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Abstract

Conceptually similar to adaptation in model-based ap-

proaches, attention has received increasing more attention

in deep learning recently. As a tool to reallocate limited

computational resources based on the importance of infor-

mative components, attention mechanism has found suc-

cessful applications in both high-level and low-level vision

tasks which includes channel attention, spatial attention,

non-local attention and etc. However, to the best of our

knowledge, attention mechanism has not been studied for

the R,G,B channels of color images in the open literature.

In this paper, we propose a spatial color attention networks

(SCAN) designed to jointly exploit the spatial and spec-

tral dependency within color images. More specifically, we

present a spatial color attention module that calibrates im-

portant color information for individual color components

from output feature maps of residual groups. When com-

pared against previous state-of-the-art method Residual

Channel Attention Networks (RCAN), SCAN has achieved

superior performance in terms of both subjective and ob-

jective qualities on the dataset provided by NTIRE2019 real

single image super-resolution challenge.

1. Introduction

Attention mechanism, originally inspired by the behav-

ior and the neuronal architecture of primate visual systems

[15, 14], has received increasingly more attention by com-

puter vision and machine learning communities. Since the

breakthrough in machine translation application [32], atten-

tion has been found to be useful to many high-level vision

tasks including image captioning [5, 38], lip reading[6],

image classification [34, 11, 35] and image understanding

[4, 16]. The success of attention mechanism is generally

attributed to prioritize the allocation of available processing

resources towards the most informative components (e.g.,

salient regions) in an image.

By contrast, attention mechanism has been under-

researched for low-level vision tasks. The only few ex-

ceptions all deal with single image super-resolution (SISR)

(e.g., channel attention [39], channel-spatial attention [12],

non-local attention [40]). The common theme behind so-

called spatial or channel attention mechanism is to adap-

tively rescale each spatial-domain or channel-wise feature

by modeling their interdependency, that will help networks

pay more attention to specific features. Such attention

mechanism allows a network to concentrate its computa-

tional resources on the most useful features and enhance

the discriminative learning ability.

However, existing study about attention mechanism has

not been extended for color images or across spectral bands

to the best of our knowledge. The only studies about color

attention we can find are [18, 19] which have focused on

the application of object recognition for high-level vision

tasks. The issue of how to jointly exploit spatial and spec-

tral dependencies [8] for low-level vision tasks such as SISR

seems to have not been addressed in the open literature. All

previous attention strategies for SISR have only considered

to directly use R,G,B color channels as input training data.

In other words, the networks will simply treat all the color

information among R,G,B channels equally. One potential

risk of this strategy is the lack of optimization - e.g., exploit-

ing the spectral dependency among color channels might

benefit the task of deep residual learning.

In this paper, we propose to address the above issue by

developing a new architecture named Spatial Color Atten-

tion Networks (SCAN). Conceptually similar to bilateral

filtering [30] in which spatial and color are treated as two

independent domains, we treat spatial and color features

as two complementary channels. So instead of consider-

ing channel-wise and spatial feature modulation in [12], we

have developed a spatial color attention module (SCAM)

to calibrate important color information from output fea-

ture maps of residual groups. Unlike existing works which

treat channel-wise features across spectral bands equally,

we propose to make the networks focus on informative fea-
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Figure 1. Overview of proposed networks architecture, Basic RGM stands for the basic residual group module which includes several

residual groups, SCAM is proposed spatial color attention module where to generate R,G,B spatial color attention map, ⊕ denotes element-

wise sum.

tures and exploit interdependencies among color channels.

The newly developed color attention mechanism enables the

network to not only focus on recovering spatially high fre-

quency components (e.g., edges and textures) but also pay

attention to vivid and sharp color information (e.g., colorful

flowers and texts) in the generated HR image.

A summary of our key contributions include:

• We propose to address the issue of color attention for

SISR and demonstrate it is supplementary to the spatial and

channel attention mechanisms studied in the literature;

• Our proposed spatial color attention module (SCAM)

and residual channel-spatial attention (RCSA) can be easily

integrated to most existing SISR networks;

• Experimental results have shown our SCAN can sig-

nificantly outperform previous state-of-art RCAN [39] on

real SISR competition dataset.

2. Related Works

Deep learning-based approaches toward single image

super-resolution (SISR) have shown the reliability and ad-

vantages compared with the traditional model-based meth-

ods. SRCNN [7] first introduced a simple three layers CNN

architecture to solve SISR problems; VDSR [20] utilized

the concept of deep residual networks [10] to make the

deeper networks (20 layers) trainable and significantly im-

prove the results; LapSRN [22] proposed to upscale low

resolution image by a pyramid structure which has a better

performance on large scale factors (ex. 8×). EDSR [24]

introduced to use residual blocks without batch-norm layer

and get the significant improvement. Most recent advances

include deep recursive residual network (DRRN)[28], SR-

DenseNet [31] and Residual Dense Network (RDN) [41]

combined the state-of-art deep learning approaches ResNet

[10] and DenseNet [13] to further improve SISR perfor-

mance.

Inspired by [11], Residual Channel Attention Networks

(RCAN) [39] first considered attention mechanism - chan-

nel attention to improve the representational ability of

the network and get the state-of-art performance with a

very deep networks. Besides objective measures such as

PSNR/SSIM [37], SRGAN [23] introduced a novel gener-

ative adversarial networks (GAN) [9] based architecture to

optimize the perceptual quality of SR images. An enhanced

version of SRGAN named ESRGAN [36] using relativis-

tic average GAN (RaGAN) was developed in [17] as well

as [33], which demonstrated improved visual quality than

standard GAN.

It is worth highlighting previous works on attention

mechanism in the existing literature. Generally speaking,

the common principle underlying various attention mecha-

nisms is to bias limited computational resources based on

the importance of informative components. For example,

channel attention [39] adaptively rescale the channel-wise

feature by modeling their interdependency; channel-spatial

attention addresses the issue of channel-wise and spatial

feature modulation [12]; non-local attention [40] attempts

to simultaneously exploit the local and non-local depen-

dency within an image for the task of image restoration.

To the best of our knowledge, the issue of color attention -

i.e., the modeling of interdependency across different spec-

tral channels - had not been studied in the open literature.

Therefore, we propose to address this issue and develop spe-

cially tailored modules for color image restoration.

3. Proposed Approach

3.1. Network Design

We present the designed networks in the following hier-

archy: SCAN (Fig. 1) → Subnetwork of SCAM and Ba-

sic RGM (Fig. 2) → Residual Channel-Spatial Attention

(RCSA, Fig. 3). It should be noted that our SCAN and pre-

vious state-of-the-art RCAN [39] are similar at the coars-

est level. Both SCAN and RCAN are decomposed of the

residual group (RG) and residual channel attention block

(RCAB). This is because we want to evaluate the validity

of proposed SCAM (refer to Sec. 3.2) and RCSA (refer to
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Figure 2. The structure of proposed Basic RGM and SCAM modules. In the block of SCAM, RCSA stands for proposed residual channel-

spatial attention module (the details are demonstrated in Fig. 3); ⊕ denotes element-wise sum, ⊗ denotes element-wise product, CAT

denotes feature-concatenation.
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Figure 3. The structure of proposed RCSA module which includes the implementation of RG and RCAB blocks. The two red blocks show

the structures of channel and spatial attentions. ⊗ denotes element-wise product and ⊕ denotes element-wise sum.

Sec. 3.3) modules under the same conceptual framework.

We are hoping that this way of presentation can fa-

cilitate our explanation about why SCAN can outperform

RCAN (similar to the popular ablation study) - i.e., with-

out changing the overall structure, we can still improve the

performance of SISR by designing novel fine-scale mod-

ules (SCAM and RCSA) in a plug-and-play fashion (e.g.,

the number of Basic RGM modules in Fig. 1 can be

reduced as we will show in our ablation study in Table

2). Meanwhile, we will focus on the key difference be-



tween the design of RCAN and SCAN - i.e., the desir-

able color attention mechanism. Across different hierar-

chies (SCAN→SCAM→RCSA), we will show how color

attention mechanism is the theme unifying our network de-

sign and optimizing the task of deep residual learning.

3.2. Spatial Color Attention Module (SCAM)

In SCAM module (see Fig. 2), we organize the input

training data (LR images) into two parts: 1) similar to the

normal SISR architectures, the whole LR image is supplied

as the input to the main network (see Basic RGM block in

Fig. 2; 2) the LR image is divided to R,G,B channels sepa-

rately, which then serve as the input to the proposed RCSA

module for generating spatial color attention maps XR, XG,

XB , for R,G,B channels respectively. Note that the second

part (our new contribution) is absent in previous works on

SISR because they treat all R,G,B channels equally.

Let Fout denote the output feature maps of the Ba-

sic RGM block (see Fig. 2, the gray-colored feature map

with the dimension of H × W that contains C feature

maps), which is generated from the whole LR input image

and fused all R,G,B information into each feature map. To

re-calibrate Fout, we apply element-wise product between

each spatial color attention map XR, XG, XB and Fout.

The process of introducing color attention can be expressed

as follows:

FR = Fout ·XR (1)

FG = Fout ·XG (2)

FB = Fout ·XB (3)

where FR, FG, FB are the re-calibrated feature maps from

Fout to represent spatial color information for each R,G,B

channel (e.g., FR represents the spatial information from

red channel).

Next, to get the final output feature-map FBRGM with

the dimension of H ×W × C, we first concatenate R,G,B

feature maps and then use a 1× 1 Conv layer to reduce the

feature-map dimension from 3C to C:

FBRGM = WD([FR, FG, FB ]) (4)

where WD ∈ R
1×1×C is a 1 × 1 Conv layer used for di-

mensionality reduction.

By applying SCAM to the basic RGM, the networks can

fuse channel attention (already considered in RCAN [39])

and spatial color attention (new module introduced by this

work) to better re-calibrate input feature maps based on the

pair of training data. Note that the real SISR challenge still

belongs to strongly supervised learning; therefore the objec-

tive here is the same as the original idea of applying ResNet

[20] to SISR (i.e. to learn a more accurate residual repre-

sentation). The new insight we attempt to bring through this

work is that residual representations across spectral chan-

nels are not independent, which implies the potential of

jointly learning them (as we will elaborate next).

3.3. Residual ChannelSpatial Attention (RCSA)

To implement RCSA module (see Fig. 3), we have fol-

lowed the basic structure of SENet[11] and RCAN[39]

which sets up a regular residual block including channel

attention mechanism. More specifically, we first squeeze

input feature maps with global average pooling:

QC =
1

H ×W

H∑

i=1

W∑

j=1

FC(i, j) (5)

where C is the number of feature maps, QC is the c-th el-

ement of Q ∈ R
C , FC(i, j) is the pixel value of the c-th

feature at position (i, j) from input feature maps FRe′ ∈

R
H×W×C . Then we propose to implement a simple gating

mechanism as adopted by previous works including SENet

[11] and RCAN [39]:

SE = σ(WE(δ(WS(Q)))) (6)

where σ refers to a sigmoid function, δ denotes the ReLU

function, WS ∈ R
1×1×

C

r is the squeeze Conv layers with

weights and WE ∈ R
1×1×C is the expand Conv layers with

weights, r is the reduction ratio to reduce the dimension

of Q (the parameter r controls the trade-off between the

capacity and the complexity [11]). Finally, we can rescale

the feature maps FRe by:

FCA = SE · FRe′ + FRe (7)

where FRe is the input feature map to RCAB block, FCA

is the output from RCAB block which is a rescaled feature

maps by channel attention module (see Fig. 3). Note that

Eq. (7) is different from previous works such as RCAN

because we will have a separate channel/spatial attention

mechanism for each R,G,B channel respectively.

Next, we can apply spatial attention to the rescaled fea-

ture map. Unlike previous works in which R,G,B feature

maps are treated equally, we note that the input of RCSA is a

single channel of RGB image. Therefore our approach gen-

erates the output feature map (so-called spatial color atten-

tion map) which focus on re-calibrating single color channel

information from the feature maps of Fout. In this fashion,

the outputs of SCAM module naturally fit the grey-colored

feature map in Fig. 2 (refer to section 3.2). More specifi-

cally, we have

FSA = σ(WSA(δ(WSA(FRG)) (8)

where FSA is the output spatial color attention feature map

which can be represented as XR, XG, XB based on the cor-

responding R,G,B channels, WSA ∈ R
1×1×C is the Conv



layer with weight, σ refers to a sigmoid function, δ de-

notes the ReLU function. FRG is the output of RG (refer to

Fig. 3). In summary, newly designed spatial color attention

map is expected to more effectively learn the joint residual

representations across spectral channels.

4. Experiments

4.1. Dataset

In this work, we have used the real-world paired image

dataset provided by NTIRE2019 challenge. It includes 60

pairs of images for training, 20 pairs of images for valida-

tion and another 20 pairs of images for testing; both HR and

LR images are collected by standard DSLR cameras, which

means the LR image is not synthetic but captured from the

real-world (likely with a different focal length). This is in

sharp contrast with previous SISR challenges which gen-

erate LR images from HR images (e.g., DIV2K [1]) using

model-based methods (e.g., bicubic interpolation). The new

real-world dataset is arguably more closely related to the

real-world SISR tasks - e.g., the scaling factors between LR

and HR images are unknown (in theory it is determined by

the ratio of focal lengths).

We also note that HR images for test data (i.e., the

ground-truth) is not provided; therefore LR images in test

data have already been scaled to the same size/resolution as

the corresponding HR images by the competition organizer.

Accordingly, we have opted to report our PSNR/SSIM ex-

perimental results based on 20 paired validation data (for

which ground-truth is available) and report perceptual index

(PI) score [3] based on 20 test data since PI is a no-reference

image quality metric (no HR image is needed).

4.2. Training

In our proposed SCAN networks, we have set Ba-

sic RGM to 3, each Basic RGM includes 3 residual groups

(RG). And every RG contains 20 RCAB blocks which is

the same as the original RCAN [39]. In RCSA module, we

have used one RG with 6 RCAB blocks inside. Most of ker-

nel size of Conv layers are 3 × 3 with 64 filters (C = 64)

except few exceptions as shown in Fig. 3 (e.g., in the spatial

attention block, the two Conv layers have only 1 filter that

means C = 1, and 1×1 of kernel size). In channel attention

block, the reduction ratio is r = 16. The last layer filter of

the whole networks is set to be 3 in order to output super-

resolved color images. Note that the original RCAN has 10

RGs; due to the limitation of GPU memory, we have only

adopted 9 RGs in our current implementation of SCAN (3

Basic RGM, totally amount to 9 RGs).

In our training process, we first randomly crop both the

input and ground-truth RGB images with small patches

such as 128 × 128, with a batch size of 16; then we aug-

ment the training set by standard geometric transformations

Patch size 48×48 96×96 128×128

PSNR 29.37 29.55 29.59

Table 1. The influence of different cropped patch-size used (48 ×

48, 96 × 96 and 128 × 128) for training process.

(e.g., flipping and rotation). Our model is trained and op-

timized by ADAM [21] with β1 = 0.9, β2 = 0.999, and

ǫ = 10−8. The initial learning rate is set to 1× 10−4, the

decay factor is set to 5, which decreases the learning rate by

half after [384k, 576k, 768k, 883k, 998k] steps; the MSE

loss function is applied to minimize the error between HR

and SR images. All reported experiment results are trained

by PyTorch [27] on 4 NVIDIA TITAN Xp GPUs. The total

training time is around 35 hours.

4.3. Effect of Patch Size for Training

We explored the effect of different patch-size cropped

for the model training. Table 1 shows the results of 48 ×

48, 96 × 96 and 128 × 128 patch-size used. Note that all

the training settings are exactly same besides the patch size

of training data. From the results we find that large patch

size leads a better PSNR performance. However, due to

the constraint with limited GPU memory, 128×128 is the

largest patch size we can train at this point.

4.4. Ablation Study

In order to better illustrate the benefit of spatial color at-

tention map step by step, we have compared different strate-

gies to evaluate the validity of proposed SCAM. We have

implemented four competing models in our experiments

(trained by the same dataset): 1) baseline RCAN [39]: train-

ing without SCAM (all settings follow the original RCAN);

2) SCAN 1: training with only one-time calibration with

SCAM (one Basic RGM with 9 RGs inside); 3) SCAN 2:

training with two-times calibration with SCAM (two Ba-

sic RGM, first one has 5 RGs and the second one has 4

RGs); 4) SCAN 3: training with three-times calibration

with SCAM (the proposed SCAN, please refer to Fig. 1).

Table. 2 shows the results of the four strategies men-

tioned above. Without SCAM, the RCAN can achieve the

average PSNR of 29.31 dB; after adding SCAM, SCAN 1

can improve the initial PSNR results to 29.49 dB (0.18 dB

gained when compared with RCAN); keep increasing cali-

bration time to 2 and 3, we observe that the PSNR results are

further improved. Finally we have achieved the best PSNR

result of 29.59 dB with the proposed SCAN (i.e., SCAN 3

in Table 2).

4.5. Comparison Against StateoftheArt

We have compared our proposed SCAN with current

state-of-art SISR approach RCAN [39]. The original

RCAN is trained to super-resolve LR image by a specific



cam2_09 HR LR RCAN SCAN(ours)

29.21/0.8837 31.79/0.9363 32.51/0.9413

cam1_07

27.29/0.7874 29.78/0.8718 30.74/0.8880

PSNR/SSIM

PSNR/SSIM

Figure 4. Visual results for validation data “cam1 07” and “cam2 09”.

cam2_05 HR LR RCAN SCAN(ours)

25.54/0.7279 27.21/0.8074 27.71/0.8207PSNR/SSIM
cam2_04

24.33/0.7954 25.71/0.8500 26.14/0.8578PSNR/SSIM

Figure 5. Visual results for validation data “cam2 05” and “cam2 04”.

scale factor (i.e., 2×, 3×), but the LR and HR image in

the new real-world dataset from NTIRE2019 have the same

size. Therefore, we have to remove the upscale module

from the original RCAN to make sure both the input and

the output have the same size. The comparison results in

term of PSNR is shown in Table 3.

The baseline result is the average PSNR between the

(scaled) LR images and the corresponding HR images. The

“+” in RCAN+ and SCAN+ stands for self-ensemble strat-

egy used to further improve results (similar strategies have

been adopted in previous works [24, 29, 41, 39]). From

Table 3, our proposed SCAN and SCAN+ have the best



cam1_07

7.85 7.47 7.17Perceptual Index

cam2_04

LR RCAN SCAN(ours)

6.73 5.97 5.83Perceptual Index

Figure 6. The visual results for test data “cam1 07” and “cam2 04”. The results is based on perceptual index (PI) score since the HR image

is not available. The lower PI score indicates the better perceptual quality.

Method No. of RGs No. of SCAM calibration used PSNR SSIM

RCAN 10 N/A 29.31 0.8606

SCAN 1 9 1 29.49 0.8628

SCAN 2 9 2 29.52 0.8641

SCAN 3 9 3 29.59 0.8650

Table 2. Investigations of how to set spatial color attention modules (SCAM) .

Baseline RCAN RCAN+ SCAN SCAN+

PSNR 27.78 29.31 29.42 29.59 29.75

SSIM 0.8163 0.8606 0.8632 0.8650 0.8687

Table 3. Quantitative results of PSNR and SSIM for all methods.

The higher is better. Bold font indicates the best result and under-

line indicates the second.

PSNR/SSIM performance. When compared with RCAN

and RCAN+, our proposed SCAN+ can significantly im-

prove the PSNR performance by as much as 0.44 dB and

0.33 dB respectively. Even without activating the strategy of

self-ensemble, SCAN is still noticeably better than RCAN

and RCAN+.

Beside quantitative PSNR/SSIM results, we have also in-

cluded the subjective quality results comparison in Fig. 4

and Fig. 5. For image “cam2 09” in Fig. 4, we can see that

RCAN suffers from severe edge blurring artifacts and text

color distortions. Our proposed SCAN can reconstruct col-

orful texts with fewer blurring artifacts and less color dis-

tortion. For image “cam1 07” in Fig. 4, our SCAN is ca-

pable of recovering more edge details than RCAN (e.g., the

sharpness of wall-pattern). For another image “cam2 05”

in Fig. 5 (note that this example is really challenging - even

ground-truth HR image has suffered a little bit of edge blur-

ring), our SCAN can reconstruct the large-scale building

structure details much better (e.g., the horizontal roof struc-

ture above the window and vertical edges on both sides

of the window). For image “cam2 04” in Fig. 5, we can

see that the dots in ground-truth image contain solid color;

while in RCAN reconstructed image, they become hollow

dots. One possible interpretation is that for fine struc-

tures like small dots, it takes both spatial and color atten-

tion mechanism to ensure the structural consistency among

them. By contrast, our SCAN can still faithfully reconstruct



Baseline RCAN SCAN

PI Score 7.36 6.79 6.68

Table 4. Quantitative results of perceptual index scores for all

methods. The lower score is better. Bold font indicates the best

result.

those solid dots.

Finally, because the HR images for test data are not re-

leased, we cannot report the PSNR based results on test

data. Alternatively, to evaluate the quantitative results

among our method, baseline and RCAN on test data, we

have used a new objective metric called Perceptual Index

(PI) [3] (a no-reference image quality metric) which was

recently developed to measure perceptual quality for SISR

(e.g., the 2018 PIRM Challenge [2]). The PI score is defined

by

PI =
1

2
((10− MA) + NIQE) (9)

where MA denotes a no-reference quality metric [25] and

NIQE refers to Naturalness Image Quality Evaluator [26].

Unlike PSNR or SSIM [37], the lower PI score, the better

perceptual quality.

Table 4 includes the PI comparison between ours and

other competing methods. SCAN reaches the lowest PI

score, which implies the highest perceptual quality. Fig.

6 includes the PI comparison among baseline (LR), RCAN

and SCAN on images “cam1 07” and “cam2 04” from test

dataset (HR images are not released so we will not be able

to evaluate the fidelity or accuracy of SR reconstruction).

But it can still be observed that SCAN is capable of de-

livering the most visually pleasant reconstruction of fine-

detailed structures in basket on image “cam1 07”. On an-

other image “cam2 04”, our proposed SCAN can signifi-

cantly reduce the blurring of white-colored texts when com-

pared with RCAN.

5. Conclusion

In this paper, we proposed a spatial color attention

networks (SCAN) to tackle the problem of single image

super-resolution based on real-world image dataset from

NTIRE2019 challenge. The newly designed spatial color

attention module (SCAM) can enable the networks to learn

the joint representations across spectral channels and bet-

ter calibrate the feature maps with R,G,B spatial color at-

tention maps. When compared with start-of-the-art RCAN,

our method SCAN can significantly improve both objective

(including PSNR/SSIM/PI) and subjective results. Mean-

time, the designed SCAM module can easily be integrated

with other existing super-resolution networks. Under the

framework of NTIRE challenge, one issue that remains to

be addressed is the modeling/learning of real-world degra-

dation (the forward process). We expect that exploiting a

priori information about the degradation process can offer

new insight to the problem of real SISR.

References

[1] Eirikur Agustsson and Radu Timofte. NTIRE 2017 chal-

lenge on single image super-resolution: Dataset and study.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, July 2017. 5

[2] Yochai Blau, Roey Mechrez, Radu Timofte, Tomer Michaeli,

and Lihi Zelnik-Manor. 2018 PIRM challenge on perceptual

image super-resolution. arXiv preprint arXiv:1809.07517,

2018. 8

[3] Yochai Blau and Tomer Michaeli. The perception-distortion

tradeoff. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018. 5, 8

[4] Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu, Jiang

Wang, Zilei Wang, Yongzhen Huang, Liang Wang, Chang

Huang, Wei Xu, et al. Look and think twice: Capturing

top-down visual attention with feedback convolutional neu-

ral networks. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 2956–2964, 2015. 1

[5] Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian

Shao, Wei Liu, and Tat-Seng Chua. SCA-CNN: Spatial

and channel-wise attention in convolutional networks for im-

age captioning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5659–

5667, 2017. 1

[6] Joon Son Chung, Andrew Senior, Oriol Vinyals, and An-

drew Zisserman. Lip reading sentences in the wild. In 2017

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 3444–3453. IEEE, 2017. 1

[7] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Learning a deep convolutional network for image

super-resolution. In European conference on computer vi-

sion, pages 184–199. Springer, 2014. 2

[8] J-M Geusebroek, Rein Van den Boomgaard, Arnold W. M.

Smeulders, and Hugo Geerts. Color invariance. IEEE

Transactions on Pattern analysis and machine intelligence,

23(12):1338–1350, 2001. 1

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014. 2

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 2

[11] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), June 2018. 1, 2, 4

[12] Yanting Hu, Jie Li, Yuanfei Huang, and Xinbo Gao.

Channel-wise and spatial feature modulation network

for single image super-resolution. arXiv preprint

arXiv:1809.11130, 2018. 1, 2



[13] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Densely connected convolutional net-

works. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), July 2017. 2

[14] Laurent Itti and Christof Koch. Computational modelling

of visual attention. Nature reviews neuroscience, 2(3):194,

2001. 1

[15] Laurent Itti, Christof Koch, and Ernst Niebur. A model

of saliency-based visual attention for rapid scene analysis.

IEEE Transactions on Pattern Analysis & Machine Intelli-

gence, (11):1254–1259, 1998. 1

[16] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.

Spatial transformer networks. In Advances in neural infor-

mation processing systems, pages 2017–2025, 2015. 1

[17] Alexia Jolicoeur-Martineau. The relativistic discriminator:

a key element missing from standard GAN. arXiv preprint

arXiv:1807.00734, 2018. 2

[18] Fahad Shahbaz Khan, Joost Van De Weijer, and Maria Van-

rell. Top-down color attention for object recognition. In

2009 IEEE 12th International Conference on Computer Vi-

sion, pages 979–986. IEEE, 2009. 1

[19] Fahad Shahbaz Khan, Joost Van de Weijer, and Maria Van-

rell. Modulating shape features by color attention for ob-

ject recognition. International Journal of Computer Vision,

98(1):49–64, 2012. 1

[20] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate

image super-resolution using very deep convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1646–1654, 2016. 2, 4

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[22] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-

Hsuan Yang. Deep laplacian pyramid networks for fast and

accurate superresolution. In IEEE Conference on Computer

Vision and Pattern Recognition, volume 2, page 5, 2017. 2

[23] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew P Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In CVPR, volume 2, page 4, 2017. 2

[24] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and

Kyoung Mu Lee. Enhanced deep residual networks for single

image super-resolution. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshops,

July 2017. 2, 6

[25] Chao Ma, Chih-Yuan Yang, Xiaokang Yang, and Ming-

Hsuan Yang. Learning a no-reference quality metric for

single-image super-resolution. Computer Vision and Image

Understanding, 158:1–16, 2017. 8

[26] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Mak-

ing a” completely blind” image quality analyzer. IEEE Sig-

nal Process. Lett., 20(3):209–212, 2013. 8

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017. 5

[28] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-

resolution via deep recursive residual network. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, volume 1, page 5, 2017. 2

[29] Radu Timofte, Rasmus Rothe, and Luc Van Gool. Seven

ways to improve example-based single image super resolu-

tion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1865–1873, 2016. 6

[30] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for

gray and color images. In ICCV, volume 98, page 2, 1998. 1

[31] Tong Tong, Gen Li, Xiejie Liu, and Qinquan Gao. Im-

age super-resolution using dense skip connections. In Com-

puter Vision (ICCV), 2017 IEEE International Conference

on, pages 4809–4817. IEEE, 2017. 2

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Advances in Neural

Information Processing Systems, pages 5998–6008, 2017. 1

[33] Thang Vu, Tung M Luu, and Chang D Yoo. Perception-

enhanced image super-resolution via relativistic generative

adversarial networks. In European Conference on Computer

Vision, pages 98–113. Springer, 2018. 2

[34] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng

Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang.

Residual attention network for image classification. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3156–3164, 2017. 1

[35] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 7794–7803, 2018. 1

[36] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,

Chao Dong, Yu Qiao, and Chen Change Loy. ESRGAN:

Enhanced super-resolution generative adversarial networks.

In The European Conference on Computer Vision Workshops

(ECCVW), September 2018. 2

[37] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-

moncelli. Image quality assessment: from error visibility to

structural similarity. IEEE transactions on image processing,

13(4):600–612, 2004. 2, 8

[38] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron

Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua

Bengio. Show, attend and tell: Neural image caption gen-

eration with visual attention. In International conference on

machine learning, pages 2048–2057, 2015. 1

[39] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng

Zhong, and Yun Fu. Image super-resolution using very deep

residual channel attention networks. In The European Con-

ference on Computer Vision (ECCV), September 2018. 1, 2,

4, 5, 6

[40] Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun

Fu. Residual non-local attention networks for image restora-

tion. arXiv preprint arXiv:1903.10082, 2019. 1, 2

[41] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and

Yun Fu. Residual dense network for image super-resolution.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018. 2, 6


