
 

Abstract 

 

Non-uniform and multi-illuminant color constancy are 

important tasks, the solution of which will allow to discard 

information about lighting conditions in the image. Non-

uniform illumination and shadows distort colors of real-

world objects and mostly do not contain valuable 

information. Thus, many computer vision and image 

processing techniques would benefit from automatic 

discarding of this information at the pre-processing step. In 

this work we propose novel view on this classical problem 

via generative end-to-end algorithm based on image 

conditioned Generative Adversarial Network. We also 

demonstrate the potential of the given approach for joint 

shadow detection and removal. Forced by the lack of 

training data, we render the largest existing shadow 

removal dataset and make it publicly available. It consists 

of approximately 6,000 pairs of wide field of view synthetic 

images with and without shadows. 

 

1. Introduction 

The human visual system has an inherited ability to 

discard information about illumination and perceive colors 

almost unchanged independently of the ambient conditions. 

This phenomenon is called color constancy (CC). The 

artificial algorithms of the computational color constancy 

aimed at correcting the effect of illumination and extraction 

the actual object color value in the scene as it would appear 

under the canonical light. However, the vast majority of 

computational CC algorithms work under the assumption 

that illumination on the scene is uniform, i.e. its color has 

the same values in each pixel of an image. This assumption 

is rarely fulfilled in real-world scenes. Starting from a 

single light source, the illuminance of which depends on the 

distance to the surface, up to multiple light sources in the 

scene – all these cases require an estimation of illumination 

map containing pixel-wise information. This task is highly 

non-trivial and is still not solved despite the long study. 

Uniform CC algorithms typically provide a vector of 

illumination color as an output. Non-uniform CC methods 

do the same for smaller regions (patches or superpixels). 

Afterward, the colors of the scene can be corrected using 

diagonal transformation (dividing pixel values by 

illumination coordinates channel-wise). In this work, we 

concentrate on the statement that image with corrected 

colors (as they look under canonical illumination) is the 

main goal of any color constancy algorithm, while the 

estimation of illumination is an intermediate step. Thus, we 

propose a radically different end-to-end approach, which 

generates images with corrected colors directly, avoiding 

estimation of illumination color or illumination map. This 

is possible via supervised learning of a mapping between 

images under unknown and canonical illumination. The 

algorithm obtained in result demonstrates outstanding 

performance even in the advanced case such as random 

distribution of multiple illuminants, and, we believe, may 

be a breakthrough in this domain. 

Inspired by success in discarding the complex 

illumination distributions we try to apply the same 

technique for the task of shadow removal, which can be 

considered a particular scenario of two-illuminant CC. 

However, it is impossible to remove shadows from real-

world scenes completely, that causes a significant obstacle 

on the way of creating a large training dataset. The largest 
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Figure 1: Examples of color constancy tasks discussed in this work. Outputs generated using the proposed algorithm. 

 



available datasets with a ground truth information are 

limited to a few hundreds of images, which may not be 

sufficient for a deep learning model. Therefore, we created 

a custom dataset of almost 6,000 images of real-world-like 

scenes rendered using advances in computer graphics. We 

make it publicly available and believe it will be helpful for 

future shadow removal research. We trained the model 

using this data and demonstrated that it has potential in 

shadow removal application as well.  

Overall, our contributions are as follows: 

• We are first who propose to use the generative 

adversarial network for solving computational color 

constancy task end-to-end, without an estimation of 

illumination color or illumination color map. 

• We propose novel architecture called AngularGAN 

oriented specifically to CC task.  

• We create and make openly accessible the largest 

available shadow removal dataset, and demonstrate the 

potential of using the described approach for shadow 

detection and removal. 

2. Related works 

2.1. Color Constancy under uniform illumination 

The classical color constancy algorithms work under an 

assumption that illumination ݁(ݔ,  is uniform all around (ݕ

the image area ݁(ݔ, (ݕ = ݁.  Consequently, estimation of 

the illumination color vector ݁ = (݁ோ , ݁ீ , ݁஻)்  allows to 

perform color correction using a diagonal model, or von 

Kries [46] transformation: 

,ݔ)஼ܫ (ݕ = ቎݁ோିଵ 0 00 ݁ீିଵ 00 0 ݁஻ିଵ቏ ,ݔ)ܫ (ݕ , (1)

where ܫ	is the image taken under an unknown light source,  ܫ஼ 	is the image corrected, and a canonical illumination [19] 

is taken as ݁஼ = (1, 1, 1)். 

As the simplest case of color constancy, uniform color 

constancy was studied in details, and for now, may be 

solved with satisfactory accuracy. The studies performed in 

this field can be separated into two groups: statistics-based 

and learning-based. Methods from the first group were 

widely used in last decades and exploit statistics of a single 

image. Usually, they apply strong empirical assumptions 

and operate in their limits. For instance, the White Patch 

(WP) algorithm [8] is based on the assumption that the 

brightest point of an image is a perfect white reflector, Grey 

World (GW) algorithm [9] is based on the assumption that 

the average color of a scene is achromatic, Grey Edge (GE) 

algorithm [73] exploit the assumption that edges on the 

image are achromatic, e.g., by applying GW algorithm to 

1st or 2nd derivative of an image. All of them were 

generalized in one framework by van de Weijer et al. [73]. 

It is worth noting that performance of the statistics-based 

algorithms is different for different images, and as was 

shown by Gijsenij and Gevers [22] – natural image statistics 

can be used to cluster images by suitable CC algorithm.  

The first learning-based approaches include Gamut-

Mapping algorithm [14], Colour-By-Correlation [15], 

Exemplar-based algorithm [39], Bayesian color constancy 

[7], and a number of neural networks-based approaches 

which utilize hand-crafted features[10][11]. Further rise of 

deep learning algorithms has not gone unnoticed and 

generated a group of CNN-based color constancy 

algorithms. Such as: patch-based CNNs by Bianco et al. [4] 

and Shi et al. [65], fine-tuned AlexNet [47] by Lou et al. 

[55], custom Mixed Max-Minkowski pooling network by 

Fourure et al. [20], and current state-of-the-art FC4 

algorithm by Hu et al. [32].  

2.2. Color constancy under non-uniform illumination 

Uniformity of the illumination by the scene area is a very 

strong assumption which is usually violated in real-world 

scenes. Non-uniform distribution of single or multiple light 

sources may be generalized as one task: estimation of 

illumination map ݁ = ,ݔ)݁	 (ݕ  which describes 

illumination color in each pixel of the image independently. 

A number of algorithms were proposed to solve this task, 

however, due to the greater complexity and ambiguity 

available solutions are usually limited by strict assumptions 

and can produce satisfactory accuracy only under particular 

conditions, but are not suitable for general use. 

The obvious approach to non-uniform color constancy is 

to split the image into regions/patches/superpixels within 

which illumination can be considered uniform and apply 

conventional uniform CC algorithms to each region 

independently. This approach is exploited in work of Ebner 

[13], who assumes a grey-world assumption works locally 

(which is even less likely than GW assumption for a wide 

scene), Bleier et al. [5] proposed to segment an image into 

a set of superpixels based on color, Gijsenij et al. [23] 

proposed to obtain image patches by grid-based, keypoint-

based, or segmentation-based sampling, and then estimate 

the illuminant for each image patch by one of the grey-

based methods. Xiong et al. [76] using the Retinex 

algorithm [51] while assuming that illumination varies 

smoothly across the scene. In [2], Barnard et al. used 

smoothness constraints on both the reflectance and 

illumination gamuts to identify varying illumination. Gu et 

al. [27], on the other hand, group pixels into regions that 

jointly maximize the weighted sum of the illuminants in the 

scene and the likelihood of the associated image 

reflectance. A number of other studies impose additional 

constraints such as number of lights that lit the scene [31], 

capturing the near-infrared signal [67], employment of 

specialized hardware [16] or user inputs [6].  

Recent works in this domain include those of Beigpour 

et al. [3] who use conditional random field to combine local 



illuminant interactions with their global spatial distribution; 

Mutimbu and Robles-Kelly [59] who propose a few 

algorithms based on factor graphs for recovering the 

pixelwise illuminant; and Hussain and Akbari [37] who 

propose an algorithm that uses the normalized average 

absolute difference of each segment as a measure for 

determining whether the segment’s pixels contain reliable 

color information. 

2.3. Shadow detection and removal 

All the algorithms dedicated to color correction of 

shadowed regions can be separated in two sub-tasks: 

shadow detection, which produces binary shadow mask as 

output, and shadow removal (shadow lightning, color 

correction) itself. Traditional shadow detection methods 

[60][64][69] exploit physical models of illumination and 

color. However, due to the approximations in the physical 

model, their performance is limited. Other approaches learn 

shadow properties under supervision using hand-crafted 

features such as color [28][50][70], texture [28][70][80], 

edge [34][50][80], and T-junction [50]. Guo et al. [29] 

adopt similar features but detect shadows by classifying 

segments in an image and pairing shadow and lit segments 

globally, which increases the algorithm’s robustness.  

Recent algorithms take advantage of the representation 

learning ability of Convolutional neural networks (CNNs) 

to learn hierarchical features for shadow detection. Khan et 

al. [42] used multiple CNNs to learn features in super pixels 

and along object boundaries. Vicente et al. [71] trained 

stacked-CNN using a large dataset with noisy annotations. 

Hosseinzadeh et al. [30] detected shadows using a patch-

level CNN and a prior shadow map generated from hand-

crafted features. Qu et al. [61] proposed DeshadowNet with 

a multi-context architecture, where the output shadow matte 

is predicted by embedding information from global view, 

appearance, and semantic information. Hu et al. [33] use a 

spatial Recurrent Neural Network with attention weights. 

Other methods perform detection using user-hints such as 

clicks or strokes on the shadowed regions [24][74][78].  

Removing the shadow after detection is conventionally 

performed either in the gradient domain [17][18][54][58] or 

the image intensity domain [1][24][29][41].  Guo et al. [29] 

remove shadows by image matting; Xiao et al. [75] apply a 

multi-scale adaptive illumination transfer which performs 

well for removing shadows cast on surfaces with strong 

texture; Zhang et al. [78] remove shadows by aligning the 

texture and illumination details; Khan et al. [41] apply a 

Bayesian formulation to robustly remove common 

shadows, however, this method is unable to process 

difficult shadows such as non-uniform shadows, and also 

computationally expensive. In work of Gong and Cosker 

[24], shadow removal is performed interactively by 

registering the penumbra to a normalized frame which 

allows estimation of non-uniform shadow changes. 

2.4. Image generation using GANs 

The recent development of Generative Adversarial 

Networks (GANs) [25] gave rise to a new era in synthetic 

image generation. GANs have shown remarkable results in 

various computer vision tasks such as image generation 

[35][40][62][79], image translation [38][43][81], video 

translation [72], deblurring [48], segmentation [56], super-

resolution imaging [52], and face image synthesis [44][53]. 

A core principle behind any GAN model is a competition 

between two modules: a discriminator and a generator. The 

discriminator learns to distinguish between real and fake 

samples, while the generator learns to generate fake 

samples that are indistinguishable from real samples. GAN-

based conditional image generation has also been actively 

studied. Pix2pix algorithm by Isola et al. [38] learns 

mapping between pairs of images from different domains 

in a supervised manner using cGAN [57]. The generator has 

a “U-Net”-shaped architecture [63] with skip-connections, 

while the discriminator is a convolutional classifier. 

Pix2pix algorithm demonstrated remarkable performance 

in the mapping of very different domains (labels ↔ photo, 

map ↔ aerial photo, edges → photo, BW → color photos, 

etc.) [38]. Motivated by these achievements, we study the 

possibility of using image translation for the CC task by 

mapping images under unknown and canonical 

illumination. Pix2pix learns mapping in a supervised 

manner, thus, require paired images for training. 

CycleGAN [81] and DiscoGAN [45] are examples of 

unsupervised algorithms which do not require paired data 

thanks to utilizing a cycle consistency loss. In the case 

where paired data is available, there is no motivation to use 

unsupervised algorithms and introduce additional 

uncertainty, however, in future it may be beneficial to 

collect a very large dataset of unrelated images under 

different illuminations and learn mapping between them.  

3. Methodology 

In this work, we present a novel architecture called 

AngularGAN oriented specifically to the CC task (Fig. 2). 

The additional criterion evaluates an illumination map from 

the predicted image and compares it to the ground truth 

during training. This technique allows to minimize angular 

error explicitly and was shown by Hu et al. [32] and Sidorov 

[66] to be efficient for the CNN-regressors. Particularly, the 

total loss is constructed as a linear combination of 

discriminator loss, L1-loss, and angular loss: ܮ = ஽ܮ + ଵܮ௅ଵߣ + ௔௡௚ܮ௔௡௚ߣ , ௔௡௚ܮ = (௜௝ߝ)݊ܽ݁݉ (2)

Please note that AngularGAN generates a corrected 

version of the input image directly, while illumination is 

estimated afterwards and used only for training purposes. 

Such an approach allows to avoid artificial assumptions and 

hypotheses in regards to the illumination distribution. 



Considering that illumination is not predicted directly, it 

can be estimated pixel-wise using inverse diagonal 

transformation and then used for calculation of the error: ߝ௜௝ = cosିଵ ݁௜௝ ∙ ݁∗௜௝ฮ݁௜௝ฮ ∙ ฮ݁∗௜௝ฮ , ݁௜௝ = ஼௜௝ܫ௜௝ܫ , ݁∗௜௝ = ௜௝∗ܫ௜௝ܫ (3)

However, this is invalid for black and over-saturated 

pixels which does not allow to reach zero error (Table 1). 

Thus, it is preferable to use ground truth illumination map 

when available. For such cases, we propose AngularGAN-

v2 which uses illumination maps for training and implicitly 

computes ܫ஼  as ܫ஼௜௝ = ݁௜௝ିଵ ∙ ௜௝ܫ . This model produces a 

lower angular error but requires ground truth illumination 

data which may not be available in a common case.  

Due to the limitation of the format, more details as well 

as source code can be found on the project page.1 

4. Uniform Color Constancy 

Firstly, the ability of a GAN to solve the classical 

uniform color constancy task was studied. The general idea 

is to learn mapping between scenes under unknown and 

canonical illumination, and further generate color corrected 

images without an intermediate step of estimation of 

illumination color.  

                                                           
1 Source code and datasets: https://github.com/acecreamu/angularGAN 

4.1. Datasets 

Taking into account that accurate image generation 

requires a large amount of learning data we selected the 

largest of standard benchmark datasets – SFU Grayball [12] 

dataset. It contains 11,346 real-world images. In each 

image, a gray ball is placed in the corner of the image to 

provide ground truth illumination information. This 

information was used to discard color cast via von Kries 

transform (Eq. 1) and obtain color corrected images. In the 

preprocessing step, the data was square-cropped and the 

gray ball was removed.  

 

Figure 3: Results produced by the proposed approach. Top: 

SFU Grayball dataset (10,590 train + 756 test images); 

bottom: ColorChecker dataset (365 train + 183 test images).

 

Figure 3: AngularGAN framework. I, IC, and I* correspond to 

input, ground truth, and predicted images, whereas e and e* are 

ground truth and estimated illumination maps respectively. Sign / 

denotes pixel-wise division. 



Additionally, we also apply the given approach to the 

much smaller ColorChecker dataset [21] which is standard 

in CC research. This dataset contains 548 real-world 

images, among which only 360 were used for training. 

Thus, we did not expect good performance due to the 

insufficient amount of learning samples. However, results 

demonstrate that the given approach may produce 

competitive accuracy even with such an extremely small 

learning base.  

4.2. Results 

Following previous works, we report results in terms of 

angular error, which is an angle between vectors of ground 

truth (݁) and estimated (݁∗) illumination color. However, 

we doubt the adequacy of this metric for the algorithms like 

ours, where ݁∗ can be estimated only in approximation, and 

encourage the community to use image similarity metrics 

such as SSIM, PSNR, and CIE ΔE. We compare the results 

with classical single-image and learning-based algorithms. 

As an instance of a typical CNN-based algorithm, we 

implement custom regressor using fine-tuned GoogLeNet 

[68] (by analogy with fine-tuning of AlexNet by authors of 

[4] and [55]). Statistical values of error metric for both 

datasets are presented in Table 1, sample images for visual 

evaluation are shown in Figure 3.  

The quantitative evaluation shows that our approach 

produces results competitive to classical CC algorithms and 

outperforms most of them. It can also be seen from the 

experiment with ColorChecker dataset that requirements 

for the size of the training set are not as strict as it may be 

expected for a generative algorithm.  

It should be noted that due to the generation of output 

images instead of simple modification, given approach may 

introduce loss of image quality that is not typical for 

conventional CC algorithms. This may manifest as artifacts 

and periodic noise. Although they are not visible with the 

naked eye and expectedly will be solved in next generations 

of GANs, this peculiarity of image generation should be 

taken into account.  

5. Multi-Illuminant Color Constancy 

Multi-Illuminant and non-uniform CC are much more 

complex problems in comparison to uniform CC because 

they require estimation of a map of illumination for each 

pixel of the image instead of applying one value to all of 

them. The proposed image-to-image translation approach to 

CC does not estimate the illumination map explicitly and 

performs color correction by learning mapping based on 

data provided. Thus, it is not influenced by the complexity 

of the illumination distribution directly. This feature allows 

achieving outstanding results in removing complex color 

cast from an image.  

5.1. Datasets 

The main multi-illuminant datasets are: Multiple Light 

Sources Dataset [23] (59 laboratory + 9 outdoor images), 

Multiple-Illuminant Multi-Object dataset [3] (10 laboratory 

scenes under 6 conditions + 20 real-world images), and 

Multi-Illuminant Dataset [5] (4 laboratory scenes under 17 

illumination conditions). There is also a number of smaller 

datasets captured in laboratory conditions. None of the 

available datasets is larger than 100 images, which does not 

allow using them for the training of deep learning-based 

models. Therefore, we decided to synthesize a custom 

dataset of an appropriate size. The color corrected images 

from SFU Grayball dataset [12] were taken as a ground 

truth data. Tint maps were created as Gaussian distributions 

of various (for generalization) colors with random μ and σ 

(Fig. 4, top row). Distorted images were created by tinting 

ground truth data with tint maps using inverse von Kries 

transform (Fig. 4, second row). In result, we obtained 

11,346 images synthetically color-casted with random 

combinations of the three different illuminants.  

TABLE 1. Comparison of uniform color constancy methods. 
 

 SFU Grayball [12] ColorChecker [21] 

 mean std mean std 

Do nothing 9.00° 7.02° 11.2° 8.70° 

GW 8.44° 5.35° 8.24° 4.51° 

WP 8.03° 5.74° 9.51° 7.28° 

Shades of Gray 7.24° 4.37° 8.26° 5.53° 

GE 1st order 8.04° 5.74° 9.80° 6.74° 

GE 2nd order 8.19° 6.16° 9.93° 7.49° 

Weighted GE 8.61° 6.44° 10.0° 7.02° 

Gamut Mapping 8.15° 5.55° 8.81° 6.09° 

Exemplar Based 7.30° 4.86° 8.23° 5.45° 

CNN  4.36° 2.93° 7.18° 3.29° 

AngularGAN (λL1  = 0) 5.12° 3.68° 7.52° 3.00° 

AngularGAN (λANG = 0) 6.74° 4.06° 6.16° 2.98° 

AngularGAN 4.67° 3.08° 6.09° 2.59° 

Ground Truth 3.50° 2.46° 4.60° 2.13° 

 

 

TABLE 2. Comparison of accuracy of multi-illuminant color 

constancy methods. 

 
 Angular Error PSNR 

 mean std mean std 

Do nothing 9.58° 3.41° 16.9 2.55 

LSAC [13] 15.2° 4.84° 14.3 2.52 

Gijsenij et al. [23] WP 12.1° 5.18° 15.4 2.77 

Gijsenij et al. [23] GW 10.5° 5.00° 17.0 2.61 

MIRF [3] 9.32° 3.43° 20.5 2.50 

MICC [49] 8.15° 4.80° 19.8 2.48 

Mutimbu and Robles-Kelly [59] 6.64° 3.90° 22.1 2.31 

Hussain and Akbari [37] 6.15° 3.26° 22.6 2.35 

AngularGAN (λL1  = 0) 4.75° 4.11° 21.6 2.45 

AngularGAN (λANG = 0) 6.26° 2.01° 27.5 2.31 

AngularGAN 3.98° 2.16° 29.1 2.12 



The similar real-world scenes usually have similar 

illumination conditions (e.g. photos captured in office have 

one type of light sources) that simplifies the training of the 

algorithms and allows to apply exact transformation learned 

from the training data to the test data. The proposed custom 

dataset does not have this feature because the distribution 

of synthetic illuminants is random in each image and do not 

correlate between coherent scenes. This makes the learning 

process even more complex. However, it does not influence 

single-image methods.  

5.2. Results 

The results are reported as mean angular error between 

all the pixels by analogy with the previous experiment. 

Performance is quantitatively compared to the performance 

of state-of-the-art methods and is reported in Table 2. 

Samples of generated images are demonstrated for visual 

evaluation (Fig. 4). It may be seen that the proposed 

technique outperforms all existing multi-illuminant 

algorithms. Moreover, the algorithm successfully learns 

mapping between domains even though input color casts 

were not coherent. In simple words, we can explain it as 

learning not just mapping between given pairs of images, 

but learning how to generate a correctly illuminated image 

by a given input with an arbitrary combination of light 

sources. We consider this to be the dominant feature of the 

proposed method. Drawbacks of the given approach 

include but are not limited to: demand for a big volume of 

training data and imperfect image quality (as discussed 

before). Also, we observed that many images produced had 

slightly increased brightness, although the color cast is 

removed correctly. This effect influences reported 

difference metrics, however visually only the lightness of 

colors does not match, but not the hue.  

6. Shadow removal  

Shadow removal may be considered a special scenario of 

multi-illuminant color constancy. The direct light beams 

can be considered as a first illuminant, scattered beams of 

light – as a second, while the canonical illumination is taken 

to be equal to the first one. The chromatic distribution of 

illumination is trivial and of no essential interest. However, 

the spatial distribution of shadows may create a complex 

map which is defined by relief and 3D shape of the objects. 

Estimation of shadow map (shadow detection) therefore 

presents an independent complex task which may be 

followed by a third-party algorithm for shadow removal 

(color correction). By analogy with multi-illuminant CC, 

the approach proposed in this work allows to avoid these 

procedures and learn mapping between scenes with and 

without shadows based only on paired data samples, and 

perform shadow removal end-to-end. 

6.1. Dataset  

The standard real-world datasets for shadow removal are 

very limited in their size: UCF shadow dataset [82] (245 

images), SRD VSC [24] (214 images), UIUC [29] (76 

images), LRSS [26] (37 images). Mainly, it is caused by the 

difficulty of capturing the same real-world scene with and 

without shadow. Moreover, it is impossible to remove 

shadows from wide field of view scenes such as street view. 

This causes a specific appearance of shadow removal data 

similar to cropped patches (Fig. 5). There are also attempts 

to create large shadow removal datasets. SBU Shadow 

dataset [71], for example, contains 4089 real-world images, 

however without a ground truth; authors propose shadow 

mask detected using their algorithm, which then can be used 

for color correction by a third-party algorithm; resulting 

shadow-free images cannot be considered a ground truth, 

but only an output of two artificial algorithms, and training 

the model on such data in the best case will allow to achieve 

the performance of the used algorithms, but will not 

outperform it. SRD dataset by Qu et al. [61] is claimed to 

contain 3,088 shadow and shadow-free image pairs; 

however, two years after publication only a test set of 408 

images is publicly available, which makes full use of this 

dataset impossible.  

 

 

Figure 4: Results produced by the proposed approach on removing 

of multi-illuminant color cast. Top row – tint maps; second row –

input images; third row – predictions; bottom row – ground truth.



Eventually, forced by a significant lack of data we 

created a synthetic dataset of 5,723 image pairs which make 

it the largest shadow removal dataset available. We used 

computer graphics from a video-game GTA V by Rockstar 

to render real-world-like scenes in two editions: with and 

without shadows (Fig. 6). The proposed approach 

accurately models real world and allows to obtain fair 

shadow-free data for the general scenes which is impossible 

to implement in real life. Moreover, it captures scenes in a 

conventional wide field of view and avoids using small 

areas and patch-like appearance. Generated samples are 

8bit RGB images with a 600x800 pixels resolution. The 

dataset contains 5,110 standard daylight scenes and 

additional 613 indoor and night scenes. 

We also used 408 real-world images from SRD dataset 

for training in order to estimate model's demands to the size 

of the training set.  

6.2. Results 

Results are reported in PSNR and angular error between 

predicted and ground truth shadow-free images. The 

accuracy is compared with state-of-the-art methods the 

codes of which are available publicly. It is noteworthy that 

despite similar values of error metrics provided, the nature 

of mistakes and errors produced by algorithms is totally 

different. For instance, single-image methods produce 

errors mainly due to wrong shadow map detection, while 

the proposed end-to-end approach identifies shadows 

correctly but may generate data of low image quality. 
 

 

Figure 5: Results of shadow removal from real-world images. 

Demonstrated on SRD-test dataset (388 train and 20 test images).

Quality of the output is considered to be unsatisfactory. 
 

Figure 6: Preview of the proposed GTAV dataset.



The model trained on GTAV dataset demonstrates a 

satisfactory accuracy of shadow removal with examples of 

both successful and failure cases (Fig. 7). In the worst cases, 

pix2pix generates artifacts and distorts original image 

significantly. Particular problems were observed in the 

cases of: ambiguous dark colors; utterly dark areas where 

color information is almost lost; reconstruction of high 

spatial frequencies. Uniform shadows of a large area 

approximate the case of uniform CC, and typically 

demonstrate better reconstruction quality.  

The quantitative evaluation of results produced by the 

model trained on 388 and tested on 20 RSD-test images is 

not reported because even visually (Fig. 5) the quality of the 

produced output is not as good as the output of 

corresponding single-image algorithms. This demonstrates 

an increase in model's demands for the size of a training set 

in comparison to the simpler task of uniform CC.  

7. Conclusions  

In this work, we propose a novel, end-to-end approach to 

advanced cases of computational color constancy. The 

proposed technique is driven by data and avoids utilizing 

any artificial assumptions or hypotheses. It is shown to be 

efficient in the removal of complex illumination color cast 

created by multiple non-uniformly distributed light sources. 

The accuracy of predicting a single “uniformly 

distributed” illuminant is on a par with existing methods. 

We explain it by over-simplification of the task that created 

accurate algorithms which work very good within the 

model, but not outside of it. Our algorithm treats both tasks 

equally, which make it dominant in more realistic scenarios. 

For example, the same algorithm can even be applied to the 

removal of complex shadow cast, however, the limitation 

of the training data is an essential obstacle.  

Further development may include collecting/synthesis of 

larger datasets, evaluation of models trained using synthetic 

data on similar real-world images, and, of course, designing 

new generative algorithms to improve image quality. 

 

TABLE 3. Comparison of accuracy of shadow removal methods 

on GTAV dataset. 
 

 Angular Error PSNR 

 mean std mean std 

Do nothing 4.01° 3.15° 18.2 4.53 

Yang et al. [77] 5.20° 2.89° 16.4 4.72 

Guo et al. [29] 2.95° 2.20° 20.7 3.98 

Gong et al. [24] 

(user assisted) 
2.33° 1.48° 24.1 3.10 

AngularGAN (λL1  = 0) 3.05° 2.20° 19.3 4.05 

AngularGAN (λANG = 0) 3.12° 1.45° 21.6 3.36 

AngularGAN 2.86° 1.58° 21.0 3.43 

 
 
 

Figure 7: Results of shadow removal from synthetic scenes. Demonstrated on GTAV dataset (4610 training + 250 test images). 
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