impressive vi-
sual results. In these works, the CNN models not only deal
with the denoising problem, but concurrently handle other
problems such as demosaicking and so on. For pure raw to
raw image denoising, it is feasible to directly apply RGB
denoising methods on raw images as demonstrated in [1],
but the performance is limited. Recently, with more pub-
licly available raw image datasets [1, 8, 4], it is expected
to see more efforts put on solving the raw image denoising
problem. In this paper, we mainly resolve the specific is-
sues of data pre-processing and augmentation with Bayer
raw images.
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Figure 2. Unify Bayer pattern via cropping in the training phase.
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Figure 3. Unify Bayer pattern via padding and disunify via crop-
ping in the testing phase.

3. Proposed Method
3.1. Bayer Pattern Unification (BayerUnify)

The Bayer patterns of raw images fall into different cat-
egories. To apply a single CNN to denoise raw images with
different Bayer patterns, it is essential to align the order of
the channels since different channels capture different re-
gions of wavelength. In the meantime, the structural infor-
mation laid in adjacent pixels from different channels has to
be maintained. Based on these principles, we propose mul-
tiple ways to convert a raw image from one Bayer pattern to
another, which are applicable to different scenarios.

3.1.1 Training: Unify via Cropping

In the training stage, we unify raw images with different
Bayer patterns via cropping. By scarifying a minor num-
ber of pixels, it enables us to use raw images from different
cameras to train a single denoising model, and thereby in-
creases the number of available training samples.

We first introduce our notations of Bayer patterns. We
represent each pattern by the sequence of its channels within
each 2 x 2 block, in the order of top-left, top-right, bottom-
left, and bottom-right. Typically, there are 4 possible for-
mats, namely RGGB, BGGR, GRBG, and GBRG. For clar-
ity, we use BGGR as the target format to illustrate our
method.

Cropping odd number of rows or columns creates offsets
which alter the Bayer pattern. As shown in Fig. 2, cropping
the first row and the last row changes a C;C>C3Cy image
into a C3C,C1C5 image (e.g. GRBG to BGGR). Likewise,
cropping the first and the last column alters C; C2C5CY into
C>C1C4C5 (e.g. GBRG to BGGR). These two operations
together convert C1C>C3Cy into C4C5C2Cy (e.g. RGGB

to BGGR). Hence, one can normalize any Bayer pattern to
an unified one by cropping.

3.1.2 Testing: Unify via Padding, Disunify via Crop-
ping

We have shown that one can train a Bayer-pattern-specific
network with raw images of different patterns. Moreover, it
is possible to denoise images of different patterns with the
trained network. Due to the fact that every pixel of the in-
put images needs to be processed, instead of cropping some
pixels from the input images, we unify their Bayer patterns
via padding some pixels. After network denoising, we sim-
ply remove these extra pixels to disunify the output images.
This process is illustrated in Fig. 3.

Padding alters the Bayer pattern in a similar way to crop-
ping. Padding one row of pixels to the top and the bottom
changes a C1C>C3Cy image into a C3C4C1C5 image (e.g.
GRBG to BGGR); padding one column to the left and to
the right turns C;C2C3Cy into Cy,C1CyC3 (e.g. GBRG to
BGGR); padding to all four edges transforms C;C2C5C}y
into C,C35C5C1 (e.g. RGGB to BGGR).

Hence, we can apply padding to convert any pattern to
the desired one. As a straightforward disunification, remov-
ing the padded pixels reverses this conversion. Note that
we apply reflection padding (aka “reflect” for numpy.pad or
“BORDER_REFLECT_101" for OpenCV) to make sure the
additional pixels come from the correct channel.

3.2. Bayer Preserving Augmentation (BayerAug)

When training a neural network for vision and graphic
tasks on RGB images, it is common to apply flipping and
cropping as data augmentation methods. They increases the
effective number of samples dramatically while being very
concise. However, for Bayer raw images, flipping opera-
tions may affect the Bayer pattern. As illustrated in Fig. 4
(a) and (b), a horizontal flip switches the Bayer pattern from
C1C5C3C, to CC1C4C5, and a vertical one switches the
pattern from C1C>C5Cy to C5C4C1Cs.

Therefore, we combine both flipping and cropping to
perform data augmentation while preserving the Bayer pat-
tern of the image. After flipping an image, we apply crop-
ping to reverse the change of Bayer pattern. We illustrate
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Figure 4. An example of Bayer preserving augmentation. Since
flipping an raw image affects its Bayer pattern, to obtain a hori-
zontal flipped BGGR image from a BGGR image, we first perform
a horizontal flipping (BGGR—GBRG), and then crop its first and
last column (GBRG—BGGR).

this process in Fig. 4 (c).

As another type of flipping, a transposition has differ-
ent effects on different patterns, depending on the channels
of the diagonal components. Generally, the transpose of a
C1C5C5Cy image would be in the pattern of C1C5C5Cy.
For a RGrGbB input, its transpose would be in RGbGrB,
which is roughly the same format (assuming the different
between Gr channel and Gb channel is subtle). However,
for a GRBG input, its transpose would be in GBRG, a to-
tally different pattern. For this reason, we can safely per-
form transposition to augment RGGB and BGGR images,
but not in GRBG or GBRG.

Training with patches instead of the entire images is an-
other common trick used in model training. Different from
the cropping operations in BayerUnify, to correctly obtain
patches from the entire Bayer raw image without changing
its Bayer pattern, we need to avoid any offset. This could be
done by simply cropping even numbers of rows (columns).

With combinations of the discussed three flipping meth-
ods and one cropping method, we are able to perform data
augmentation on Bayer raw images without any flaw. Note
that they can be applied on both homogeneous datasets [8]
and heterogeneous datasets [1], enhancing the generaliz-
ability of the obtained model.

4. Experiment
4.1. Dataset

We evaluate our method on the Smartphone Image De-
noising Dataset (SIDD) [1]. Its training set contains 320
pairs of noise-free images and noisy images, which cover
3 different Bayer patterns and 10 different scenes. Its vali-
dation set and testing set consist of 40 pairs of image from
8 different scenes. Both raw images and sSRGB images are

Set Scene #GRBG #BGGR #RGGB Total
Train  2-10 40 126 98 264
Test 1 60 32 20 56

Table 1. Our train/test split of SIDD dataset.

available.

To compare the generalizability of the obtained models,
we need to avoid testing on a trained scene. Therefore,
we divided the original SIDD training set into two parts:
all “Scene 1” image pairs as our testing partition, and the
remaining pairs as our training partition. The details are
shown in Table 1.

4.2. Network Architecture and Training Details

Table 2 shows the modified U-Net [25] architecture used
in our experiments. As proposed by [8], we packed the raw
images into 4 channels as the network input. Differently,
we trained the networks to produce 4-channel outputs, and
unpacked them to obtain denoised raw images.

In our experiments, all the networks were trained with
L1 loss and AdamW optimizer [21] with initial learning rate
of 2e — 4 and weight decay of 2e — 5. Patch size and mini-
batch size were set to 512 and 4 respectively. We trained
each model for 200, 000 iterations, and divided the learning
rate by 10 on plateaus. We detected the plateaus and se-
lected the best models using the PSNR scores on the scene
1 patches of the official validation set. For testing, we fed
the entire images to the network, and measured the average
PSNR scores of the outputs.

4.3. Results and Analysis

To show the effectiveness of our proposed BayerUnify
and BayerAug, we compared them with naive training
methods. The results of the obtained models are shown in
Table 3.

GRBG/BGGR/RGGB Only. As our baseline, we trained
one network for each Bayer pattern. Since the number of
samples available for training each model is insufficient,
this method resulted in a limited performance.

BayerUnify. Another network was trained with our pro-
posed Bayer pattern unification (Sec. 3.1). In the training
phase, we applied cropping to convert all 264 training pairs
to BGGR format. In the testing phase, we employ padding
to unify and cropping to disunify the test cases. Thanks to
the increase of training samples, our method outperforms
the previous baseline.

BayerUnify+BayerAug. We further trained a network
with both Bayer pattern unification and Bayer preserving



Name #O0ut Type

Input 4 Input Image
EncConvl_1 32 Conv 3 x 3
EncConvl_2 32 Conv 3 x 3
Pooll 32 Maxpool 2 x 2
EncConv2_1 64 Conv 3 x 3
EncConv2_2 64 Conv 3 x 3
Pool2 64 Maxpool 2 x 2
EncConv3_1 128 Conv3 x 3
EncConv3_2 128 Conv3 x 3
Pool3 128  Maxpool 2 x 2
EncConv4_1 256 Conv3 x3
EncConv4 2 256 Conv3 x3
Pool4 256  Maxpool 2 x 2
EncConv5_1 512 Conv3 x 3
EncConv52 512 Conv3d x 3

Deconv4 256  Deconv 3 x 3

Add4 256  Deconv4 + EncConv4_2
DecConv4_1 256 Conv3 x3
DecConv42 256  Conv 3 x 3

Deconv3 128  Deconv 3 x 3

Add3 128  Deconv3 + EncConv3_2
DecConv3_1 128 Conv3 x 3
DecConv3_2 128 Conv3 x 3

Deconv2 64 Deconv 3 x 3

Add2 64 Deconv2 + EncConv2_2
DecConv2_1 64 Conv 3 x 3
DecConv2_2 64 Conv 3 x 3

Deconvl 32 Deconv 3 x 3

Addl1 32 Deconvl + EncConv1_2
DecConvl_1 32 Conv 3 x 3
DecConv1_2 32 Conv 3 x 3
DecConv1_3 4 Conv 3 x 3

AddO 4 Input + DecConv1_3

Table 2. Network architecture used in our experiments. The net-
work takes packed 4-channel raw images as input. Prior to each
convolution except EncConv1_1, a PReLU [15] is applied as a pre-
activation.

Method GRBG BGGR RGGB
GRBG Only 43.46 - -
BGGR Only - 49.50 -
RGGB Only - - 51.59
BayerUnify 4392  49.88  51.85

BayerUnify+BayerAug 44.02 4992 5195

Table 3. PSNR of different methods. As shown, our proposed
BayerUnify and BayerAug improve the performance on unseen
testing samples.
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Figure 5. Demonstration of common errors in raw image pre-
processing and augmentation. Modifying raw images improperly
may disarrange the spatial relationship of the pixels.

Method GRBG BGGR RGGB
NaiveUnify 4278  49.74  51.83
BayerUnify 4392 4988 51.85

BayerUnify+NaiveAug 4383 49.76  51.81
BayerUnify+BayerAug 44.02 4992 51.95

Table 4. PSNR of different pre-processing and augmentation meth-
ods. As shown, pre-processing and augmenting raw images via
problematic methods (NaiveUnify and NaiveAug) result in degra-
dation of the network performance.

augmentation (Sec. 3.2). In the training phase, after unifica-
tion, we augmented the data via flipping and cropping. The
result shows that our data augmentation boosted the gen-
eralizability of the obtained model, and consequently im-
proved its performance on the unseen scene.

Since data pre-processing and augmentation on raw im-
ages are not as straightforward as they are on RGB images,
it is easy to introduce errors when handling them. Next,
we discuss some common errors that we mention in Fig. 1,
and show how they dampen the performance. The details of
these inappropriate modifications are illustrated in Fig. 5,
and the results of them are listed in Table 4.

NaiveUnify. A common error in raw image pre-
processing is to permute the order of the packed 4-channel
input. Demonstrated in Fig. 5 (a), while converting the for-
mat, it disorganizes the structure information in the origi-
nal image. To evaluate, we ran a model with training and
testing data unified (to BGGR) with this method. Com-
pared to BayerUnify, this method obtains a lower perfor-
mance, which shows the importance of our valid raw data
pre-processing method.

NaiveAug. Inraw data augmentation, it is plausible to flip
the packed 4-channel images as we do to 3-channel RGB
images. However, as shown in Fig. 5 (b), it also disar-



rays the spatial signal and generates images that are very
wandered from the original dataset. We validated this aug-
mentation method based on the correctly unified dataset
(BayerUnify). As shown in Table 4, this method dampens
the results instead of improving them.

4.4. Challenge Submission

After validating our proposed BayerUnify and BayerAug
with a specific train-test separation and a relatively small
network, we present our solution in NTIRE 2019 Real Im-
age Denoising Challenge (Track 1) [2]. We applied our pro-
posed methods together with an enhanced network architec-
ture and a model ensembling strategy. Based on the network
we mentioned in Sec. 4.2, we increased the network com-
plexity by enlarging the width of earlier stages, and replac-
ing vanilla convolutional layers with residual blocks [16]
(with PReLU, without BN [18]). The network architecture
is shown in Table 5. In the training stage, we split the 320
training pairs into different categories and trained a model
for each one, with both BayerUnify and BayerAug. In the
testing stage, we performed BayerUnify to normalize the in-
put patches into BGGR images, classified them according to
their metadata, and inferred them using the corresponding
models. Our proposed solution achieved a PSNR of 52.11
and a SSIM of 0.9969 on the official test set. We show our
results in validation set in Fig. 6.

5. Conclusion

We have presented effective data pre-processing and
augmentation methods specifically designed for Bayer raw
images, namely BayerUnify and BayerAug. Our results
show that the proposed methods ensembled with advanced
network architecture can achieve state-of-the-art perfor-
mance in raw image denoising problem. We also believe
raw image processing with deep learning techniques is a
promising direction.
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