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Abstract

Owing to the spread of social networking services (SNS),

there is an increasing demand for automatically selecting,

editing or generating impressive images, which raises the

importance of evaluating image aesthetics. We propose

the first multi-patch method for image aesthetic score pre-

diction with the original image aspect ratios being pre-

served. Our method just uses images for training and does

not require external information both in training as well

as prediction. In an experiment using the large-scale AVA

dataset containing 250,000 images, our approach outper-

forms other existing methods in image aesthetic score pre-

diction, especially reducing mean squared error (MSE) of

predicted aesthetic scores by 0.061 (18%) and improving

the linear correlation coefficient (LCC) by 0.056 (8.9%).

Noticeably, the decrease in mean absolute error (MAE) by

our method for images with an unbalanced aspect ratio is

at most 7.9 times larger than the decrease in MAE for im-

ages with a typical digital camera aspect ratio. This result

indicates that our multi-patch method expands the range of

aspect ratios with which aesthetics scores of images can be

predicted accurately.

1. Introduction

Owing to the widespread popularity of social networking

services (SNS), there is an increasing demand for upload-

ing attractive images to SNS. However, as many users do

not have skills to select, edit and generate aesthetic images,

there has been a substantial request for an automatic process

that lets one obtain aesthetic images. To realize this, a key

element is to accurately assess the aesthetics of images.

Nevertheless, aesthetic assessment is challenging as aes-

thetics highly depend on human subjectivity. To assess this

obscure sensitivity, it is necessary to extract features from

the entire image and combine them appropriately.

Aesthetic assessment has been studied by many re-

searchers, and various feature extracting methods have been

attempted. Among the initial attempts [4,5,13,17,21], hand-

crafted features about such as object composition and color

harmony are designed and used. Following them, according

to the success of convolutional neural networks (CNNs) on

object recognition tasks, many studies [2, 7, 11, 14, 15, 18,

19,23,29–31,36] have adopted CNNs as feature extractors.

Other ideas of CNN architectures such as Siamese-like net-

work [2, 31] and triplet loss [29] have also been applied to

aesthetic assessment [13,14,30]. We also use a CNN as the

image feature extractor.

Except for features from images, extra information is

also included to improve predicting accuracy: scene or style

annotations in a dataset [7,11,15,18,19,23], multimodal text

comments [36], object tags [27], and saliency maps [22].

While those extra characteristics improve aesthetic assess-

ment performance, they lead to the high cost of creating new

datasets and limitations of applying models to other tasks as

specific extra information is required by the specific model

at the training phase, or sometimes at the evaluation phase.

In this study, we focus on a fundamental and versatile ap-

proach to effective image feature extraction for aesthetics

assessment. Therefore, we only used images to predict aes-

thetics scores either during training or evaluation.

There are three kinds of tasks studied for aesthetics as-

sessment: positive/negative binary classification task [20,

23], aesthetics rating distribution prediction task [3, 10],

and aesthetics score prediction task [15, 34]. In this pa-

per, we conduct aesthetics score prediction. Aesthetics

score prediction is useful for quantitative evaluation appli-

cations such as recommendation systems, in contrast to aes-

thetic binary classification. An aesthetics score of the image

is calculated as the mean of its aesthetics rating distribu-

tion, which is labeled by humans and usually provided in a

dataset. The samples images, normalized rating histograms,

and aesthetic scores of the AVA dataset [24], a large-scale

aesthetics dataset, are shown in Fig. 1. Aesthetics score pre-

diction has been conducted by Kao et al. [12], Jin et al. [9],

Roy et al. [27], and Talebi et al. [34]. However, those

methods all rescale images to square images regardless of

their original aspect ratios, including the most outstanding

method called NIMA proposed by Talebi et al. [34]. The

lack of aspect ratio information can affect the prediction

of aesthetics scores, especially for those images having un-
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Figure 1: Sample images (top), normalized rating histograms (middle), and means of the rating histograms calculated as

aesthetics scores (bottom) from the AVA dataset. Each column shows a pair of them.

usual aspect ratios. Furthermore, it can easily cause contra-

dictions with human aspect-ratio-dependent aesthetics.

To resolve this problem, we propose an aspect-ratio-

preserving multi-patch learning for aesthetics score

prediction. We crop several patches from an input image,

predict normalized aesthetics rating distributions for each

patch, and calculate the aesthetics score by aggregating

these distributions. In the training, we use the multi-patch

earth mover’s distance (EMD) as a part of the loss func-

tion. Using the AVA dataset [24], which has more than

250,000 images, our experimental results demonstrate

that aspect-ratio-preserving multi-patch learning improves

the performance of aesthetics score prediction. Our

method reduces the mean squared error (MSE) by 0.061

(18%) compared to a simple CNN-based method [9],

and improves the linear correlation coefficient (LCC) of

aesthetics scores by 0.056 (8.9%) and the Spearman’s rank

correlation coefficient (SRCC) by 0.074 (12%) compared

to the existing method NIMA [34]. Furthermore, using our

method, the mean absolute error (MAE) of prediction for

images with unusual aspect ratios is improved significantly.

In summary, our main contributions are as follows:

• We are the first to propose aspect-ratio-preserving

multi-patch learning approach for predicting aesthet-

ics scores, in order to reflect the original aspect ratio

information to prediction.

• Experimental results demonstrate that our method re-

duces the MSE by 0.061 (18%), increases the LCC of

aesthetics scores by 0.056 (8.9%), and increases the

SRCC by 0.074 (12%) compared to the existing meth-

ods. Especially, our method demonstrated the signifi-

cant improvement for images with unusual aspect ra-

tios.

• Our versatile method uses images and aesthetic ratings

without extra information to achieve high performance

of predicting the aesthetic scores, for maintaining ap-

plicability to other datasets and other tasks.

2. Related works

Aesthetic assessment can be broadly categorized into

three tasks: high/low aesthetic binary classification, aes-

thetics rating distribution prediction, and prediction of the

mean of the rating distribution. The mean of the rating dis-

tribution is usually called as “aesthetics score”. High/low

aesthetics binary classification is tackled by many studies

[11, 15, 17–23, 30, 32, 36], but there have only been a few

studies on rating distribution prediction [3, 6, 10, 35] and

aesthetics score prediction [9, 12, 27, 34]. From here, we

explain previous works related to our task: aesthetics score

prediction.

Aesthetics score prediction Among aesthetics score pre-

diction, to the best of our knowledge, the first attempt to

predict aesthetics score was made by Kao et al. [12] using

a regression network. This network comprises five convo-

lution layers and four fully connected (fc) layers, and di-

rectly predicts the aesthetics score of the image. Jin et al. [9]

trained network by adding large weights to images with rare

aspect ratios in the dataset. Roy et al. [27] also used ex-

tra object tags to predict aesthetics scores. In contrast, in-

stead of directly regressing aesthetic score as these methods,

Talebi et al. [34] proposed NIMA, an approach that calcu-

lates aesthetics scores from predicted aesthetics rating dis-

tributions. NIMA has two outstanding novelties. The first is

that NIMA uses rating distributions to use more information

about ratings compared to direct aesthetics score regression.



Table 1: Comparison of functions among previous aesthet-

ics assessment works and our method.

NIMA [34] MPada [32] ours

score prediction X X

aspect ratio keeping X X

The second is that NIMA adopted the earth mover’s dis-

tance (EMD) [8, 16] for training NIMA parameters. EMD

is a distribution distance function considering inter-class re-

lationships. Therefore, the model can learn the global char-

acteristics of distributions, without sticking to fitting local

values of distributions elaborately.

However, due to the restriction of the CNN, all images

are rescaled to square images to feed into the network re-

gardless of their aspect ratios. By this transformation, im-

ages lose their aspect ratio information. It can affect the pre-

diction of aesthetics scores, especially those images having

unusual aspect ratios. Furthermore, this contradicts the fact

that the NIMA network predicts the same aesthetics score

to the original image and the rescaled image, whereas hu-

mans can easily find a decrease in aesthetics for the rescaled

image.

Multi-patch learning To resolve this problem, aspect-

ratio-preserving multi-patch learning is a promising ap-

proach. For the high/low aesthetic binary classification task,

some multi-patch methods have been proposed [20, 22, 23,

32]. Among them, Sheng et al. [32] proposed a weighted

multi-patch aggregation system for the output of each patch

with the original aspect ratio, which is the latest and highly

effective method. Using this system, the network is trained

strongly from wrongly predicted patches. In this connec-

tion, spatial pyramid pooling (SPP) is another possible solu-

tion for maintaining aspect ratio. However, as Lu et al. [20]

demonstrated that SPP did not make significant contribu-

tions to aesthetics assessment, we do not adopt SPP.

However, multi-patch learning has been only applied

to aesthetic binary classification. We applied the aspect-

ratio-preserving multi-patch learning to predict aesthetics

scores by predicting normalized aesthetics rating distribu-

tions. The brief comparison of functions among NIMA

[34], MPada proposed by Sheng et al., and our methods

is shown in Table 1.

3. Proposed Method

In this section, we introduce our training and prediction

system for assessing aesthetics scores. We first describe the

architecture of our method and continue to explain the pro-

posed loss functions in detail.

3.1. Multipatch training/evaluation flow

The structure of our proposed multi-patch method is

shown in Fig. 2. In the training phase, a fixed number

of square patches with the original aspect ratio are first

cropped at random from an input image. By extracting

patches with original aspect ratios, the model can learn im-

age feature extraction with the same aspect ratio as humans

see. Therefore, it is considered to be easier to learn the

human subjectivity of aesthetics. Furthermore, the model is

expected to be trained effectively, without disturbance made

by the uniform square reshape in spite of original aspect ra-

tios which happens in related works such as NIMA [34].

The extracted aspect-ratio-preserved patches are fed into the

model and distributions of aesthetics ratings are predicted

for each patch. The sum of each distribution is normalized

to 1 by calculating a softmax function over the output of the

last fc layer. EMD (Eq. (1)) is calculated for each rating

distribution, and the loss value is computed by aggregat-

ing EMDs from each patch using one of the loss functions

described in Section 3.2. Model parameters are updated by

backpropagation using this loss value, and these updates are

repeated for several epochs using different cropped patches.

In the evaluation phase, rating distributions predicted with

patches from each image are averaged simply, and an aes-

thetic score is calculated as the mean of the simple averaged

rating distribution.

3.2. Loss function

Earth mover’s distance (EMD) As a distance function

between rating distributions, we use earth mover’s distance

(EMD) just like NIMA [34]. EMD is a distance func-

tion between two distributions. Unlike cosine similarity or

KL divergence, EMD can consider distance among classes.

Therefore, the model can learn the global properties of rat-

ing distributions, without being bound to fit local value of

each class elaborately. An r-norm EMD distance is defined

as the minimum cost of transporting values from one distri-

bution to the another, where the distance between the i-th

class st and the j-th class sj is calculated as ‖si − sj‖r, on

the assumption that two distributions have the same classes

in the same order.

For N -class aesthetics ratings, if the value of the i-th rat-

ing class si is i where 1 ≤ i ≤ N , the distance between

the i-th rating class si and the j-th class sj is calculated as

|i− j|
r
. In that case, as shown by Levina et al. [16], r-

norm EMD between two normalized aesthetics rating dis-

tributions is calculated as follows:

EMD(r) =

(

1

N

N
∑

k=1

|CDFp(k)− CDFp̂(k)|
r

)

1

r

, (1)

where CDFp/p̂(k) denotes the cumulative distribution

function of the ground truth rating distribution p and
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Figure 2: Multi-patch training/evaluation structure of our method.

the predicted rating distribution p̂, which are defined as
∑N

k=1 p and
∑N

k=1 p̂, respectively. We specified r as 2 as

well as NIMA.

Multi-patch aggregation We refer to the method pro-

posed by Sheng et al. for multi-patch aggregation, which

outperforms the other previous works at the high/low aes-

thetic binary classification task. Compared with the loss

function used by Sheng et al., we adopt logarithmic 2-norm

EMD (EMD(2), hereinafter, this is just referred to as EMD)

to calculate the loss of predicted rating distributions in place

of log probability [32] for the binary classification. We use

logarithmic EMD instead of mere EMD, expecting a loga-

rithmic function to accelerate training. We propose the two

loss functions MPEMDavg and MPEMDada. MPEMDavg

simply averages the logarithmic EMDs of plural patches.

MPEMDada calculates a weighted mean of the logarithmic

EMD to aggregate patches adaptively. These loss functions

are defined as follows:

MPEMDavg = −
1

|P|

∑

p∈P

log (EMDc) , (2)

MPEMDada = −
1

|P|

∑

p∈P

ωβ · log (EMDc) , (3)

where P is a set of cropped square patches, p denotes

each patch, and EMDc is a variable converted from orig-

inal EMD to represent a kind of certainty of predicted rat-

ing distributions. The purpose of training is to minimize

EMD which is equivalent to maximizing EMDc. EMDc is

defined as follows:

EMDc=

{

ǫ, (1− k · EMD < ǫ)
1−k ·EMD, (ǫ≤1− k ·EMD)

(4)

where ǫ is an appropriately small positive constant and k

is an expansion coefficient. EMDc takes values close to 1

when EMD is low and takes values near 0 when EMD is

high. The value of EMDc is restricted to [ǫ, 1]. The hyper-

parameter k is used to adjust the sensitivity of the converted

certainty variable EMDc to EMD. As the increase of k, the

variation of EMD causes a larger change of EMDc.

ωβ is introduced as the weight of patches and defined as:

ωβ = 1− EMDc
β . (5)

ωβ is high when the certainty variable EMDc is low, and

vice versa. The value of ωβ ranges from 0 to 1. The hyper-

parameter β (β > 0) determines the range of EMDc with

which patches are trained strongly. Fig. 3 shows how the

patch weight ωβ varies with the certainty variable EMDc

for each β. For example, as shown in Fig. 3, if β is large,

patches with large EMDc are even weighted heavily. This

means patches with small EMDc are also strongly trained.

The effect of k and β is dependent on each other; thus k

and β should be optimized together.

4. Experiment

In this section, we first describe the dataset used in our

experiment. Then, we explain training configurations for

three experiments: pre-training with NIMA, and training

using MPEMDavg and MPEMDada. Finally, we present
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Figure 3: Relationship between the patch weight ωβ and the

certainty variable EMDc, with respect to each β.

the results of our experiments and comparisons between our

study and previous works.

4.1. Dataset

We trained and evaluated our proposed models using the

AVA dataset [24]. The AVA dataset comprises 250,000

images collected from the online photography community

website www.dpchallenge.com. Each image is asso-

ciated with 10 stages of ratings, ranging from 1 to 10. The

number of raters assigned to each image ranges from 78 to

649, and the average value is 210. Samples of the AVA

dataset, including images, normalized rating histograms,

and means of the rating histograms, called as aesthetic

scores, are shown in Fig. 1. Except for ratings, some im-

ages have additional attributes such as semantic and pho-

tographic style information, which were neither used for

training nor testing in our experiment.

Fig. 4 shows the histogram of aspect ratios

(height/width) of the images in the AVA dataset. As

shown in Fig. 4, most of the images have aspect ratios from

0.6 to 0.8. Especially, there are two peaks within the ranges

of 0.62 to 0.67 and 0.72 to 0.77. This concentration can

be explained by the fact that normal digital cameras are

configured to take photos with the ratio of the image height

to the image width as 2:3 (the aspect ratio is 0.66) or 3:4

(the aspect ratio is 0.75). In other words, the AVA dataset

contains relatively a small number of images with their

aspect ratios not falling within the range 0.6 to 0.8, which

means those aspect ratios have less training images.

We used the AVA dataset [24] for both training and eval-

uation. The AVA dataset we used contains 255,494 pairs of

an image and a rating histogram. In the same way as pre-

vious multi-patch works [20, 23, 32], we used 92 % of the

entire dataset for training. Additionally, half of the remain-

ing dataset (4% of the entire dataset) was used for test and

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
height / width

0

500

1000

1500

2000

fr
eq

Figure 4: Histogram of aspect ratios (height/width) of im-

ages in sampled AVA dataset.

the other half (4% of the entire dataset) was assigned for

validation. Therefore, 235,054 images were used for train-

ing, 10,220 images were used for validation, and the other

10,220 images were used in the test dataset. It should be

noted that some other previous works used different num-

bers of images for training/validation/test datasets. For ex-

ample, Kao et al. [12], Jin et al. [9], Roy et al. [27] used

about 250,000 images for the training and 5,000 images for

the test, and Talebi et al. [34] used about 204,000 images

for the training of NIMA and 51,000 images for the test.

The reason we chose this partition (92:4:4) is that 5,000 test

images were not enough for the analysis about aspect ratios

described in Section 5 and 51,000 images are too many for

the test. For a fair comparison, we also show the result of

reimplemented NIMA trained with 92% of the entire AVA

dataset in Section 5.

4.2. Training

Pre-training was conducted using the same architecture

as NIMA and the AVA training set. We use a customized

Inception-V3 [33] with the last fully connected (fc) layer

replaced by a randomly initialized fc layer with 10 output

channels, as the CNN image feature extractor. All layers

apart from the last new fc layer were initialized by the pa-

rameters pre-trained on the ImageNet dataset [28]. All im-

ages from the training set are resized to 342 × 342, after

which 299 × 299 random cropping and random horizontal

flipping were applied as data augmentations. We set the

learning rate to 10−3 instead of 3× 10−7 and 3× 10−6, re-

ported by Talebi et al. [34], because the model could not be

trained adequately in our environment using those learning

rates. For the other training settings, we used a momentum

SGD optimizer with the momentum of 0.9, and let learning

rate decay by a factor of 0.95 after every 10 epochs. We

trained the model for 100 epochs.

Following this, the aspect-ratio-preserving multi-



Table 2: Comparison of the aesthetics score prediction performance of our methods and those of previous works. The first

eight rows present the results of previous works and the bottom three rows indicate the results of our experiments. For each

metric, the best value is shown in bold.

Models LCC ↑ SRCC ↑ MSE ↓ acc [%] ↑ EMD ↓
GIST linear-SVR [12] - - 0.0522 - -

GIST RBF-SVR [12] - - 0.5307 - -

BOV-SIFT linear-SVR [12] - - 0.5401 - -

BOV-SIFT RBF-SVR [12] - - 0.5513 - -

Kao et al. [12] - - 0.4510 - -

Jin et al. [9] - - 0.3373 - -

Roy et al. [27] - - 0.3562 - -

NIMA (Inception-V2) rept. 2018 [34] 0.636 0.612 - 81.51 0.050

NIMA (our impl. using Inception-V3) 0.6914 0.6802 0.2830 79.88 0.066

MPEMDavg (ours) 0.6900 0.6854 0.2788 79.08 0.065

MPEMDada (ours) 0.6923 0.6868 0.2764 79.38 0.066

patch training was conducted using the loss functions

MPEMDavg and MPEMDada. The same customized

Inception-V3 was used as the CNN image extractor and all

layers were initialized by pre-trained NIMA parameters.

The reason we used these parameters was that the model

could efficiently obtain the feature extraction ability on both

the global composition and local fine-grained features. This

was expected to shorten the training time for multi-patch

learning. Input patches were extracted in the following

manner: first, we resized the shorter edge of every image in

the dataset to 342 pixels while keeping its aspect ratio; then

extracted 8 299× 299 crops from each rescaled image. The

learning rate was set to 10−3. For the loss function hyper-

parameters, we set k to 1.2 and β in MPEMDada to 0.4,

based on the hyperparameter tuning using Tree-structured

Parzen Estimator (TPE) [1] implemented by Optuna [26].

For the other learning settings, we used a momentum SGD

optimizer with momentum of 0.9 and the weight decay rate

of 10−4 and let the learning rate decay by a factor of 0.7

after every 10 epochs. We trained the model for 50 epochs.

All models were implemented using PyTorch v.0.4.1

[25].

5. Results

First, we demonstrate the overall performance of our

methods using several metrics and via comparison with pre-

vious works. Following that, we demonstrate MAE im-

provement for each aspect ratio by aspect-ratio-preserving

multi-patch learning.

Overall performance We used linear correlation co-

efficient (LCC), Spearman’s rank correlation coefficient

(SRCC), and mean squared error (MSE) for evaluating the

aesthetics score prediction performance of our three experi-
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Figure 5: Comparison of histograms of absolute errors

(AEs) of aesthetics scores predicted for the test dataset be-

tween the MPEMDada model and the pre-trained NIMA.

ments and those of previous works. Additionally, we calcu-

lated accuracy (acc) of aesthetics binary classification and

average EMD for comparison with NIMA [34]. For bi-

nary classification, images with aesthetics scores less than

or equal to 5 are labeled as negative and the rest are labeled

as positive. Nonetheless, it should be kept in mind that the

main purpose of this study is aesthetics score prediction.

The results are shown in Table 2. The model trained

with the loss function MPEMDada outperforms previous

works for all metrics evaluated for aesthetics score predic-

tion. Compared with the previous best result correspond-

ing to each metric, LCC shows an improvement of 0.056

(8.9%) and SRCC shows an improvement of 0.074 (12%)

compared to the performance of NIMA reported by Talebi

et al. [34]; and MSE shows an improvement of 0.061 (18%)

compared to the performance reported by Jin et al. [9].

Among our experiments, the model trained with the loss
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function MPEMDada outperforms the other two our exper-

iments. Comparing the model trained with MPEMDada

and the pre-trained NIMA model, the SRCC and MSE of

the MPEMDavg model is better than that of the pre-trained

NIMA model, while the LCC is worse. Overall, consider-

ing an MSE decrease of 0.0042 (1.5%) which is the most

significant among that of the three metrics, it can be argued

that the model trained with MPEMDavg outperforms the

pre-trained NIMA model. This indicates that the aspect-

ratio-preserving multi-patch training is efficient for aesthet-

ics score prediction even with the simple average aggrega-

tion of plural patches. In addition, the fact that the model

trained with MPEMDada outperforms the model trained

with MPEMDavg for all metrics evaluated demonstrates

that weighted multi-patch aggregation also improves aes-

thetics score prediction performance. However, no im-

provement is shown in the accuracy of aesthetic binary clas-

sification and the optimization of EMD. The performance

of NIMA reported by Sheng et al. is superior to the perfor-

mance of our methods.

As a reference, the histogram of absolute errors (AEs)

predicted by the MPEMDada model and the pre-trained

NIMA model for the test dataset is shown in Fig. 5. Fig. 5

demonstrates that predicted aesthetics scores contain their

AEs within 0.3 for approximately 45 % of test images and

within 0.66 for more than 75% of test images. Furthermore,

the number of images with small AEs predicted by the

MPEMDada is larger than the number of those predicted

by the pre-trained NIMA model, and the number of images

with middle AEs predicted by the MPEMDada is smaller

than the number of those predicted by the pre-trained

NIMA model. Therefore, it can be also found in Fig. 5 that

MPEMDada decrease error of aesthetics score prediction.

6.660 3.802 (−2.858) 4.969 (−1.691)

GT NIMA MPEMDada (ours)

GT NIMA MPEMDada (ours)

7.111 5.047 (−2.064) 6.432 (−0.679)

Figure 7: Examples of prediction improved by the

MPEMDada model compared to the NIMA model. Num-

bers under distribution denote aesthetic scores and the num-

ber inside each bracket is the difference between the predic-

tion and the ground truth.

Dependence of MAE improvement on image aspect ra-

tios We also investigated the MAE improvement corre-

sponding to each aspect ratio by the model trained with

MPEMDada from the MAE of the pre-trained NIMA

model. The results are shown in Fig. 6. Fig. 6 demonstrates

that aesthetics score prediction improves significantly for

images with aspect ratios (height/width) lower than 0.6 or

higher than 1.0. For example, the decrease in MAE for im-

ages with aspect ratios within the range 0.4 to 0.6 is 7.9

times larger than the decrease for images with aspect ratios

within the range 0.8 to 1.0. As described in Section 4.1,

those aspect ratios are unusual in the AVA dataset. This can

be ascribed to the ability of the multi-patch trained model

to use the information of an original aspect ratio of the im-

age, in contrast to the NIMA model which ignores aspect

ratio information. Because NIMA does not use aspect ratio
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Figure 8: Examples of prediction deterioration by the

MPEMDada model compared to the NIMA model. Num-

bers under distribution denote aesthetic scores, and a num-

ber inside each bracket is the difference between the predic-

tion and the ground truth.

information, it tends to fit for images with common aspect

ratios and not trained enough to those with unusual aspect

ratios. Our method resolves this problem by using multi-

patch training with aspect ratios preservation. Therefore,

for a variety of aspect ratios, aesthetics scores could be pre-

dicted accurately by our method. Furthermore, the result

indicates that aesthetics scores of images which have rare

aspect ratios in the training dataset also can be predicted ac-

curately, which have been hard to be predicted by existing

methods.

Examples of improved prediction by the MPEMDada

model are shown in Fig. 7 and examples of deteriorated

prediction are shown in Fig. 8. Particularly, the aesthetics

score predictions of the first image in Fig. 7, which is quite

lengthy horizontally, and the third image, which is quite

long vertically, are significantly improved with the use of

the MPEMDada model.

Discussion As described above, our method using aspect-

ratio-preserving multi-patch learning and prediction outper-

forms previous works in aesthetics score prediction perfor-

mance. Furthermore, our method improves aesthetics score

prediction for images with unusual aspect ratios, and it leads

to the expansion of the range of aspect ratios with which

aesthetics scores can be predicted accurately. However, er-

rors still remain. Some of which are inevitable as human

aesthetics are subjective, but we believe the difference in the

shape of distribution between the ground truth and the pre-

diction is worth mentioning. Peculiarly, distributions with a

peak extending over several ratings, such as the first image

in Fig. 8 and the second successful image in Fig. 7, are not

well predicted. This point may be addressed by modifying

the last activation function, which may improve the aesthet-

ics score prediction performance due to its enhanced ability

to generate rating distributions.

Additionally, our methods do not work well for aesthetic

binary classification and EMD optimization. The reason for

the low performance of binary classification is considered

to be the prediction bias around the classification threshold.

However, as a slight prediction bias near the classification

threshold can largely affect classification accuracy, this re-

sult does not conflict with the success of aesthetics score

prediction. Besides, the failure in optimizing EMD is also

not incompatible with the successful aesthetics score pre-

diction because optimizing EMD is not equal to optimizing

score prediction.

6. Conclusion

We proposed methods of aspect-ratio-preserving multi-

patch training and prediction to predict the mean of aes-

thetics rating, which is termed aesthetics score. Using our

methods, we were able to reflect the aspect ratio informa-

tion to the model. From experiments using the AVA dataset,

our methods could outperform previous works in all met-

rics related to aesthetics score prediction performance. In

particular, the model trained with our multi-patch weighted

loss named MPEMDada reduced the MSE by 0.061 (18%)

compared to the best MSE reported by previous works. Es-

pecially, our method improves prediction performance for

images with unusual aspect ratios. This result indicates that

our method enables the model to predict aesthetics scores

accurately for a wide range of aspect ratios. Our methods

could also be easily applied to other datasets or other tasks,

as we do not use any external information both in training

and prediction. Generalization of our proposed patch-based

method is considered to be the next development.
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