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Abstract

This paper reviews the first NTIRE challenge on

video super-resolution (restoration of rich details in low-

resolution video frames) with focus on proposed solutions

and results. A new REalistic and Diverse Scenes dataset

(REDS) was employed. The challenge was divided into 2

tracks. Track 1 employed standard bicubic downscaling

setup while Track 2 had realistic dynamic motion blurs.

Each competition had 124 and 104 registered participants.

There were total 14 teams in the final testing phase. They

gauge the state-of-the-art in video super-resolution.

1. Introduction

Example-based video super-resolution (SR) aims at the

restoration of the rich details (high frequencies) from low-

resolution video frames based on a set of prior examples

with low-resolution and high-resolution videos. The loss

of contents can be caused by various factors such as quan-

tization error, limitations of the sensor from the capturing

camera, presence of defocus, motion blur or other degrad-

ing operators, and the use of downsampling operators to re-

duce the video resolution for storage purposes. Just like the

conventional single image SR, video SR is also an ill-posed
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problem because for each low resolution (LR) frame, the

space of corresponding high resolution (HR) frames can be

very large.

In recent years, a significant amount of literature fo-

cused on video super-resolution research. The performance

of the top methods continuously improved [28, 22, 15,

2, 24, 9, 21, 35], showing that the field is getting ma-

tured. However, when compared with single image super-

resolution [1, 27, 29], video super-resolution lacks stan-

dardized benchmarks to allow for an assessment that is

based on identical datasets and criteria. Recently, most of

the video SR publications use the Vid4 [14] dataset for eval-

uation and comparison. Vid4 dataset contains 4 sequences

and each video consists of 30 to 45 frames. The resolu-

tion of each frame is 480 × 704 or 576 × 704. In some

works, other datasets are also proposed for evaluation like

YT10 [21], Val4 [9], SPMCS [24], and CDVL [2]. How-

ever, they are not widely used for comparison yet. While

those video super-resolution datasets have brought substan-

tial improvements to this domain, they still have significant

shortcomings: (1) they lack a standard training set: recent

video SR works are trained from various sets that are chosen

rather arbitrarily; (2) small test sets and resolution (often

below HD resolution); (3) mixed downsampling methods

(Gaussian blurs and bicubic kernels) that are not standard-

ized; they are chosen for LR data generation and they are

not consistent with single image SR literature where usu-

ally bicubic interpolation is employed.

The NTIRE 2019 video super-resolution challenge is

a step forward in benchmarking and training of video

super-resolution algorithms. It uses REalistic and Dynamic
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Figure 1: Visualization of a video frame and its low resolution corresponding frames from the REDS dataset.

Scenes (REDS) dataset [16] consisting of 30000 reference

frames with two types of degradation: the standard bicubic

and additional dynamic motion blurs that are locally variant.

Fig. 1 shows some images from REDS dataset. The REDS

dataset is introduced in [16] along with a study of challenge

results. In the next, we describe the challenge, present and

discuss the results and describe the proposed methods.

2. NTIRE 2019 Challenge

The objectives of the NTIRE 2019 challenge on video

super-resolution are: (i) to gauge and push the state-of-the-

art in video super-resolution; (ii) to compare different solu-

tions; (iii) to promote a novel large dataset (REDS); and

(iv) to promote more challenging video super-resolution

settings.

2.1. REDS Dataset

As a step forward from the previously proposed super-

resolution and deblurring datasets, a novel dataset is pro-

moted, namely REDS dataset [16]. It consists of 300 video

sequences containing 100 frames of 720× 1280 resolution.

240 sequences are for training, 30 for validation and the rest

30 for testing purposes. The frames are of high quality in

terms of the reference frames, diverse scenes and locations,

and realistic approximations of motion blur. REDS covers

a large diversity of contents, people, handmade objects and

environments (cities).

All the videos used to create the REDS dataset are man-

ually recorded with GoPro HERO6 Black. They were orig-

inally recorded in 1920 × 1080 resolution at 120 fps. We

calibrated the camera response function using [20] with reg-

ularization. Then the frames are interpolated [19] to virtu-

ally increase the frame rate up to 1920 fps so that averaged

frames could exhibit smooth and realistic blurs without step

artifacts. Then, the virtual frames are averaged in the signal

space to mimic camera imaging pipeline [17]. To suppress

noise, compression artifacts, we downscale reference sharp

and corresponding blurry frames to 720 × 1280 resolution.

This preprocessing also increases the effective number of

pixels per resolution. The result blurry video frames resem-

ble 24 fps video captured at duty cycle τ = 0.8. Then, the

sharp and blurry frames are ×4 downscaled with the bicubic

kernel to generate low-resolution videos.

2.2. Tracks and competitions

Track 1: Clean facilitates easy deployment of many video

super-resolution methods. It assumes that the degrada-

tion only comes from downscaling. We generate each LR

frame from the HR REDS frame by using MATLAB func-

tion imresize with bicubic interpolation and downscal-

ing factor 4.

Track 2: Blur goes one step ahead and considers motion

blur from fast-moving objects or shaken cameras as well.

No Gaussian or other types of noise is added to the frames,

but only motion blur from dynamic scenes is incorporated.

We obtain each blurry LR frame following the procedure

described in Section 2.1. More details are provided in [16].

The blur is locally variant and any further information such

as blur strength or kernel shape was not provided. Each

ground truth HR RGB frame from REDS is bicubically

downscaled to the corresponding LR frames and used either

for training, validation, or testing of the methods.

Competitions Both video deblurring challenge tracks are

hosted as Codalab competitions. CodaLab platform was

used for all of the NTIRE 2019 challenges competitions.

Each participant is required to register to the CodaLab chal-

lenge tracks to access the data and submit their super-

resolved results.

Challenge phases (1) Development (training) phase: the

participants got both LR and HR train video frames and



the LR frames of the validation set. The participants had

the opportunity to test their solutions on the LR validation

frames and to receive feedback by uploading their results to

the server. Due to the large-scale of the validation dataset,

every 10th frame was involved in evaluation. A validation

leaderboard is available; (2) Final evaluation (test) phase:

the participants got the sharp HR validation frames with the

LR test frames. They had to submit both the super-resolved

frames and a description of their methods before the chal-

lenge deadline. One week later, the final results were made

available to the participants. The final results reflect the per-

formance on every frame of the test set.

Evaluation protocol The Peak Signal-to-Noise Ratio

(PSNR) measured in deciBels (dB) and the Structural Sim-

ilarity Index (SSIM) [34] computed between a result frame

and the ground truth are the quantitative measures. The

higher the scores are the better the restoration fidelity to the

ground truth frame. Because of boundary effects which may

appear in particular methods, we ignore a rim of 1 pixel dur-

ing the evaluation.

3. Challenge Results

From 124 and 104 registered participants for the compe-

titions, 14 teams entered in the final phase and submitted

results, codes, executables, and factsheets. Table 1 reports

the final scoring results of the challenge and Table 2 shows

the runtimes and the major details for each entry as pro-

vided by the authors in their factsheets. Section 4 describes

the method of each team briefly while in the Appendix A

are the team members and affiliations.

Use of temporal information All the proposed methods

use the end-to-end deep learning and employ the GPU(s)

for both training and testing. Interestingly, in contrast

to the recent RNN-based video super-resolution meth-

ods, most teams (HelloVSR, UIUC-IFP, SuperRior, Cyber-

verseSanDiego, XJTU-IAIR, BMIPL UNIST, IPCV IITM,

Lucky Bird, mvgl) aggregated several video frames in chan-

nel dimension and let CNN learn the temporal relation to

deblur a target frame. External optical flow estimation or

warping was employed in none of the submitted methods.

TTI used a recurrent model inspired from (DBPN [6]). Cris-

tianoRonaldo used a single image super-resolution method.

Restoration fidelity HelloVSR, UIUC-IFP, and Super-

Rior are the best scoring teams. HelloVSR is the win-

ner of NTIRE 2019 Video Super-Resolution Challenge.

HelloVSR achieves 31.79 dB for Track 1 and 30.17 dB

for Track 2 improving +5.31 dB and +6.12 dB over the

input low-resolution video, respectively. HelloVSR team

achieves the best results for both of the competition tracks.

Their solution shows consistent performance across the

tracks and is also valid for NTIRE 2019 Video Deblurring

Challenge [18].

Runtime / efficiency In Fig. 2 and 3, we plot the run-

ning time per image vs. achieved PSNR performance for

both tracks. UIUC-IFP’s solution showed good trade-off

between the restoration quality in terms of PSNR and the

running time. It runs in 0.98 s per frame for both Tracks

on Tesla V100 in contrast to most other methods consume

more than 1 seconds per frame. They had 0.71 dB gap

with the HelloVSR’s method in Track 2. Lucky Bird team’s

method was the fastest, taking only 0.013 seconds to pro-

cess a frame.
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Figure 2: Runtime vs. performance for Track 1: Clean.
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Figure 3: Runtime vs. performance for Track 2: Blur.

Ensembles Many solutions used self-ensemble [30] that av-

erages the results from flipped and rotated inputs at test

time. HelloVSR did not use rotation to reduce computa-

tion. SuperRior team focused on the fusion of multiple ar-

chitectures. RDN [38], RCAN [37], DUF [9] are modified

to take channel-concatenated frames as input and they esti-



Track 1:

Clean

Track 2:

Blur

Team Author PSNR SSIM PSNR SSIM

HelloVSR xixihaha 31.79 (1) 0.8962 30.17 (1) 0.8647

UIUC-IFP fyc0624 30.81 (6) 0.8748 29.46 (2) 0.8430

SuperRior lchkou 31.13 (2) 0.8811 - -

CyberverseSanDiego CyberverseSanDiego 31.00 (3) 0.8822 27.71 (7) 0.8067

TTI iim lab 30.97 (4) 0.8804 28.92 (4) 0.8333

NERCMS Mrobot0 30.91 (5) 0.8782 28.98 (3) 0.8307

XJTU-IAIR Hang - - 28.86 (5) 0.8301

BMIPL UNIST UNIST BMIPL 30.43 (7) 0.8666 28.68 (6) 0.8252

IPCV IITM kuldeeppurohit3 29.99 (8) 0.8570 26.39 (9) 0.7699

Lucky Bird NEU SMILE Lab 29.39 (9) 0.8419 - -

mvgl akinyilmaz 28.81(10) 0.8249 - -

Team India Manoj 28.81(10) 0.8241 - -

withdrawn team 28.54(11) 0.8179 26.54 (8) 0.7587

CristianoRonaldo ChristianoRonaldo - - 26.34(10) 0.7549

Bicubic baseline 26.48 0.7799 24.05 0.6809

Table 1: NTIRE 2019 Video Super-Resolution Challenge results on the REDS test data. HelloVSR team is the winner of the

challenge with consistent performance in both tracks.

Team
Track 1

Clean

Track 2

Blur
Platform

GPU

(at runtime)

Ensemble / Fusion

(at runtime)

HelloVSR 2.788 3.562 PyTorch TITAN Xp Flip (x4)

UIUC-IFP 0.980 0.980 PyTorch Tesla V100 Flip/Rotation (x8)

SuperRior 120.000 - PyTorch Tesla V100 Flip/Rotation/Temporal flip (x16)

Adaptive model ensemble

CyberverseSanDiego 3.000 3.000 TensorFlow RTX 2080 Ti -

TTI 1.390 1.390 PyTorch TITAN X -

NERCMS 6.020 6.020 PyTorch GTX 1080 Ti Flip/Rotation (x8)

XJTU-IAIR - 13.000 PyTorch GTX 1080 Ti Flip/Rotation (x8)

BMIPL UNIST 45.300 54.200 PyTorch TITAN V -

IPCV IITM 3.300 4.600 PyTorch TITAN X Flip/Rotation (x8)

Lucky Bird 0.013 - PyTorch TITAN Xp -

mvgl 3.500 - PyTorch GTX 1080 Ti -

Team India 0.050 - Pytorch/Tensorflow Tesla V100 -

withdrawn team 398.000 398.000 - - -

CristianoRonaldo - 0.600 TensorFlow Tesla K80 -

Table 2: Reported runtimes per frame on REDS test data and details from the factsheets

mated the score maps for each output to generate spatially

adaptive ensemble model. They also adopted temporal flips

of inputs at test time for additional ensemble as well as spa-

tial flips and rotations.

Train data REDS dataset [16] has 24000 train frames and

all the participants found the amount of data to be suffi-

cient for training their models. Training data augmentation

strategy [30] such as flips and rotations by 90 degrees were

employed by most of the participants.

Conclusions From the analysis of the presented results,

we conclude that the proposed methods gauge the state-of-

the-art performance in video super-resolution. The meth-

ods proposed by the best ranking team (HelloVSR) exhibit

consistent superiority in both tracks in terms of PSNR and

SSIM.
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4. Challenge Methods and Teams

4.1. HelloVSR team

HelloVSR team proposes the EDVR framework [31],

which takes 2N + 1 low-resolution frames as inputs and

generates a high-resolution output, as shown in Fig. 4. First,

to alleviate the effects of blurry frames on alignment, a

PreDeblur module is used to pre-process the blurry inputs

before alignment (it is not included in the model for SR-

clean track). Then, each neighboring frame is aligned to

the reference frame by the PCD alignment module at the

feature level. The TSA fusion module is used to fuse the

aligned features effectively. The fused features then pass

through a reconstruction module, which consists of sev-

eral residual blocks [13] in EDVR and can be easily re-

placed by any other advanced modules in single image

SR [11, 38, 6, 37, 33]. The upsampling operation is per-

formed at the end of the network to increase the spatial size.

Finally, the high-resolution reference frame is obtained by

adding the predicted image residual to a direct upsampled

image [10]. Note that EDVR is a generic architecture also

suitable for other video restoration tasks, such as deblurring.

To address large and complex motions between frames,

which are common in the REDS dataset, they propose a

Pyramid, Cascading and Deformable convolution (PCD)

alignment module. In this module, deformable convolu-

tions [3, 26] is adopted to align frames at the feature level.

They use a pyramid structure that first aligns features in

lower scales with coarse estimations, and then propagates

the offsets and aligned features to higher scales to facil-

itate precise motion compensation, similar to the notion

adopted in optical flow estimation [8, 23]. Moreover, an ad-

ditional deformable convolution is cascaded after the pyra-

midal alignment This approach further improve robustness

of the alignment. The overview of the PCD module is

shown in Fig. 5.

Since different frames and locations are not equally in-

formative due to the imperfect alignment and imbalanced

blur among frames, a Temporal and Spatial Attention (TSA)

fusion module is designed to dynamically aggregate neigh-

boring frames in pixel-level, as shown in Fig. 5. Tempo-

ral attention is introduced by computing the element-wise

correlation between the reference frame and each neighbor-

ing frame in an embedding space. The correlation coef-

ficients then weigh each adjacent feature at each location.

Then, weighted features from all frames are convolved and

fused together. After the fusion, they further apply spatial

attention [35, 32, 37] to assign weights to each location in

each channel to exploit cross-channel and spatial informa-

tion more effectively.
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Figure 5: PCD alignment module and TSA fusion module

in EDVR.

They also use a two-stage strategy to boost performance

further. Specifically, a similar but shallower EDVR network

is cascaded to refine the output frames of the first stage. The

cascaded network can further remove the severe motion blur

that cannot be handled by the preceding model and alleviate

the inconsistency among output frames.



4.2. UIUC­IFP team

UIUC-IFP team proposes a new method, WDVR, which

is based on WDSR [36, 5]. To achieve a better speed-

accuracy trade-off, they investigate the intersection of three

dimensions in deep video restoration networks: spatial,

channel, and temporal. They enumerate various network

architectures ranging from 2D convolutional models to 3D

convolutional models and delve into their gains and losses

in terms of training time, model size, boundary effects,

prediction accuracy, and the visual quality of the restored

videos. Under a strictly controlled computational budget,

they explore the designs of each residual building block in

a video restoration network, which consists of a mixture of

2D and 3D convolutional layers.

From their explorations, the summarized findings are:

(1) In 3D convolutional models, setting more computa-

tion/channels for spatial convolution leads to better perfor-

mance than on temporal convolution. (2) The best variant

of 3D convolutional models is better than 2D convolutional

models, but the performance gap is close. (3) In a very lim-

ited range, the performance can be improved by the increase

of window size (5 frames for 2D model) or padding size (6

frames for 3D model). Based on these findings, they intro-

duce the WDVR, wide-activated 3D convolutional network

for video restoration, which achieves a better accuracy un-

der similar computational budgets and runtime latency.

Multiple 3D wide-activated residual blocks in 3D mod-

els are designed with different ratio of parameters for tem-

poral modeling. The most straightforward design of 3D

is inflated version of 2D wide-Activated blocks, named as

IAI. To reduce the ratio of temporal parameters by half,

the inflated 3D convolution after activation is replaced with

Spatial convolution, named as IAS. To further reduce the

ratio, the other inflated 3D convolution is decomposed to

Spatio-Temporal convolution, named as STAS. The spatio-

temporal convolution explicitly isolates the parameters for

spatial and temporal modelling. In STAS, the temporal con-

volution is connected with activations, so it has more chan-

nels than input and output features. Switching the order of

Spatio-Temporal convolution, named as TSAS, can reduce

temporal parameters even more, by moving temporal con-

volution to connect narrow block inputs.

4.3. SuperRior team

SuperRior team proposes to learn deep spatial-temporal

features for up-sampling video frames by adapting multi-

ple state-of-the-art image super-resolution methods [12] as

shown in Fig. 6. They focus on the ensemble of different

architectures that are independently designed, RDN [38],

RCAN [37], DUF [9]. They were originally proposed for

single-image super-resolution and the first layers are modi-

fied to accept concatenated frames. They estimate the spa-

tial weight map for the output from each architecture and

Figure 6: SuperRior team: proposed pipeline.

perform adaptive ensemble on them. At test time, temporal

flips as well as spatial flips and rotations [30] are employed

to further improve performance. Their adaptation schema

can largely reduce the computation cost compared with us-

ing 3D based solutions.

4.4. CyberverseSanDiego team

Figure 7: CyberverseSandiego team: overall architecture.

CyberverseSanDiego team proposes a fully convolu-

tional neural network model for 4× video super-resolution

that is capable of generating sharp video frames with high-

resolution details by taking advantage of motion compen-

sated reference frames and reusing the estimated high-

resolution versions of a frame in previous stages for a boot-

strapped (in other words, recurrent) resolution enhancement

process.

They employ multiple motion-compensated reference

frames of the current frame. To encourage temporally con-

sistent results, they use a bootstrapped frame-recurrent ap-

proach where the reconstructed high-resolution frame of the

previous step is dispatched into the network after rearrang-

ing its pixels into multiple low-resolution images. Their

model in Fig. 7 consists of three main components; an in-

put subnetwork that shuffles and combines multiple motion-

compensated reference frames, a blending backbone that

applies fully convolutional blocks on low-resolution fea-

ture maps, and a spatial upsampling subnetwork that recon-

structs the high-resolution image.



4.5. TTI team

Figure 8: TTI team: proposed scheme.

TTI team proposes a novel architecture for the prob-

lem of video super-resolution as shown in Fig. 8. They

integrate spatial and temporal contexts from consecutive

video frames using a recurrent encoder-decoder module,

that fuses multi-frame information with the more tradi-

tional, single frame super-resolution path for the target

frame. In contrast to most prior work where frames are

pooled together by stacking or warping, their model, the

Recurrent Back-Projection Network (RBPN) [7] treats each

context frame as a separate source of information. These

sources are combined in an iterative refinement framework

inspired by the idea of back-projection in multiple-image

super-resolution. This is aided by explicitly representing es-

timated inter-frame motion with respect to the target, rather

than explicitly aligning frames.

4.6. NERCMS team

NERCMS team proposes a progressive fusion video

super-resolution, where the temporal correlations are ex-

tracted gradually. In particular, the method fuses multiple

frames progressively and enlarges them at last, instead of

fusing frames at first.

4.7. XJTU­IAIR team

Figure 9: XJTU-IAIR team: proposed solution.

XJTU-IAIR team proposes a flow-guided spatio-

temporal dense network (FSTDN) for the joint video de-

blurring and super-resolution task as shown in Fig. 9. The

method estimates the optical flows among the consecutive

frames and exploits the temporal information to reconstruct

high-resolution images based on the estimated flow.

4.8. BMIPL UNIST team

Figure 10: BMIPL UNIST team: proposed pipeline.

BMIPL UNIST team proposes a network with a module

base as shown in Fig. 10. The baseline for each module is

RCAN network for scale 2. The entire network consists of

two modules. The output resolution of the first module is

same as ×2 downsampled frame. The output resolution of

the second module is same as ground-truth frame. In each

module, the network takes three sequential images such as

t−1, t, t+1-th frames as input. In each SR model, they set

the number of res-group as 10 and the number of res-block

as 20. For training, they firstly train 1st module and train

2nd module by using 1st module pre-trained weight. The

author used ensemble method in each module to generate

the training data.

4.9. IPCV IITM team

IPCV IITM team feeds one single frame, as well as 5

neighbor frames to two branches of our network, and at

the end, they fuse both the output to get the final super-

resolved frame as shown in Fig. 11. For single image

super-resolution branch, they employ ESRGAN [33] archi-

tecture for extracting HR information from each frame. For

multi-frame information integration for super-resolution,

they train a compact EDSR [13] type architecture. They

also utilize the pre-trained FlowNet [4] to align input LR

frames during training and testing. To handle motion blurs

in Track 2, they additionally use deblurring stage afterward,

feeding the output of the super-resolution model to the de-

blurring model.



Figure 11: IPCV IITM team: proposed solution.

4.10. Lucky Bird team
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Figure 12: Lucky Bird team: overall pipeline of the method.

Lucky Bird team proposes a temporal deformable align-

ment network (TDAN) to adaptively align the reference

frame and each supporting frame at the feature level with-

out computing optical flow as shown in Fig. 12. The TDAN

uses features from both the reference frame and each sup-

porting frame to dynamically predict offsets of sampling

convolution kernels. By using the corresponding kernels,

TDAN transforms supporting frames to align with the ref-

erence frame. The author utilized a reconstruction network

which takes aligned frames and the reference frame to pre-

dict HR video frames.

4.11. mvgl team

mvgl team proposes a model that consists of two sepa-

rate fully convolutional networks. The first network called

FCTNN takes 9 consecutive frames to produce the super-

resolved version of the middle frame. Inspired by [13], they

use residual network structure as a deep architecture. For

upsampling, they take the sub-pixel layer which contains

convolution and pixel-shuffle operations. Since FCTNN

super-resolves the middle frame of 9 consecutive frames,

they lose the first and last 4 frames in a sequence. To pro-

duce these 8 frames at test time, they designed the second

architecture which handles single image super-resolution.

4.12. Team India team

Team India team proposes a deep back projection net-

work [6] based model at frame level to spatially upsample

Figure 13: Team India team: overall pipeline of the model.

the frames then quality is further improved by using RED-

10 to remove artifacts which arises during upsampling of

frames.

4.13. CristianoRonaldo team

CristianoRonaldo team proposes a network that is jointly

trained for both image deblurring and super-resolution.

SRN-DeblurNet [25] is used for pretraining deblur module.

Owing to the proposed network and joint training method,

the model can generate three scales of sharp images(×1,

×2, ×4). The method does not require consecutive neigh-

bor frames to super-resolve a target frame. Temporal infor-

mation is not necessary, and the method can be applied to a

single image as well.
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