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Abstract

When capturing a light field of a scene, one typically

faces a trade-off between more spatial or more angular

resolution. Fortunately, light fields are also a rich source

of information for solving the problem of super-resolution.

Contrary to single image approaches, where high-frequency

content has to be hallucinated to be the most likely source

of the downscaled version, sub-aperture views from the light

field can help with an actual reconstruction of those details

that have been removed by downsampling. In this paper,

we propose a three-dimensional generative adversarial au-

toencoder network to recover the high-resolution light field

from a low-resolution light field with a sparse set of view-

points. We require only three views along both horizontal

and vertical axis to increase angular resolution by a factor

of three while at the same time increasing spatial resolution

by a factor of either two or four in each direction, respec-

tively.

1. Introduction

The problem of super-resolution, where one wants to

recover a high-resolution image from one or more low-

resolution versions, is one of the state-of-the-art challenges

in computer vision. It is a highly ill-posed problem, and the

classical approach which solves an inverse problem requires

carefully constructed image priors [5]. It is well known that

having multiple low-resolution images with slightly differ-

ent viewpoints is both crucial as well as successful in recov-

ering sharp details in the reconstructed image [30, 8, 25, 9].

Such a dense collection of viewpoints is described by the

light field of a scene, a four-dimensional structure which

parametrizes a set of captured rays by their point of origin

in the focal plane (representing the viewpoint), and their

intersection coordinate with an image plane. Dedicated

light field cameras efficiently acquire dozens of views by

multiplexing the rays onto a single sensor, or using multi-

ple standard industrial cameras in an array. Compared to

stereo imaging, light fields are more redundant and pro-
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vide richer information about the scene, furthermore, the

baseline is typically much smaller. However, there is a

conflict between either having more views (angular reso-

lution) or more spatial resolution within the views. Light

field super-resolution therefore aims at increasing both spa-

tial and angular resolution, where the latter amounts to gen-

erating novel views of the scene.

Optimization-based approaches [30, 24, 22] can provide

results of a good quality, however, their parameters usu-

ally need to be fine-tuned and they often require a lot of

time to converge. Recently, however, inverse problems have

been successfully attacked by just brute-force learning a

prediction of the desired result given the observed inputs.

This is due to the rapid development of deep learning tech-

niques in the last decade, which is made possible by dra-

matic increase in computational power of GPUs and the

availability of large amounts of training data. Architec-

tures based on deep encoder-decoder convolutional neural

networks (CNN) turned out to be very powerful for super-

resolution even of single images [28, 19], where they zoom

a single low-resolution image to impressive high-resolution

quality. However, fine detail is necessarily hallucinated and

reproduced from natural image statistics, as the downsam-

pling removes the high-frequency content. Multiple input

images are required to be able to really recover a truthful

high-resolution image.

Deep learning methods are nowadays also popular in the

light field community. In recent work, the rich information

inherent in the light field was successfully used to built deep

networks for diverse tasks such as disparity estimation, view

synthesis, reflection separation and intrinsic image decom-

position [2, 26, 1]. The super-resolution problem was also

addressed with recent CNN architectures [8, 33]. Although

these approaches give impressive results, we will discuss in

our paper that there is still lots of room for improvement.

One of the biggest challenges in light field super-

resolution is the high dimensionality of the problem. The

light field itself is a 4D data structure, its upscaled version

is two or four times larger and it requires huge amounts of

GPU memory to process it with adequate batch size and

a sufficient number of feature maps. Thus, the plain ar-

chitecture where the input image is upscaled to the desired

resolution and then refined with a convolutional network is

hardly applicable to light fields. Another challenge is that

the light field is 4-dimensional and cannot be directly used

in the current deep learning frameworks where convolu-

tion operations are performed only in 2-dimensional and 3-

dimensional spaces. Finally, capturing a ground truth light

field of good quality for training is a difficult task, since for

example the consumer Lytro Illum plenoptic camera pro-

duces blurry images that suffer from noise, while the higher

quality Raytrix camera is of plenoptic type 2.0, and thus

sub-aperture views are not available. A possibility is to use

a high-quality camera mounted on a gantry, which is a time-

consuming approach that can hardly be performed in a wild,

and is only applicable to static scenes, so training data will

necessarily be limited.

Contributions. In this work, we address the problem of

light field super-resolution i.e. obtaining a light field with

larger spatial and angular resolution from only five sub-

aperture views of a low-resolution light field. The proposed

approach uses the information from neighboring views and

benefits from the dense redundant structure of the light field.

A fully convolutional asymmetrical encoder-decoder is built

as the first network architecture to transform the 4D struc-

ture of the light field to its upscaled version. To enhance

the sharpness of the reconstructed light field, we propose

a novel WGAN loss that penalizes the difference between

angular and spatial derivatives of the generated light field

and its ground truth. Contrary to the original GAN based

architectures for super-resolution [17], where the discrimi-

nator takes generated high-resolution image and the ground

truth, we feed the discriminator network also with deriva-

tive information, which is much more simple and sparse

than the original light field since it contains only edge in-

formation. To avoid artifacts we use Wasserstein distance

in the discriminator and adversarial losses proposed by Ar-

jovsky et al. [4] instead of the original GAN by Goodfel-

low et al. [10]. Those design choices make WGAN train-

ing very stable and avoid unexpected distortions we have

otherwise observed. We perform both spatial and angular

super-resolution with scale factors two and four, given only

a sparse set of sub-aperture views. Our network achieves

results with competitive quality for both artificial and real-

world light fields compared to state-of-the-art conventional

methods and single image SRGAN.

2. Related work

CNN-based single image super-resolution. Methods

based on convolutional neural networks are widely em-

ployed for inverse problems such as deblurring [32, 27],

image denoising [23, 19] and image super resolution [25,

16, 12, 19, 13]. Mao et al. [19] introduce a fully convo-

lutional autoencoder architecture with skip connections to

deal with single image restoration including denoising and

single image super-resolution. Skip connections are proven

to be very useful to guide the decoding process and in-

crease detail. In our approach, we consequently employ 3D

skip connections between our encoder and decoder. Shi et

al. [25] propose a sub-pixel convolutional layer that maps

low-resolution (LR) image to high-resolution (HR) output.

Their research shows that strided upconvolution can pro-

duce checkerboard patterns in the generated high-resolution

images, which we avoid by first upscaling the features spa-

tially by the means of bicubic interpolation, thus removing

the need to apply strides. Ledig et al. [17] employ a genera-



tive adversarial network to force the network produce more

natural high-resolution images. As a modification, we intro-

duce our DiffWGAN, which not only takes the pixel value

of the generated images and the ground truth, but also the

derivatives of them. This way, DiffWGAN helps to enhance

the details of the generated images. Some other network ar-

chitectures employ unique units to enhance or refine the HR

output, such as the backprojection unit [13] and the infor-

mation distillation units [16]. Instead of a straightforward

deep CNN architecture, Han et al. [12] attempt to use a re-

current neural network for single image super-resolution.

Light field super-resolution. Due to the need of sac-

rificing resolution to sample angular coordinates, the light

fields usually suffer from the lower spatial resolution com-

pared to standard images. Bishop et al. [6] introduce a vari-

ational Bayesian framework for light field super-resolution,

closely related to classical approaches [5]. Shi et al. [24]

present the light field signal reconstruction in the fre-

quency domain. Among recent studies, Wanner and Gold-

luecke [30] and Pujades et al. [21] propose a variational

super-resolution framework using estimated high-accuracy

depth maps from epipolar plane images, and solve novel

view synthesis as an inverse problem. Likewise, Mitra and

Veeraraghavan [20] make use of depth information of the

scene to construct an inference model with a Gaussian mix-

ture model prior. Rossi and Frossard [22] adopt a multi-

frame approach with a graph-based regularizer.

With the continuing success of deep learning, CNN-

based light field super-resolution methods have become

common. Yoon et al. [34] train three networks of the same

architecture for spatial resolution and finally combine them

to achieve angular super-resolution. Farrugia and Guille-

mot [7] upscale the whole light field spatially by utilizing a

low-rank approximation restored by a CNN.

The recent work of Alperovich et al. [2, 1] inspired us to

use an epipolar volume convolutional autoencoder to pro-

cess light fields. The autoencoder, unlike the straight for-

ward neural network architectures, shrinks the size of the

input data in the encoding process, thus leaves more space

for the number of features and batches, especially for high-

dimensional training data like the light fields.

3. Outline of model and losses

In this section, we present an overview of the general

structure of our deep neural network model, as well as the

key formulas used to construct the loss functions of the net-

work. We start with briefly reviewing notation and basic

definitions of the light field structure, and discuss our modi-

fications to the typical encoder-decoder model and discrim-

inator loss as introduced in [10, 4].

Encoder-decoder model for light fields. A light field

is defined on 4D ray space R = Π × Ω, where a ray is

identified by four coordinates r = (s, t, y, x), which de-
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Figure 1. A light field is defined on a 4D volume parametrized by

image coordinates (x, y) and view point coordinates (s, t). Epipo-

lar images (EPIs) are the slices in the sx- or yt-planes depicted to

the right and below the center view. As the camera moves, pro-

jections of scene points trace straight lines on the EPIs, leading to

characteristic patterns.

scribe the intersections with to parallel planes. Here (s, t)
are viewpoint coordinates on the focal plane Π, and (y, x)
are coordinates on the image plane Ω. Epipolar plane im-

ages (EPIs) can be obtained by restricting 4D ray space to

2D slices, see figure 1, while for an epipolar volume, either

the s- or t-coordinate is fixed. The latter is called a horizon-

tal, the former a vertical epipolar volume. For more infor-

mation and a thorough introduction on light field geometry,

we refer to [11, 18].

Let Ll be the low-resolution version of the light field L.

With the convolutional encoder network E, we project Ll

onto the latent variable space Z to obtain the latent repre-

sentation z = E(Ll). Using z as an input, we generate

the output high-resolution light field U(z) with the convo-

lutional decoder network U . The concatenation of encoder

and decoder we term the generator G, which generates high-

resolution light fields from low-resolution ones. Its output

should be the same as the high-resolution ground truth Lh

provided to the network.

DiffWGAN discriminator for light fields. On top of

the output of the generator, we model the discriminator net-

work D. Overall, we use a deep WGAN architecture that

was originally proposed by Arjovsky et al. [4] with a few

modifications. First, we use epipolar volumes instead of

plain images, thus the generator and discriminator networks

use three-dimensional convolutions. Second, we propose an

additional input to the WGAN. Besides the generated patch,

we also feed the discriminator with the angular and spatial

derivatives. We believe that for the super-resolution task,

the high-frequency components are very helpful to obtain

good quality and aesthetically pleasing results. In previous

work [17], it was shown that GANs help with enhancing de-

tails in the high-resolution version of the image, however, it

might create some unwanted distortions and hallucinate de-

tails that are not present in the original image. Since the

light field in theory has more information about the scene

due to its sub-aperture views, we want to focus the atten-

tion of the discriminator in particular on the sharpness of

the reconstructed details.

For any light field L′

h, our discriminator G(L′

h) actually



Figure 2. Proposed network architecture. The input of the network consists of three views from the vertical and horizontal stacks in the

cross-hair that are framed in red and green, respectively. All views are split into 48 × 48 patches with 16 overlapping pixels with each

of their neighbors to decrease the dimensionality of the data. The volumes of size 3 × 48 × 48 are downscaled spatially to 3 × 3 × 3
when they reach the latent space. The latent features are decoded and upscaled separately by nine 2D decoders to achieve the angular

super-resolution. In the upscaling phase, the volumes of the decoded sub-aperture views are again spatially upscaled to twice the size of

the input i.e. 9× 96× 96 to obtain our output. To obtain the magnification factor x4, the output of the network should be passed through

the network again. Finally, we introduce the DiffWGAN to distinguish the output images and the ground truth by their pixel values, as well

as the spatial and angular derivatives, thus improve the details in the super-resolved images.

takes as additional input all of the derivatives of L′

h explic-

itly, i.e.

G(L′

h) = G(L′

h, ∂sL
′

h, ∂tL
′

h, ∂yL
′

h, ∂xL
′

h ). (1)

We omit this explicit dependency in the following to not

clutter notation. The discriminator loss is built such that

the target output for generated light fields is one, the tar-

get output for real light fields is zero. Thus, for a single

low-/high-resolution training pair (Ll, Lh), the discrimina-

tor loss becomes

Ewgan(D) = D(Lh)−D(G(Ll)). (2)

By 〈·〉 we denote the mean value. In addition, the gener-

ator G is modeling the outputs such that they are similar to

ground truth according to the discriminator D. The genera-

tor tries to take the output of the discriminator to zero, and

thus minimizes

Ewgan(G) = D(G(Ll)). (3)

Note that in the actual implementation, the WGAN losses

are split up into a sum of contributions for horizontal and

vertical epipolar volumes. Minimization steps for discrimi-

nator and generator are performed in an alternating fashion.

Loss functions of our network. As the main loss

function of the network, we use L2-loss between the net-

work’s output and the high-resolution ground truth. To fur-

ther enhance the detail of the output, we also calculate the

L2-loss between derivatives of the output and the ground

truth. Again for a single training light field, the total recon-

struction loss from directly comparing the generated to the

ground truth high resolution light field reads

Erec(G) = (1− exp(−Lh/0.5))‖G(Ll)− Lh‖

+ ‖∇G(Ll)−∇Lh‖,
(4)

where the gradient is computed spatially.

Finally, we add the loss of the DiffWGAN for both ver-

tical and horizontal stacks to our generator network, as de-

scribed in the previous subsection. The total loss of the gen-

erator network for a single light field becomes

Etotal(G) = Erec(G) + Ewgan(G). (5)

In the next section, we detail the architecture of the sub-

networks, which we follow with a detailed explanation of

training data and strategy we use to minimize the loss and

prediction error.

4. Detailed network architecture

The light field has a very rigid structure linked to the

scene geometry, see Fig. 1, which gives rich and redun-

dant information about how to precisely match sub-aperture

views, as required for super-resolution. In order to take full

advantage of this structure efficiently, we propose a net-

work architecture with a tailored 4D autoencoder, which

is shown in Fig. 2. The inputs to our network are patch-

wise vertical and horizontal epipolar volumes from the low-

resolution light field “crosshair”, a cross-shaped subset of

views around a reference view. By using the autoencoder

structure and the patch-wise input instead of the whole im-

age, we can significantly reduce computational cost. The

vertical volume consists of the top and bottom views and

the center view which are marked by red frames in the left-

hand side of Fig. 2, while the horizontal volume contains

the left- and rightmost views and the center view that are

framed in green. The high-resolution crosshair encompass-

ing all views is fed as the ground truth.

Architecture of the encoder. Each epipolar volume has

a spatial resolution of 48 × 48. The horizontal volume is



Figure 3. Residual blocks in the encoder and decoder. Left:

The residual block of the encoder performs batch normalization,

3 × 3 × 3 convolution and a leaky ReLU with α = 0.2. For the

residual connection, the input features will be transformed with a

1× 1× 1 convolution, if necessary with stride, to achieve the cor-

rect output size before addition. Right: The residual block of the

2D decoder also employs batch normalization. Bicubic interpola-

tion will upscale the features, followed by a 3 × 3 deconvolution

with stride 1 and ”VALID” padding to avoid the fabricated pixels

on the border of the image. Likewise, if the input features in this

block are rescaled spatially by the left chain, they are convolved

with a 1× 1 kernel with respective stride to allow addition.

spatially transposed such that the images exhibit the same

view point motion as the vertical patches. This way, the

vertical and the horizontal volumes can share the convolu-

tion kernels in the whole network. The 4D encoder has 9

layers, applying the residual block [14] to the features. This

block is detailed in the left part of Fig. 3. The odd layers

gradually increase the number of features, while the even

layers downscale the features spatially with stride-2 convo-

lution in the residual block. In the latent space, the vertical

and horizontal volumes are downscaled from 3 × 48 × 48
finally to 3× 3× 3.

Architecture of the decoder. The first part of the 4D de-

coder has 9 layers as well, and generates a light field which

is spatially the same size, but already has increased angular

resolution. The features are spatially upscaled in 9 decod-

ing pathways, each pathway decodes one sub-aperture view.

The right side of Fig. 3 shows the structure of the decoding

residual blocks. The detailed version is presented in Fig. 4.

To spatially upscale the features, we grow the spatial size

of them by the means of bicubic interpolation and apply

unstrided transpose convolution to avoid the checkerboard

artifacts in the spatial domain caused by strides [25]. At this

point, the features are angularly super-resolved to the target

number of nine views both in the vertical and horizontal di-

rection.

The features of each layer in the encoder have only three

vertical or horizontal views, so to prepare the skip connec-

tions for the decoder, we simply concatenate the encoded

volume alone the last dimension such that we obtain the 2D

features instead of 3D volumes. Besides, we leave twice

as many features in the decoded volume as in the skip con-

nection volume, otherwise, the skip connection volume will

dominate the decoding process.

Spatial upscaling part of the decoder. On top of the

output with increased angular resolution, we stack a spa-

Figure 4. Residual blocks in detail. Top: Left chain of the resid-

ual block in the 2D decoder. The input features are first batch-

normalized. Bicubic interpolation will be applied to the features

for the spatial upscaling. Afterwards, the features pass through a

3× 3 transpose convolution. We add 2 pixels in the spatial output

size and apply stride-1 with ”VALID” padding. To obtain the final

output of this block, we discard again one pixel from each side of

the features. Bottom: Left chain of the residual block in the upscal-

ing phase. The input features are first batch-normalized. After the

bicubic interpolation, the features pass through a 3× 3× 3 trans-

pose convolution. We add 2 pixels in the spatial and 2 views in

the angular output size and apply stride-1 with ”VALID” padding.

To obtain the final output of this block, we discard again one pixel

from each side of the features and the additional views generated

at the boundaries.

tial upscaling network. This network increases the spatial

resolution of the features first to twice the size of the in-

put, then to four times, to obtain the super-resolved output.

All the spatial upscaling operations are carried out by a de-

coder residual block, see Fig. 4. In the second scaling phase,

the features are spatially upscaled by the decoding residual

block once and subsequently passed through other 2 decod-

ing residual blocks, without their spatial resolution being

changed. Afterwards, 1 × 1 × 1 convolution is applied to

the volumes to finally bring the number of features to the

same as the input. The upscaling phase for scale factor x4

follows the same procedure, with its input coming from the

intermediate results of scale factor x2 just before its 1×1×1
convolution, see Fig. 2.

Architecture of the WGAN discriminator. In order to

enhance the details of the output, we add the DiffWGAN

discriminator on top of our network. The discriminator in-

put consists of the stack of concatenated light field together

with its derivatives, as previously detailed in section 3. The

structure is similar to the encoder, but we combine two sub-

sequent downsampling and feature expansion layers into a

single layer, making the network more shallow. In fact, the

discriminator has a much easier task than the encoder, so

it is reasonable to reduce capacity substantially. The dis-

criminator distinguishes the super-resolved output from the

ground truth using a Wasserstein distance on top of the fea-

tures of the modified encoder chain.

Training data. The training data is generated using the



Figure 5. Visualization and quantitative evaluation of the results of scale factor x2. The images are super-resolved center views of Bench-

mark Cotton, HCI Maria and real-world data Hedgehog.

Blender add-on provided with [15] and follows the same

procedure as in [1] for generating random light fields from

a number of template scenes, objects and textures. We gen-

erated a total of 750 of these random light fields for train-

ing. In addition, we use publicly available data from the

HCI database [31], the Stanford multi-camera array [29],

and light fields captured with the Lytro plenoptic camera.

Training procedure. In our approach we chose the

YCbCr color space, where the luminance component Y con-

tains most of the spatial detail of the image. The channels

Cb and Cr encode the blue-difference and red-difference

chroma components, which are typically of low frequency.

This way, we can reduce the memory requirements drasti-

cally, by following Timofte et al. [28] and Yoon et al. [34]

in their observation that the YCbCr color space is proven to

lead to the best results.

We perform training on an Intel Core i9 with 128 GB

of RAM and 4 nVidia TITAN Xp GPUs. The optimization

is performed with the Adam optimizer, with initial learning

rate set to 1e− 4, batch size is 4. The WGAN turned out to

be easy to train and will easily dominate the training [3] to

produce artifacts, so we assign a small weight of 1e − 3 to

the DiffWGAN loss to keep it balanced with respect to the

other loss components. To satisfy the Lipschitz constraint

we keep the discriminator weights in [−5e−3, 5e−3] range.

The loss becomes stable after approximately 10 hours, after

which we dropped the learning rate to 1e − 5 and trained

for another 8 hours. We then stopped training as the loss

did not significantly decrease any more.

5. Experiments

Since our network is trained with patch-wise data, the

output patches are reassembled to the complete high-

resolution Y channel of the image. We compute PSNR and

SSIM after the images are converted back to RGB color

space. We evaluate our network both on publicly available

light field datasets which are synthetically rendered or cap-

tured with a gantry [29, 31, 15], as well as our own data

captured with Lytro Illum plenoptic camera. None of the

datasets we use in evaluation has been seen during training.

Our approach super-resolves the light fields angularly

from 3 views to 9 views and spatially with scale factors x2

and x4. For comparison, we picked the recent works for sin-

gle image SRGAN [17] with scale factor x4, the variational

approach VarSR [21] which is improved upon [30], and the

graph-based method GB-SQ [22] with spatial scale factor

x2.

In Fig. 5 and In Fig. 6, we visualize the super-resolved

center views of scale factor x2 and scale factor x4 of the



Figure 6. Visualization and quantitative evaluation of the results of scale factor x4. The images are super-resolved center views of Bench-

mark Cotton, HCI Maria and real-world data Hedgehog.

Benchmark Cotton, HCI Maria and real-world data Hedge-

hog. The PSNR and SSIM of each approach are reported

below the images. One can observe over-smoothing of

VarSR [21] in the scale factor x2 results, while some se-

vere high-frequency noise appears in their scale factor x4

results. Bilinear interpolation provides rapid single image

super-resolution with acceptable PSNR and SSIM, but for

scale factor x4 it is significantly more blurry than the other

methods. The graph-based approach GB-SQ [22] gives bril-

liant results in HCI Maria and real-world data Hedgehog

and is visually also very sharp in Benchmark Cotton, how-

ever, its computational time means it is next to inapplicable

in practice. In our experiments, it took around 8 hours to

compute a 9× 9 light field for scale factor x2, compared to

two to three minutes on average using our approach. SR-

GAN seems to sometimes hallucinate additional structure,

for example in the zoomed-in area of Hedgehog, the fur

around the nose is sharp but apparently does not have the

same shape as the ground truth. Since we use only few

views to reconstruct the whole light field, our results for

scale factor x4 are generally worse than state-of-the-art, but

scale factor x2 reaches competing quality and even outper-

forms the other methods in some cases. We observe that

our approach works well on the synthetic data, which can

be explained by the fact that we have much more synthetic

training examples than the real ones. Complete numerical

results can be observed in tables 1 and 2. Note that the

other methods use all sub-aperture views as an input, thus

they perform only spatial super-resolution. For fare com-

parison, we compute PSNR and SSIM only for those views

that were in the input, thus we evaluate quality of the spa-

tial super-resolution. Additionally we illustrate numerical

results for all views (newly generated and present in the in-

put). As an ablation study we show the results of training

without adversarial loss. See also Fig. 7 for additional re-

sults on the Stanford datasets.

6. Conclusions

We present an efficient approach to spatial and angular

light field super-resolution based on an encoder-decoder ar-

chitecture with a novel WGAN loss. Our proposed method

adopts insights both from 2D [17, 28] and 3D [34, 8] CNN-

based approaches to arrive at an architecture with very com-

petitive performance. We demonstrate this in numerous ex-

periments on public datasets [29, 31], as well as on real

world light fields captured with a Lytro Illum plenoptic

camera. Our architecture is simple and powerful in the

sense that it fully utilizes the rich information inherited from

the light field, and proves that even very few sub-aperture

views are sufficient to reconstruct a high-resolution dense



Figure 7. Results on the Stanford dataset [29]. Visually, we perform very well in particular on Truck, although PSNR does not reflect

this Compared to SRGAN, our method does not hallucinate any new details. Our scale factor x4 fails to recover fine details This can be

explained by small number of features in the network and lack of training examples of that kind.

Table 1. Comparison of PSNR (SSIM) for different methods, for

super-resolution scale factor two and over a wide range of datasets

from various sources. Note that we could not compute some re-

sults for GB-SQ (marked with an asterisk) due to excessive run-

time, so we took them from their paper.

scale factor α = 2
Lightfield Bilinear GB-SQ [22] VarSR [21] Our Spatial Our Full No WGAN

antinous 28.43 (0.95) 27.83 (0.96) 27.29 (0.94) 39.70 (0.97) 37.07 (0.95) 32.27 (0.95)

bicycle 27.36 (0.83) 30.73 (0.90) 28.58 (0.86) 27.04 (0.86) 26.32 (0.80) 25.95 (0.81)

tomb 29.59 (0.91) 31.81 (0.94) 30.65 (0.91) 37.27 (0.91) 36.15 (0.87) 31.61 (0.86)

bedroom 27.21 (0.86) 26.66 (0.91) 26.73 (0.87) 32.06 (0.88) 30.97 (0.84) 30.03 (0.84)

herbs 30.61 (0.83) 33.61 (0.90) 31.45 (0.86) 30.16 (0.86) 28.23 (0.75) 27.69 (0.76)

cotton 27.33 (0.95) 27.87 (0.96) 27.45 (0.95) 40.68 (0.97) 39.64 (0.96) 33.14 (0.95)

platonic 33.39 (0.90) 38.42 (0.96) 34.53 (0.92) 34.13 (0.92) 32.2 (0.84) 29.84 (0.82)

rosemary 32.24 (0.94) 37.26 (0.98) 33.75 (0.96) 32.25 (0.95) 30.74 (0.92) 29.52 (0.92)

maria 30.05 (0.86) 37.25 (*) 32.78 (0.91) 33.23 (0.91) 32.61 (0.90) 30.69 (0.88)

owl2 36.21 (0.97) 41.04 (0.98) 37.93 (0.97) 35.76 (0.95) 35.12 (0.94) 30.08 (0.87)

flowers 34.23 (0.96) 36.98 (0.98) 36.03 (0.97) 34.33 (0.91) 34.27 (0.94) 29.25 (0.83)

owl-str 32.14 (0.94) 36.46 (0.97) 32.86 (0.95) 32.65 (0.95) 31.02 (0.90) 29.36 (0.91)

origami 28.90 (0.93) 32.03 (0.95) 29.86 (0.94) 29.65 (0.95) 29.34 (0.94) 27.74 (0.91)

hedgehog 34.41 (0.95) 39.07 (0.98) 34.98 (0.95) 33.61 (0.95) 32.27 (0.92) 29.39 (0.88)

eucalyptus 33.98 (0.96) 39.09 (*) 34.93 (0.95) 33.35 (0.88) 29.62 (0.84) 27.04 (0.67)

truck 36.06 (0.96) 41.57 (*) 36.94 (0.96) 35.47 (0.95) 32.45 (0.90) 29.18 (0.86)

X

light field of a good quality. Competing state-of-the-art light

field super-resolution algorithms require many more input

views and/or take a lot more time to compute. Although

our method outperforms state-of-the-art approaches on the

synthetic data for the scale factor x2, there is still room for

the improvement for the real-world data and larger upscal-

ing factor. One future direction is to optimize the network

architecture such that it can upscale with scale factor x4 and

output good-quality results. Another improvement could be

to balance the number of synthetic and the real-world train-

ing data, which can increase the network performance on

Table 2. Comparison of PSNR (SSIM) for different methods, for

super-resolution scale factor four and over the datasets presented

in the table 1.

scale factor α = 4
Lightfield Bilinear GB-SQ [22] VarSR [21] Our Spatial Our Full No WGAN

antinous 28.03 (0.92) 33.81 (0.91) 26.86 (0.88) 25.75 (0.92) 25.62 (0.91) 24.33 (0.90)

bicycle 23.68 (0.63) 23.82 (0.63) 24.06 (0.67) 20.38 (0.61) 20.28 (0.59) 20.80 (0.60)

tomb 29.22 (0.83) 30.62 (0.67) 28.45 (0.75) 28.02 (0.79) 27.82 (0.78) 24.96 (0.76)

bedroom 26.02 (0.74) 28.47 (0.72) 24.76 (0.68) 25.41 (0.69) 25.38 (0.68) 24.38 (0.68)

herbs 27.28 (0.69) 26.80 (0.67) 27.41 (0.72) 21.08 (0.66) 21.01 (0.63) 21.46 (0.64)

cotton 27.34 (0.92) 34.83 (0.90) 26.91 (0.89) 27.47 (0.91) 27.35 (0.90) 25.60 (0.89)

platonic 29.07 (0.72) 27.38 (0.63) 29.63 (0.77) 23.60 (0.61) 23.52 (0.59) 21.09 (0.57)

rosemary 27.59 (0.84) 27.58 (0.85) 27.64 (0.86) 22.60 (0.80) 22.47 (0.78) 22.30 (0.79)

maria 26.45 (0.69) 26.08 (0.65) 27.55 (0.73) 24.64 (0.68) 24.56 (0.66) 23.62 (0.67)

owl2 29.74 (0.89) 29.26 (0.87) 30.68 (0.90) 22.12 (0.71) 22.02 (0.70) 19.69 (0.66)

flowers 28.64 (0.87) 29.51 (0.85) 29.54 (0.89) 20.72 (0.58) 20.61 (0.56) 18.09 (0.51)

owl-str 26.48 (0.79) 25.35 (0.75) 26.66 (0.81) 22.46 (0.75) 22.24 (0.72) 20.96 (0.72)

origami 24.09 (0.78) 22.27 (0.76) 24.18 (0.76) 20.87 (0.71) 20.81 (0.70) 19.47 (0.68)

hedgehog 28.31 (0.81) 26.24 (0.76) 28.10 (0.82) 20.96 (0.68) 20.84 (0.65) 19.88 (0.64)

eucalyptus 30.35 (0.90) 30.48 (0.84) 29.87 (0.86) 19.97 (0.43) 19.8 (0.42) 18.64 (0.37)

truck 31.52 (0.90) 31.34 (0.87) 27.99 (0.75) 22.71 (0.74) 22.61 (0.72) 19.93 (0.68)

X

the real light fields. In addition we propose the new Dif-

fWGAN loss that improves the visual quality of the results.

From the experiments we show that our method does not

hallucinate missing information compared to the original

SRGAN network.
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