
 

 

 

Abstract 

 

Networks using down-scaling and up-scaling of feature 

maps have been studied extensively in low-level vision 

research owing to efficient GPU memory usage and their 

capacity to yield large receptive fields. In this paper, we 

propose a deep iterative down-up convolutional neural 

network (DIDN) for image denoising, which repeatedly 

decreases and increases the resolution of the feature maps. 

The basic structure of the network is inspired by U-Net 

which was originally developed for semantic segmentation. 

We modify the down-scaling and up-scaling layers for 

image denoising task. Conventional denoising networks are 

trained to work with a single-level noise, or alternatively 

use noise information as inputs to address multi-level noise 

with a single model. Conversely, because the efficient 

memory usage of our network enables it to handle multiple 

parameters, it is capable of processing a wide range of 

noise levels with a single model without requiring noise-

information inputs as a work-around. Consequently, our 

DIDN exhibits state-of-the-art performance using the 

benchmark dataset and also demonstrates its superiority in 

the NTIRE 2019 real image denoising challenge. 

1. Introduction 

Image denoising is a representative low-level vision task 

that restores a clean image, 𝑥,  from noisy image,  𝑦. There 

are many types of noise that can be generated in an image, 

but the noise caused by poor illumination or high 

temperature problems occurring during the image 

acquisition step can be assumed to follow a Gaussian 

distribution. When noise 𝑛  conforms to a Gaussian 

distribution, additive white Gaussian noise (AWGN) is 

modeled as 𝑦 =  𝑥 +  𝑛. During the past decades, many 

studies have been conducted with the aim of reducing 

Gaussian noise in images [2–6]. The performance of natural 

image denoising has reportedly converged, making any 

further major performance improvements significantly 

more challenging [1]. 

Burger et al. [7] have achieved denoising performance 

similar to that of BM3D [5] using a plain neural network, 

and many algorithms have been developed to significantly 

improve the performance of image denoising using 

convolutional neural network (CNN) [8–14]. However, 

existing methods have some limitations in their network 

architectures and training methods. First, the requirement 

for the output of a network employed in an image denoising 

task to be a denoised image means that deep features used 

in that network need to have the same resolutions as the 

output, which consumes a lot of GPU memory and training 

time. These GPU and training-time costs account for the 

fact that existing plain CNN-based denoising architectures 

are limited in their depth, number of parameters, and 

receptive field. Performance improvements can be achieved 

using a hierarchical network structure that changes the 

resolution of the feature maps, as then the receptive field 

can be much larger for the same GPU memory cost [14].  

Second, existing networks either require a model per noise 

level to be processed, or rely on noise-information input to 

facilitate process multi-level noise with a single model. 
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(a) Noisy image with multi-level Gaussian noise 

 
 

(b) Restored image using DIDN (PSNR: 34.86 dB) 
 

Figure 1: Our single DIDN handles multi-level noise without 

requiring any noise information to be input. 
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However, this solution to handling multi-level noise is 

impractical, as in practical applications noise information is 

not readily available to the network, and noise levels vary 

widely depending on the situation.  

Liu et al. [14] developed a network for image restoration 

by combining the wavelet transform and inverse wavelet 

transform approaches with a U-Net [24] structure, 

achieving a good trade-off between the computational 

complexity and the receptive field. However, as the wavelet 

transform consists of a convolution with specific weights 

and a sub-sampling process, it is considered a special case 

of the convolution layer; using this approach may limit 

performance compared to the performance that can be 

achieved using a trainable convolution layer. 

To address these limitations, we embed down-scaling 

into the contracting process of the network with a trainable 

convolution layer with a stride of 2, and embed up-scaling 

in the expanding process using a subpixel layer [15], which 

was proposed in image super-resolution work for the up-

scaling of features. As the subpixel layer performs up-

scaling only by rearranging features and not by performing 

any convolution operation, loss during the up-scaling 

process can be reduced if a sufficient number of features are 

provided before up-scaling. We also test the proposed 

network’s ability to cope with unknown noise levels and 

develop efficient training methods to improve the multi-

level noise model to offer greater practical utility. Our 

network’s efficient GPU memory usage enables it to 
consider enough parameters to handle multiple-level noise 

with a single model. Experimental results demonstrate that 

our multi-level noise model shows similar performance to 

a single-level noise model without requiring the input of 

noise information (Figure 1). We also use the weight-

averaging method [16] for image denoising to reduce the 

bias caused by weight selection and improve the 

performance without increasing the model’s parameters or 
computational complexity. Although the effect of this 

weight-averaging strategy has been validated in image 

classification work, we pioneer its successful application in 

image denoising tasks. In summary, the contributions of 

this work are as follows: 

 A novel CNN architecture iteratively contracting 

and expanding features with very large receptive 

field.  

 Modification of the down- and up-scaling process 

used by U-Net for image denoising task. 

 Application of the weight-averaging technique to 

Gaussian noise image denoising, resulting in a more 

generalized and performance-enhanced model with-

out the additional parameters. 

 An efficient method to train a single model such that 

it can handle multi-level noise (unknown noise) 

without noise information inputs. 

 State-of-the-art Gaussian image denoising perfor-

mance. 

2. Related Work 

2.1. Deep learning based image denoising 

The development of deep learning has facilitated a large 

performance improvement in image denoising. Jain et al. 

[18] were the first to use a simple CNN with five layers for 

image denoising, but did not achieve significant 

performance improvement over conventional methods. An 

auto-encoder-based denoising model was proposed in [19] 

but the performance fell short of that possible using BM3D 

[5]. Burger et al. [7] trained a multi-layer perceptron to 

learn a mapping from a noisy image patch to a clean image, 

achieving similar performance to BM3D. DnCNN [8] 

achieved a significant performance improvement over 

conventional methods in image denoising using 

convolution, batch normalization [35], and ReLU as a basic 

structure, and successfully trained deep networks by 

utilizing global residual learning [21]. Zhang et al. [13] 

proposed a CNN with seven layers, considering the trade-

off between computational cost and accuracy. This 

succeeded in increasing the receptive field using dilated 

convolution [20]. Tai et al. [9] proposed the MemNet, 

which offers a large receptive field while maintaining a 

small number of parameters by using a recursive CNN 

structure and dense skip connections [22]. Finally, Zhang et 

al. [11] proposed a residual dense network (RDN) that uses 

both residual learning and dense connection as its basic 

structure, maximizing feature reuse and achieving a 

significant improvement in the performance of Gaussian 

noise image denoising. 

All the studies acknowledged above are subject to some 

limitations: they assume known noise, and require the 

training of a specific model for each noise level to be 

considered. As such, they cannot handle unknown noise or 

multi-level noise with a single model. To address this 

problem, FFDNet [10] was designed to use a noise map as 

an input to the network, resulting in a single model which 

can process multi-level noise (Gaussian noise 𝜎 from 0 to 

75). The UDN [12] trains on various noise levels using the 

noise level as input to the trainable projection unit of the 

network (with noise 𝜎 from 0 to 29 and 30 to 55 for each 

model). However, these methods still require a noise level 

as input when testing, and as the results vary depending on 

the input noise information, they are difficult to apply to 

unknown noise data. 

2.2. Deep networks using down-up scaling 

To maintain the depth and computational complexity of 

the network while increasing the receptive field, Zhang et 

al. [13] used dilated convolution, but this approach suffers 

from the gridding artifact because it sub-samples the 

features sparsely [23]. In order to achieve a better trade-off 

between the receptive field and the computational cost, 



 

 

some studies have been conducted into the use of down- 

and up-scaling of the feature maps. U-Net [24] was 

proposed in semantic segmentation. In U-Net, max-pooling 

is used to reduce the resolution of feature maps by half and 

simultaneously increase the number of feature maps by a 

factor of two to reduce data loss. Up-sampling followed by 

2×2 convolution are used for up-scaling the features. Liu et 

al. [14] used the wavelet transform and the inverse wavelet 

transform approaches for the down- and up-scaling of 

feature maps, respectively, to increase the receptive field. 

As the wavelet transform approach consists of a 

convolution and sub-sampling, it can be seen as a special 

case of a convolution layer. Shi et al. [15] proposed a sub-

pixel convolution layer for up-scaling of low resolution 

features at super-resolution, which greatly reduces the 

computational complexity compared to that of the 

deconvolution layer. FFDNet implemented reversible 

down- and up-scaling using paired sub-sampling and 

subpixel convolution, resulting in high GPU memory 

efficiency and an increased receptive field. DBPN [25] 

learned the up-scaling process by iteratively up- and down-

scaling feature maps using the deconvolution layer and a 

convolution layer with a stride of 2 in the image super-

resolution work, and achieved state-of-the-art performance. 

3. Proposed Network 

In this section, we introduce the overall architecture and 

properties of the proposed network. We discuss the down-  

and up-scaling (down-up scaling) strategy used in the 

contraction and expansion steps in the network, and the 

network configurations required for efficient training. In the 

following subsections, we compare the results of the single-

noise model with those of the multi-noise model, and 

explain the training strategies employed to train the multi-

level noise model efficiently. 

3.1. Network architecture 

The U-Net [24] was initially proposed for semantic 

segmentation. U-Net consists of two paths: a contraction 

path that reduces the size of deep features, and an expansion 

path that increases the size of these features. The core 

principle of U-Net is to reduce the resolution of the features 

to increase the receptive field, and then reuse the features 

through concatenation of matching resolution levels to 

minimize information loss caused by down-up scaling. The 

efficiency of U-Net’s U-shaped structure is verified in 

image denoising [14] and ascribed to its large receptive 

field, high GPU memory efficiency, and low computational 

cost. DBPN [25] demonstrates that iterative down-up 

scaling of feature maps is effective for learning an image 

super-resolution task. However, this method increases the 

overall size of the feature maps, decreasing the receptive 

field and increasing the computational complexity. 

Drawing on [24] and [25], we propose an iterative down-

up scaling network termed the deep iterative down-up 

network (DIDN), offering a large receptive field and 

efficient GPU memory usage by sequential repetition of the 

contraction and expansion processes. Figure 2 shows the 

 
 

(a) Architecture of DIDN 
 

 
 

(b) Structure of DUB 
 

 

Figure 2: The architecture of the proposed DIDN. 
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overall architecture of the proposed network. Here, the gray 

blocks represent feature maps, and the feature maps 

construct a hierarchical structure comprised of four distinct 

resolution levels. DIDN consists of four parts: feature 

extraction, down-up block (DUB), reconstruction, and 

enhancement. 

Initial feature extraction: When the size of the input 

image is H×W, DIDN first extracts 𝑁 features using a 3×3 

convolution on the input image, and extracts the features of   𝐻2 × 𝑊2 × 2𝑁  size through the convolution layer using a 

stride of 2. 

DUB: The extracted features subjected to iterative down-

up scaling through several DUBs. In the DUB, contraction 

and expansion are performed by two down-scaling and up-

scaling processes. A 3×3 convolution layer with a stride of  

2 and a subpixel layer are used in down- and up-scaling, 

respectively. In the down-scaling process, the size of the 

feature maps is decreased by half in the horizontal and 

vertical directions, and the number of the features is 

doubled. In the up-scaling process, because the number of 

input features is reduced by a quarter through the subpixel 

layer, the number of feature maps is increased through the 

1×1 convolution layer before the subpixel layer to maintain 

information density. As in U-Net [24], features of the same 

resolution level are concatenated to increase the reuse of 

these features in the hierarchical structure. The features at 

the beginning and the end of the block are linked by skip 

connection [21]. 

Reconstruction: Inspired by MemNet [9], we place a 

common reconstruction block after the last DUB to take 

advantage of all the local output. The outputs of all the 

DUBs form the inputs to the reconstruction block, and all 

the outputs of the reconstruction block are concatenated to 

go through the enhancement stage. The reconstruction 

block consists of nine convolution layers (Conv) followed 

by parametric rectified linear units (PReLU) [38]. More 

specifically, there are four consecutive residual blocks 

consisting of 'Conv + PReLU + Conv + PReLU' with 

additional Conv at the end. 

Enhancement: Finally, through the 1×1 convolution, 

the number of output feature maps in the reconstruction 

block is decreased, and up-scaling is performed at the 

subpixel layer to generate the final denoised image. 

3.2. Down-up process 

Other approaches to select the upscaling layer do exist, 

such as using a deconvolution layer and up-sampling 

followed by a convolution layer. However, these upscaling 

layers contain interpolation or padding processes which can 

include degradation in the feature maps. As image 

denoising is a low-level vision task in which it is important 

to enhance the pixel-level accuracy, in DIDN we adopt a 

subpixel convolution layer as an up-scaling operator. The 

subpixel convolution layer requires neither interpolation 

nor a padding process, but instead allows the network to 

propagate detail information directly from low resolution to 

higher resolution, an advantageous method for upscaling 

features in image denoising. There are also other options in 

the down-scaling layer such as max-pooling and sub-

sampling, but we chose to adopt a trainable convolution 

layer to improve the performance. 

3.3. Multiple noise levels 

In EDSR [17], fast convergence and improved results are 

obtained by using the weights of the pre-trained model, at a 

lower scale, as the initial values of the weights for learning 

the model at a higher scale. The authors conclude that the 

different scales are interrelated in the super-resolution task. 

In Gaussian noise image denoising, the degree of 

degradation varies depending on the noise levels, but as the 

noise properties are the same, we can extend this weight 

initialization strategy to image denoising. Figure 3 shows 

the result of training at a noise level of 30 on grayscale 

image denoising. The blue line represents the use of random 

initialization (RI), whereas the red line represents the use of 

pre-trained initialization (PI) weights at a noise level of 10. 

Using the pre-trained model, converges occurs much faster 

and ultimately performance is improved even further, 

indicating that Gaussian noise is also interrelated between 

Methods 
Noise level 

10 30 50 

Single_RI 35.16 29.90 27.85 

Single_PI 35.18 30.02 27.91 

Multi_RI 35.14 30.01 27.94 

Multi_PI_𝜎50 35.14 30.02 27.94 

Multi_PI_ 𝜎10 35.15 30.03 27.95 
 

Table 1: PSNR (dB) comparison of training and weight 

initialization methods using the grayscale Kodak24 dataset. Best 

performance at each noise level is bolded. 

 

Figure 3: Effect of pre-trained weight initialization on grayscale 

BSD68 dataset with noise level 30.  

 



 

 

adjacent noise-levels. 

From this property, the possibility arises of addressing a 

wide range of noise levels in a single model. The multi-

level noise model, capable of handling noise levels ranging 

from 5 to 50, is trained in three ways: 1) using RI,  2) using 

PI from a noise level of 10, and 3) using PI from a noise 

level of 50. Table 1 shows the results of the experiment on 

the Kodak24 [37] dataset. In Table 1, the first model is 

indicated as ‘Multi_RI’; the second model as 
‘Multi_PI_ 𝜎50’; and, the third model as ‘Multi_PI_ 𝜎10’. For 

single-level noise model, the model using PI is indicated as 

‘Single_PI’ and the model using RI is indicated as ‘Single_RI’ 
in Table 1. For the single-level noise model using PI, the 

model for noise level 10 is initialized from the weights pre-

trained at noise level 5; the model for noise level 30 is 

initialized from the weights pre-trained at noise level 10; 

and, the model for noise level 50 is initialized from the 

weights pre-trained at noise level 30.  

In the single-level noise model, using PI increases the 

average peak signal-to-noise ratio (PSNR) by 0.02, 0.12, 

and 0.06 dB at noise levels of 10, 30, and 50, respectively, 

compared to the results with RI. Comparing the RI results 

produced by the single-level noise model with those 

produced by the multi-level noise model, it is found that the 

multi-level noise model outperforms the single-level noise 

model at high noise levels, but it exhibits inferior 

performance at low noise levels. This tendency is consistent 

with the results of VDSR [34], where a multi-scale model 

shows a lower PSNR than a single-scale model at a low 

scale in image super-resolution. Using the PI from noise 

level 10 improves the DIDN’s performance at low noise 
levels and also increases the PSNR at higher noise levels. 

Consequently, our multi-level noise model outperforms  

single-level models at almost all noise levels. Furthermore, 

because noise information in the real-world is often 

unknown, the multi-level noise model is much more 

practically applicable than any single-level model.  
 Owing to DIDN’s efficient GPU memory usage, it can 
accommodate deeper layers, more features, and a 

sufficiently large number of parameters (190M for DIDN 

using 6 DUBs) to enable a single model to be trained to 

process a wide range of noise levels without requiring any 

noise information inputs. We can conclude that the 

proposed multi-level noise model successfully performs the 

functions of both noise estimation and noise reduction 

within a single model. 

4. Experimental Results 

This section details the dataset, training steps, and 

ensemble strategy used in the experiment. Thereafter, 

objective and subjective comparisons with the results of 

state-of-the-art studies are drawn. Moreover, we present the 

results of our DIDN’s performance in the NTIRE 2019 real 
image denoising challenge [40]. 

4.1. Dataset 

To train our model, we use the DIV2K dataset [29], 

composed of 800 training images and 100 validation images, 

each with a resolution of 2K. For the comparison, BSD68 

[30] and Kodak24 [37] are used as grayscale and color 

versions of the test dataset, respectively. Noisy images are 

generated by adding Gaussian noise at a specific noise level 

to the clean images from the datasets. 

4.2. Training / Implementation details 

For training, all images are split into 64×64 patches. One 

batch consists of 16 randomly selected patch pairs of 

training data, and 36K iterations constitute one epoch. All 

patches are augmented using random rotation and flip. The 

Adam optimizer [39] with an initial learning rate of 10−4 is 

used for training, and the learning rate is halved every 3 

epochs. In total, a single model is trained over 12 epochs 

(approximately 400K iterations), during which process the 

learning rate is decreased 3 times. Approximately 3 days 

 
 

Figure 4: Weight averaging points. Upper and lower tindicate 

validation PSNR (dB) and learning rate, respectively, during 

training. 

 

Dataset Methods 
Noise level 

10 30 50 

BSD68 

Model 1 33.970 28.578 26.461 

Model 2 33.976 28.577 26.459 

Model1  

+ Model2 
33.978 28.583 26.467 

Kodak24 

Model 1 35.152 30.026 27.947 

Model 2 35.153 30.028 27.950 

Model1  

+ Model2 
35.163 30.037 27.959 

 

 

Table 2: Effect of weight averaging on grayscale image denoising. 

Best performance at each noise level is bolded. 



 

 

are required to train a single model using the GeForce GTX 

1080Ti. Drawing on [32], we use 𝑙1-loss to train the model 

as follows:  𝑙1(𝜃) = 1𝑁 ∑ |𝐹(𝑥𝑖; 𝜃) − 𝑦𝑖|𝑁𝑖=1 , (1) 

where 𝑁 is a batch size, 𝐹(∙) is the network function with 

learnable parameter 𝜃, and 𝑥𝑖  and 𝑦𝑖  denote patch pairs of 

the noisy image and ground truth in the training data. 

Our DIDN has 6 DUBs and extracts 128 initial feature maps. 

All convolution layers have a kernel size of 3×3 or 1×1. For 

the Gaussian noise image denoising, two DIDNs are trained, 

one for grayscale image denoising and the other for color 

image denoising. 

4.3. Ensemble strategy 

In machine learning, the ensemble technique is a method 

to improve generalization and performance by reducing the 

bias and variance of a single model. Three ensemble 

methods, namely snapshot ensemble [16], self-ensemble 

[26], and model ensemble, are tested on the DIDN. 

Snapshot ensemble is a method to train a model by 

periodically changing the learning rate and then averaging 

the weight values at the end of each cycle. The cosine 

learning rate is used in [16], but we use the Adam optimizer, 

as explained in Section 4.2, halving the learning rate every 

3 epochs. We train a model for two cycles and average their 

weights of the end of each cycle as shown in Figure 4. Table 

2 lists the effects of using snapshot-ensemble on the 

Kodak24 dataset at noise levels of 10, 30, and 50. The 

highest performances during the two learning rate cycles 

are similar, and the performance is slightly improved when 

two weights are averaged, which is effective because it does 

not require additional parameters or additional computation 

for testing. As in [17], the self-ensemble generates eight 

inputs by the rotation and flip of one input, producing a total 

of eight outputs through the same model. The outputs are 

then inverse-transformed and averaged to create the final 

output. Tables 3, 4, 5, and 6 list the results for the self-

ensemble. Self-ensemble results are marked as 'DIDN+' in 

Methods 

BSD68 Kodak24 

Noise level Noise level 

10 20 30 40 50 10 20 30 40 50 

Noisy 28.26 / 0.7092  22.35 / 0.4687 18.97 / 0.3349  16.64 / 0.2526  14.91 / 0.1982 28.23 / 0.6574 22.28 / 0.4013 18.87 / 0.2731 16.52 / 0.2001 14.79 / 0.1542 

BM3D [5] 33.32 / 0.9158  29.61 / 0.8337 27.75 / 0.7731 26.46 / 0.7242 25.60 / 0.6858 34.39 / 0.9127 30.93 / 0.8405 29.12 / 0.7877 27.84 / 0.7452 26.98 / 0.7140 

DnCNN [8] 33.88 / 0.9270 30.27 / 0.8563 28.36 / 0.7999 27.11 / 0.7541 26.23 / 0.7189 34.90 / 0.9223 31.47 / 0.8576 29.62 / 0.8071 28.37 / 0.7666 27.49 / 0.7368 

IRCNN [13] 33.74 / 0.9262 30.16 / 0.8562 28.26 / 0.7989 27.08 / 0.7548 26.19 / 0.7171 34.76 / 0.9215 31.38 / 0.8576 29.52 / 0.8056 28.37 / 0.7676 27.45 / 0.7342 

FFDNet [10] 33.76 / 0.9266 30.23  / 0.8576 28.39 / 0.8032 27.18 / 0.7597 26.29 / 0.7245 34.81 / 0.9226 31.47 / 0.8603 29.69 / 0.8123 28.51 / 0.7741 27.62 / 0.7437 

DIDN 33.98 / 0.9284  30.44 / 0.8614  28.58 / 0.8075  27.37 / 0.7655 26.47 / 0.7310 35.16 / 0.9263 31.83 / 0.8677 30.04 / 0.8222 28.84 / 0.7856 27.96 / 0.7562 

DIDN+ 34.01 / 0.9286  30.47 / 0.8618  28.61 / 0.8081  27.40 / 0.7663 26.50 / 0.7320 35.20 / 0.9267 31.87 / 0.8683 30.08 / 0.8230 28.88 / 0.7867 28.01 / 0.7576 
 

Table 3: PSNR (dB) / SSIM comparison of methods on gray-scale image denoising. Dataset BSD68 and Kodak24 are used for noise levels 

10, 20, 30, 40, and 50. Best and second best performances are highlighted in red and blue, respectively. 
 

Methods 

CBSD68 Kodak24 

Noise level Noise level 

10 20 30 40 50 10 20 30 40 50 

Noisy 28.30 / 0.7114  22.40 / 0.4707  19.03 / 0.3363  16.72 / 0.2539  15.00 / 0.1993  28.24 / 0.6598  22.31 / 0.4030  18.93 / 0.2744  16.60 / 0.2011  14.87 / 0.1549  

CBM3D [36] 35.89 / 0.9507 31.89 / 0.8935 29.72 / 0.8432  28.08 / 0.7888  27.36 / 0.7622  36.57 / 0.9425  32.92 / 0.8901  30.89 / 0.8452  29.17 / 0.7937  28.62 / 0.7765  

DnCNN [8] 36.12 / 0.9536 32.37 / 0.9050 30.32 / 0.8611  28.95 / 0.8223  27.92 / 0.7882  36.58 / 0.9446  33.20 / 0.8984  31.28 / 0.8579  29.95 / 0.8225  28.94 / 0.7915  

IRCNN [13] 36.06 / 0.9533 32.27 / 0.9045 30.22 / 0.8607  28.85 / 0.8222  27.86 / 0.7889  36.70 / 0.9448  33.19 / 0.8984  31.24 / 0.8581  29.91 / 0.8229  28.92 / 0.7939  

FFDNet [10] 36.14 / 0.9540 32.34 / 0.9045  30.31 / 0.8603  28.96 / 0.8217  27.96 / 0.7881  36.80 / 0.9462  33.32 / 0.9000  31.39 / 0.8596  30.08 / 0.8248  29.10 / 0.7949  

DIDN 36.48 / 0.9565  32.73 / 0.9108  30.71 / 0.8706  29.36 / 0.8348  28.35 / 0.8041  37.32 / 0.9500  33.88 / 0.9083  31.97 / 0.8724  30.68 / 0.8418  29.72 / 0.8156  

DIDN+ 36.52 / 0. 9567 32.77 / 0.9114  30.75 / 0.8714  29.40 / 0.8359  28.40 / 0.8054  37.37 / 0.9503  33.94 / 0.9090  32.03 / 0.8734  30.75 / 0.8431  29.80 / 0.8173  
 

Table 4: PSNR (dB) / SSIM comparison of methods on color image denoising. Dataset CBSD68 and Kodak24 are used for noise levels 

10, 20, 30, 40, and 50. Best and second best performances are highlighted in red and blue, respectively. 

 

Methods 

BSD68 Kodak24 

Noise level Noise level 

15 25 50 15 25 50 

Noisy 24.79  20.48  14.91  24.74  20.39  14.79  

BM3D [5] 31.08  28.57  25.60  32.30  29.92  26.98  

MWCNN [14] 31.86  29.41  26.54  33.14  30.81  28.02  

DIDN 31.85  29.39  26.47  33.16  30.81  27.96  

DIDN+ 31.88  29.42  26.50  33.20  30.85  28.01  
 

Table 5: PSNR (dB) comparison with the latest high-performance 

methods on grayscale image denoising.  

 

Methods 

CBSD68 Kodak24 

Noise level Noise level 

10 30 50 10 30 50 

Noisy 28.30  19.03  15.00  28.24  18.93  14.87  

CBM3D [36] 35.89  29.72  27.36  36.57  30.89  28.62  

RDN [11] 36.47  30.67  28.31  37.31  31.94  29.66  

DIDN 36.48  30.71  28.35  37.32  31.97  29.72  

DIDN+ 36.52  30.75  28.40  37.37  32.03  29.80  
 

Table 6: PSNR (dB) comparison with the latest high-performance 

methods on color image denoising. 

 



 

 

the tables. Compared to DIDN, self-ensemble shows a 

significant improvement in PSNR without an increase in 

either the number of model parameters or the training time. 

Model ensemble is a method of training several models 

for the same task and averaging their output values. If the 

model ensemble is additionally applied to the self-ensemble 

models, the number of parameters, the training time, and 

the testing time are all doubled. However, in our experiment, 

there is no significant increase in PSNR and when the 

performance difference between the models is large, the 

performance of the model ensemble is sometimes worse 

than that of the best model among them. 

Our DIDN adopts and combines the snapshot ensemble 

and self-ensemble strategies.   

4.4. Comparisons with the state-of-the-art 

The proposed network is compared with DnCNN [8], 

IRCNN [13], FFDNet [10], MWCNN [14], and RDN [11].  

All these methods except RDN are tested using their 

publicly accessible code. The results of RDN are drawn 

from the cited paper.  

Table 3 gives the peak signal-to-noise ratio (PSNR) and 

structural similarity (SSIM) in grayscale image denoising. 

The Kodak24 and BSD68 datasets are used in the 

experiments, and grayscale images are generated using the 

'rgb2gray' function in MATLAB. The best result for each 

noise level is given in red, and the second-best in blue. In 

most cases our DIDN shows the best objective scores. 

Although all methods except FFDNet are trained for a 

single-level noise and our DIDN is trained for multiple 

noise levels, DIDN outperforms single-level noise models. 

Table 4 gives the performances in color image denoising. 

Similar to its grayscale results, the proposed DIDN 

successfully learns to process a wide range of noise levels 

in color image denoising. Tables 5 and 6 compare DIDN 

with the latest high-performance models in image denoising. 

DIDN shows higher PSNR values than MWCNN except at 

a noise level of 50, and improved performance at all noise 

levels compared to RDN. Note that MWCNN and RDN are 

trained for a single-level noise, and MWCNN uses more 

than 5,000 training images while DIDN is a multi-level 

noise model and trained using only 900 training images.  

Figures 5 and 6 show the denoised images of the DIDN 

and conventional methods applied to grayscale and color 

images. Compared to conventional methods, the proposed 

network reduces noise and preserves the detail information 

of the image, resulting in visually pleasant images.  

Table 7 compares the number of parameters and 

multiply-accumulate operations (MACs) with DnCNN [8] 

        
Image ‘8’ in Kodak24 Ground truth 

(PSNR (dB)/SSIM) 

BM3D [5] 

(23.90 / 0.7292) 

DnCNN [8] 

(24.26 / 0.7447) 

IRCNN [13] 

(24.38 / 0.7412) 

FFDNet [10] 

(24.53 / 0.7476) 

MWCNN [14] 

(25.15 / 0.7815) 

DIDN+ 

(25.41 / 0.7904) 
 

 

Figure 5: Grayscale image denoising results at noise level 50. 

 

 

      

      

Image ‘148026’ in CBSD68 
Ground truth 

(PSNR (dB) / SSIM) 
CBM3D [36] 

(24.40 / 0.8003) 

DnCNN [8] 

(25.14 / 0.8298) 

IRCNN [13] 

(25.04 / 0.8271) 

FFDNet [14] 

(25.07 / 0.8302) 

DIDN+ 

(25.45 / 0.8435) 
 

 

Figure 6: Color image denoising results at noise level 50. 

 

Methods DnCNN [8] RDN [11] DIDN 

Parameters 558K 22M 165M 

MACs 2G 90G 70G 

Table 7: Parameter number and MAC comparison on color image 

denoising. MACs are calculated for 64×64 image. 

 



 

 

and RDN [11]. DIDN has more parameters, but has fewer 

MACs than RDN. Owing to the hierarchical structure of 

DIDN, it can have more trainable parameters than models 

with plain CNN structure while maintaining the 

computational complexity and memory usage low. 

4.5. NTIRE 2019 Real Image Denoising Challenge 

This work was originally developed for participation in 

the NTIRE 2019 real image denoising challenge [40]. This 

challenge incorporates two tracks: track 1 for projects 

focusing on removing noise from the raw-RGB images that 

are not demosaiced and that have specific color patterns, 

and track 2 for projects focusing on removing noise from 

standard RGB images.  

The purpose of the challenge is to remove real world 

noise from images. In the SIDD data set [33], 320 image 

pairs (noisy and clean images) with resolutions of 4 or 5K 

are used for training. Because the dataset includes images 

with various noise levels, dynamic ranges, and brightnesses, 

the model is designed to have enough parameters to 

estimate and process a variety of cases.  

We trained a DIDN with 10 DUBs in track 1 and 8 DUBs 

in track 2, and our results were ranked second and third in 

the challenge, respectively. This ranking proves that DIDN 

provides superior performance in handling real world noise. 

Table 8 compares the challenge results, and Figure 7 shows 

the resulting images from the validation set. DIDN 

successfully removes noise in images with various 

brightnesses and noise compositions using a single model. 

Moreover, in raw-RGB denoising, DIDN not only reduces 

noise, but also restores the original color patterns well. 

5. Conclusion 

In this paper, we have proposed a deep learning 

algorithm for single-image denoising. We modified the U-

Net to be suitable for image denoising and used this as a 

base module. By sequencing the modules, we constructed a 

network structure that repeatedly down- and up-samples 

deep feature maps. This memory-efficient structure yields 

a large receptive field and enables the model to include a 

sufficiently large number of parameters to achieve 

improved performance. 

To address multi-level and real world noise, we 

successfully developed a single model with the capacity to 

process Gaussian noise on levels ranging from 5 to 50. 

Furthermore, we presented a weight initialization method 

and applied ensemble techniques to efficiently train a multi-

level noise model to enhance denoising performance. 

Experimental results demonstrate that our multi-level noise 

model surpasses the performance of existing single-level 

noise models and multi-level noise models in objective and 

subjective evaluation, and does so without requiring noise 

information inputs. Our proposed network has already 

demonstrated its superiority in real-world denoising tasks, 

achieving second and third place in tracks 1 and 2, 

respectively, at the NTIRE 2019 real image denoising 

challenge.  

   
Noisy image 

(track 1: raw-RGB) 

Dark noisy image 

(track 2: standard RGB) 

Bright noisy image  

(track 2: standard RGB) 

   
DIDN+ 

(50.52 dB / 0.9956) 

DIDN+ 

(34.38 dB / 0.9857) 

DIDN+ 

(42.95 dB / 0.9988) 
 

 

Figure 7: Our results at NTIRE 2019 real image denoising challenge.  

 

Rank 
Track 1: Raw RGB Track 2: Standard RGB 

Team Model PSNR SSIM Team Model PSNR SSIM 

1 1st 1st 52.114 0.9969 1st 1st 39.932 0.9736 

2 Eraser DIDN 52.107 0.9969 Eraser DHDN 39.883 0.9731 

3 Eraser DHDN 52.092 0.9968 Eraser DIDN 39.818 0.9730 

4 4th 4th 51.947 0.9967 4th 4th 39.675 0.9726 

5 5th 5th 51.939 0.9967 5th 5th 39.611 0.9726 
 

Table 8: NTIRE 2019 real image denoising challenge results for 

two tracks [40]. 
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