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Abstract

Infrared (IR) images are characterized by a lower sensi-

tivity to lighting conditions than the visible spectrum. This

opens the door to relatively untapped research potential of

automatic recognition systems that are robust to shadows

and variability in illumination levels or appearance. IR ac-

tion recognition (AR) is one such application. It remains a

fairly unexplored domain in IR. As such, in this paper, we

propose the use of hidden Markov models (HMM) for IR AR.

We also derive the mathematical model for the variational

learning of Beta-Liouville (BL) HMMs. Next, we present the

results of the proposed model on the Infrared Action Recog-

nition (InfAR) dataset. To the best of our knowledge, this

is the first application of HMMs to AR in the IR domain,

and the first application of the BL HMMs to AR. Experi-

mental results demonstrate promising results using different

features extracted from the InfAR dataset.

1. Introduction

Many ubiquitous applications rely on automatic action

recognition (AR). These include video surveillance [19],

video retrieval [29], and video labeling [19]. As such, AR

research has received much attention in recent years. Typ-

ically, classification of a given video or image sequence or

its assignment to a set of predefined classes is the objective

of automatic AR [26]. The task is then based on lower level

processing stages such as tracking and segmentation [21].

Different approaches for AR have been studied through-

out the years with significant advances made in the past

decades [17]. Most of the developed AR approaches

are tested and implemented for the visible spectrum [34].

Moreover, an abundant number of visible spectrum AR

datasets is available such as KTH [32], Weizmann [15], and

UCF101 [33]. Indeed, AR in general is fairly well-studied

in the visible light spectrum with multiple successful appli-

cations [23].

Nonetheless, many challenges persist that limit the ac-

curacy of AR. One known issue is the intrinsic within-class

variability where an individual may carry out the same ac-

tion differently [26]. Moreover, AR in the visible spectrum

still suffers from multiple shortcomings including its high

sensitivity to shadow, background clutter, occlusion, and

changes in illumination [14].

Thermal infrared (IR) cameras are robust to the afore-

mentioned challenging factors [16]. In particular, humans

can be captured in IR under poor illumination conditions,

such as in dim light or at night, which is almost impossible

to perform in the visible spectrum. Furthermore, robustness

to shadow, background clutter, and occlusion challenges are

due to their relatively lower temperatures in IR. Hence, IR

AR is a promising research field that can potentially outper-

form applications utilizing the visible light spectrum [23].

A hidden Markov model (HMM) [28] is one of the ma-

chine learning approaches that may be used for IR AR.

Early works mostly focused on the use of HMMs for dis-

crete and Gaussian data [27]. A primary area of HMM re-

search lies in modeling state emission probabilities of pro-

portional data, i.e. strictly positive data that sum up to one.

Multivariate proportional time series data naturally result

from numerous preprocessing procedures, such as the com-

monly used histograms, and occur in various pattern recog-

nition domains.

Applying a Gaussian-based HMM in such a case is not

ideal. Indeed, the symmetric property of the Gaussian dis-



tribution and its unbounded support lead to a sub-optimal

model of the observations. Nevertheless, this remains the

commonplace practice such as in [26]. Enhanced results

can then be obtained using asymmetric emission proba-

bility distributions with compact support. Moreover, the

large applicability of HMMs in a variety of domains mo-

tivated the adaption of the learning equations to continuous

non-Gaussian data types. These include proportional data

[7, 5, 6, 8], and Student’s t data [4]. In this paper, we pro-

pose the use of the Beta-Liouville (BL) distribution for pro-

portional data modeling using HMMs [10, 12, 2, 9].

Furthermore, a HMM is usually trained with the Baum-

Welch method; a variation of the Expectation Maximization

algorithm. In this paper, the proposed HMM is trained us-

ing a variational learning approach which incorporates prior

knowledge into the training process [11]. Employing a vari-

ational Bayesian inference technique is advantageous as it

overcomes the drawbacks of the Baum Welch algorithm.

These include over-fitting or underfitting and sub-optimal

generalization performance [11].

The contributions of this paper are threefold: (i) we pro-

pose the first mathematical model for the variational learn-

ing of BL HMM; (ii) we propose the first BL HMM-based

IR AR; (iii) we present the first HMM-based results on the

InfAR dataset to the best of our knowledge.

The rest of this paper is organized as follows. Section 2

details the proposed model. Section 3 discusses the exper-

imental results. Finally, Section 4 concludes the paper and

briefly presents future work.

2. Variational Learning of the Beta-Liouville

Hidden Markov Model

A HMM is characterized by an underlying stochastic

process with K hidden states that form a Markov chain.

Each of the states is governed by an initial probability π, and

the transition between the states at time t can be visualized

with a transition matrix B = {bii′ = P (st = i′|st−1 = i)}.

In each state st, an observation is emitted corresponding to

its distribution which may be discrete or continuous. This

is the observable stochastic process set.

The emission matrix of the discrete observations can be

denoted by Ξ = {Ξi(m) = P (Ot = ξm|st = i)} where

[m, t, i] ∈ [1,M ]× [1, T ]× [1,K], and the set of all possi-

ble discrete observations Ξ = {ξ1, ..., ξm, ..., ξM}. On the

other hand, the respective parameters of a probability dis-

tribution define the observation emission for a continuous

observed symbol sequence. The Gaussian distribution is the

most commonly used and is defined by its mean and covari-

ance matrix κ = (µ,Σ) [27, 30, 38]. Consequently, a mix-

ing matrix must be defined C = {cij = P (mt = j|st = i)}
in the case of continuous HMM emission probability distri-

bution where j ∈ [1,M ] such that M is the number of mix-

ture components in set L = {m1, ...,mM}. Hence, a dis-

crete or continuous HMM may be defined with the follow-

ing respective parameters λ = {B,Ξ, π} or {B,C,κ, π}.

In this work, we consider the latter case which is defined as

a proportional mixture model of BL distribution.

In D dimensions, a BL distribution is defined as:

BL(~x|~α, α, β) =
Γ(
∑D

d=1 αd)Γ(α+ β)

Γ(α)Γ(β)

D
∏

d=1

xαd−1
d

Γ(αd)

×

(

D
∑

d=1

xd

)α−
∑D

d=1
αd
(

1−

D
∑

d=1

xd

)β−1

(1)

where ~α = (α1, ..., αD), α, and β are the real and

strictly positive parameters of the BL distribution, Γ(t) =
∫∞

0
xt−1e−xdx is the Gamma function, and ~x is a D di-

mensional vector whereby ~x ∈ IRD
+ and

∑D
d=1 xd < 1. For

simplification, we also denote Λ = [~α, α, β]; the parameters

of the BL distribution.

Consequently, the likelihood of X , a time-series or se-

quence of observations of length T , given the model is ex-

pressed as:

p(X|B,C, π,Λ) =
∑

S

∑

L

πs1

[

T
∏

t=2

bst−1,st

]

×

[

T
∏

t=1

cst,mt
p(xt|Λst,mt

)

]

(2)

where Λij = (Λ1ij , ...,ΛDij) with i ∈ [1,K] where K

is the number of states in S; the set of hidden states, and

j ∈ [1,M ] where M is the number of mixture components

in L; the set of the components of the mixture. M is as-

sumed to be uniform for all the states. Hence, the model is

derived for a unique observation sequence for simplification

purposes. To consider further observation sequences, an ad-

dition of a summation of these sequences would be logi-

cally required in the corresponding observation data equa-

tions. Furthermore, when A > 1, the parameter T is then

dependent on each of the available time series observation

sequences {Xa}a=1,...,A such that it would be denoted as

Ta. It is also noteworthy to mention that such a setup is

highly recommended since it prevents overfitting.

The exact computation of Equation (2) is intractable due

to the need of summation over all possible combinations of

mixture components and states. Consequently, the typical

methodology for its solution constitutes of the maximiza-

tion of the data likelihood with respect to the parameters of

the model using the Baum-Welch algorithm [27]. Nonethe-

less, this approach suffers from several drawbacks. These

include overfitting and absence of a convergence guarantee

due to the general multimodal nature of the data likelihood

function.



On the other hand, an estimation of the model may be de-

rived using the variational Bayesian approach. This uses the

posterior probabilities through the assignment of parameter

priors for integrating out the marginal likelihood of the data.

Hence, all the model parameters are regarded as random

variables. The complete data likelihood is then denoted as:

p(X) =

∫

dπdBdCdΛ
∑

S,L

p(B,C, π,Λ)

p(X,S, L|B,C, π,Λ) (3)

Equation (3) is still computationally intractable. This is

due to the exponential growth of the number of possible

sequences to be summed as the length of the time series

increases [20]. However, an introduction of the approxi-

mate distribution q(B,C, π,Λ, S, L) of the true posterior

p(B,C, π,Λ, S, L|X) enables us to derive a lower bound.

Thus, using Jensen’s inequality and Equation (3), the lower

bound can be expressed as:

ln(p(X)) = ln







∫

dπdBdCdΛ
∑

S,L

p(B,C, π,Λ)

×p(X,S, L|B,C, π,Λ)

}

≥

∫

dπdBdCdΛ
∑

S,L

q(B,C, π,Λ, S, L)

× ln

{

p(B,C, π,Λ)p(X,S, L|B,C, π,Λ)

q(B,C, π,Λ, S, L)

}

(4)

When q is equal the true posterior, the inequality is tight.

Hence,

ln(p(X)) = L(q)

−KL(q(B,C, π,Λ, S, L)||p(B,C, π,Λ, S, L|X)) (5)

where L(q) is the lower bound and KL is the Kullback-

Leibler distance between the true posterior and the approx-

imate distribution [11, 8].

The computation of the exact posterior distribution is in-

tractable, so we only account for a certain family of dis-

tributions. As per the studied assumptions in [11, 8, 3,

20, 25], q may be factorized, i.e. q(B,C, π,Λ, S, L) =
q(B)q(C)q(π)q(Λ)q(S,L) where q(Λ) = q(~α)q(α)q(β),
with a similar factorization applying to p. L(q) can then be

expressed as:

ln(p(X)) ≥
∑

S,L

∫

dBdCdπd~αdαdβq(B)q(C)q(π)×

q(~α)q(α)q(β)q(S,L){ln(p(π)) + ln(p(B)) + ln(p(C))+

ln(p(~α))+ln(p(α))+ln(p(β))+ln(p(πs1))+

T
∑

t=2

ln(bst−1,st)

+
T
∑

t=1

ln(cst,mt
) +

T
∑

t=1

ln(p(xt|~αst,mt
, αst,mt

, βst,mt
))−

ln(q(S,L))− ln(q(π))− ln(q(B))− ln(q(C))− ln(q(~α))−

ln(q(α))− ln(q(β)) = F (q(π)) + F (q(B)) + F (q(C))

+ F (q(~α)) + F (q(α)) + F (q(β)) + F (q(S,L))} (6)

In general, there are multiple maxima to the above lower

bound; i.e. it is not convex. This implies that the solution is

dependent on the initialization. The priors of the parameters

must then be defined to evaluate Equation (6). Since the

coefficients of the parameters π, B, and C are all less than

one, strictly positive, and with a sum result equal to one for

each row summation, their priors are chosen as Dirichlet

distributions as follows:

p(π) = D(π|φπ) = D(π1, ..., πK |φπ
1 , ..., φ

π
K),

p(B) =

K
∏

i=1

D(bi1 , ..., biK |φB
i1
, ..., φB

iK
),

p(C) =

M
∏

i=1

D(ci1 , ..., ciM |φC
i1
, ..., φC

iM
) (7)

Similarly, a conjugate prior must also be defined over

the BL parameters ~α, α, and β. We adopt the Gamma dis-

tribution G(.) for positive conjugate prior approximations of

the latter parameters as previously investigated by in [11].

Hence, we define the prior distributions as:

p({~α}K,M,D
i,j,l=1 ) =

K
∏

i=1

M
∏

j=1

D
∏

l=1

G(αijl|uijl, vijl), (8)

p({α}K,M
i,j=1) =

K
∏

i=1

M
∏

j=1

G(αij |gij , hij), (9)

p({β}K,M
i,j=1) =

K
∏

i=1

M
∏

j=1

G(βij |eij , rij) (10)

where the hyperparameters u, g, h, e, r, and v are strictly

positive.

The iterative variational Bayesian inference process con-

sists of two alternating steps; the E-step and the M-step. All

of the parameters of the model are then learned through a



sequential repetition of a M-step followed by an E-step un-

til convergence. Hidden states and mixture components are

updated in the M-step, so all (S,L) terms in Equation (6)

are not considered. On the other hand, q(S,L) is subse-

quently updated in the E-step; now keeping all other pa-

rameters fixed.

The following optimizations of q(B), q(C), and q(π)
are applicable to other continuous HMMs as they are inde-

pendent of the emission distribution used. Therefore, these

have already been studied in [3, 8]. As such, only the main

equations are given and the reader is referred to the afore-

mentioned references for further details. Consequently, the

derivation of the equations with terms pertaining only to the

B parameter from Equation (6) gives:

F (q(B)) =

∫

q(B)ln





∏K
i=1

∏K
j=1 b

ωB
ij−1

ij

q(B)



 dB (11)

with

ωB
ij =

T
∑

t=2

γB
ijt + φB

ij (12)

and

γB
ijt , q(st−1 = i, st = j) (13)

where γB
ijt is a local probability typically computed with a

forward-backward algorithm in a HMM framework [27]. To

maximize F (q(B)), we apply the Gibbs inequality which

results in:

q(B) =

K
∏

i=1

D(ai1, ..., aiK |ωB
i1, ..., ω

B
iK) (14)

Similarly for the π parameter:

q(π) = D(π1, ..., πK |ωπ
1 , ..., ω

π
K) (15)

with

ωπ
i = γπ

i + φπ
i (16)

and

γπ
i , q(s1 = i) (17)

Finally, for the C parameter:

q(C) =
K
∏

i=1

D(ci1, ..., ciM |ωC
i1, ..., ω

C
iM ) (18)

with

ωC
ij =

T
∑

t=1

γC
ijt + φC

ij (19)

and

γC
ijt , q(st = i,mt = j) (20)

Next, we tackle the optimization of F (q(Λ)). From

Equation (6), we obtain:

F (q(Λ)) =

∫

q(Λ)

ln

{

∏K
i=1

∏M
j=1 p(Λij)

∏T
t=1 p(xtΛij)

γC
ijt

q(Λ)

}

dΛ (21)

In order to achieve tractability, we apply the previously

discussed factorial approximation of q(Λ) as in [1]. We note

that the solution thus far is presented corresponding to that

of a finite BL mixture model as investigated in [10]. This

leads to the following evaluations:

q(~α) =
D
∏

l=1

K
∏

i=1

M
∏

j=1

G(αijl|u
∗
ijl, v

∗
ijl) (22)

q(α) =

K
∏

i=1

M
∏

j=1

G(αij |g
∗
ij , h

∗
ij) (23)

q(β) =

K
∏

i=1

M
∏

j=1

G(βij |e
∗
ij , r

∗
ij) (24)

where

u∗
ijl = uijl +

P
∑

p=1

〈Zpij〉ᾱijl

[

Ψ

(

D
∑

d=1

ᾱijd

)

−Ψ(ᾱijl)

+
D
∑

d=1,d 6=l

Ψ′

(

D
∑

d=1

ᾱijd

)

ᾱijd(〈ln(αijd)〉 − ln(ᾱijd))





(25)

v∗ijl = vijl −

P
∑

p=1

〈Zpij〉

[

ln(Xpl)− ln

(

D
∑

d=1

Xpd

)]

(26)

g∗ij = gij +

P
∑

p=1

〈Zpij〉[Ψ(ᾱij + β̄ij)−Ψ(ᾱij) (27)

+β̄ijΨ
′(ᾱij + β̄ij)(〈ln(βij)〉 − ln(β̄ij))]ᾱij

h∗
ij = hij −

P
∑

p=1

〈Zpij〉ln

(

D
∑

d=1

Xpd

)

(28)

e∗ij = eij +
P
∑

p=1

〈Zpij〉[Ψ(ᾱij + β̄ij)−Ψ(β̄ij) (29)

+ᾱijΨ
′(ᾱij + β̄ij)(〈ln(αij)〉 − ln(ᾱij))]β̄ij



r∗ij = rij −
P
∑

p=1

〈Zpij〉ln

(

1−

D
∑

d=1

Xpd

)

(30)

with i and j fixed for P observation vectors where l ∈
[1, D], i ∈ [1,K], and j ∈ [1,M ]. Ψ(.) is the digamma

function, and Ψ′(.) is the trigamma function; the logarith-

mic first and second derivatives of the Gamma function re-

spectively. The ∗ superscript implies the optimization of

each of the corresponding parameters that the symbol is pre-

sented upon and 〈.〉 denotes the expectation with respect to

the optimized parameter, accordingly. Moreover, Zpij = 1
if Xpt belongs to state i and mixture component j and

Zpij = 0 otherwise, i.e. it is an indicator function. Then,

the weights of the data samples with respect to each mix-

ture component are defined within the HMM framework.

These are also known as the responsibilities. Consequently,

〈Zpij〉 =
∑T

t=1 γ
C
pijt = p(s = i,m = j|X) and the re-

sponsibilities are computed via the forward-backward algo-

rithm [27]. The definitions of the expected values of the

parameters in the aforementioned equations are as follows:

ᾱijl =
u∗
ijl

v∗ijl
, ᾱij =

g∗ij

h∗
ij

, β̄ij =
e∗ij

r∗ij
(31)

〈ln(αijl)〉 = Ψ(u∗
ijl)− ln(v∗ijl) (32)

〈ln(αij)〉 = Ψ(g∗ij)− ln(h∗
ij) (33)

〈ln(βij)〉 = Ψ(e∗ij)− ln(r∗ij) (34)

This concludes the M-step of the algorithm. q(S,L) is

then estimated in the E-step with the previously evaluated

parameters now fixed. Equation (6) can be rearranged as

studied in [8] to:

L(q) = F (q(S,L))−KL(q(B,C, π,Λ)||p(B,C, π,Λ))
(35)

where

F (q(S,L)) =
∑

S

q(S)

∫

q(π)ln(πs1)dπ+

∑

S

q(S)

∫

q(B)
T
∑

t=2

ln(bst−1,st)dB+

∑

S,L

q(S,L)

∫

q(C)

T
∑

t=1

ln(cst,mt
)dC+

∑

S,L

q(S,L)

∫

q(Λ)

T
∑

t=1

ln(p(xt|~αst,mt
, αst,mt

, βst,mt
))dΛ+

−
∑

S,L

q(S,L)ln(q(S,L)),

(36)

and we naturally define:

π∗
i , exp

[

〈ln(πi)〉q(π)
]

,

π∗
i = exp

[

Ψ(ωπ
i )−Ψ(

∑

i

ωπ
i )

]

,

b∗jj′ , exp
[

〈ln(bjj′)〉q(B)

]

,

b∗jj′ = exp



Ψ(ωB
jj′)−Ψ(

∑

j′

ωB
jj′)



 ,

c∗ij , exp
[

〈ln(cij)〉q(C)

]

,

c∗ij = exp



Ψ(ωC
ij)−Ψ(

∑

j

ωC
ij)





(37)

The final optimization that needs to be performed is:

ln(p∗(Xt|~αst,mt
, αst,mt

, βst,mt
)) =

∫

q(Λ)ln(p(Xt|~αst,mt
, αst,mt

, βst,mt
))dΛ, (38)

where

p(Xt|~αst,mt
, αst,mt

, βst,mt
) =

[

Γ(
∑D

d=1 αijd)Γ(αij + βij)

Γ(αij)Γ(βij)

D
∏

d=1

X
αijd−1
td

Γ(αijd)
×

(

D
∑

d=1

Xtd

)αij−
∑D

d=1
αijd

(

1−

D
∑

d=1

Xtd

)βij−1




γC
ijt

(39)

We then substitute Equation (39) in Equation (38) and

breakdown the distribution BL(~x|~α, α, β) to a product de-

composition corresponding to the prior factorization as-

sumption made to q(Λ). This yields the following evalu-

ation:

ln(p∗(Xt|~αst,mt
, αst,mt

, βst,mt
)) = γC

ijt

∫

q(~α)q(α, β)

ln(ν(Xt|~αst,mt
)η(Xt|αst,mt

, βst,mt
))d~αdαdβ

= γC
ijt

(

〈ln(ν(Xt|~α))〉q(~α) + 〈ln(η(Xt|α, β))〉q(α,β)
)

(40)



where

〈ln(ν(Xt|~α))〉q(~α) =

〈

ln

(

Γ(
∑D

d=1 αijd)
∏D

d=1 Γ(αijd)

)〉

q(~α)

+

D
∑

d=1

ln(Xtd)〈αijd−1〉q(~α)− ln

(

D
∑

d=1

Xtd

)

D
∑

d=1

〈αijd〉q(~α)

= J(αijl) +
D
∑

d=1

ln(Xtd)

(

uijd

vijd
− 1

)

− ln

(

D
∑

d=1

Xtd

)

×

D
∑

d=1

(

uijd

vijd

)

(41)

and

〈ln(η(Xt|αij , βij))〉q(αij ,βij) =

〈

ln

(

Γ(αij + βij)

Γ(αij)Γ(βij)

)〉

q(α,β)

+ln

(

D
∑

d=1

Xtd

)

〈αij〉q(α,β)+ln

(

1−

D
∑

d=1

Xtd

)

〈βij−1〉q(α,β)

= J(αij , βij) + ln

(

D
∑

d=1

Xtd

)(

gij

hij

)

+ ln

(

1−
D
∑

d=1

Xtd

)(

eij

rij
− 1

)

(42)

J(αijl) and J(αij , βij) are analytically intractable.

Consequently, they are approximated by their lower bounds

as derived in [11]. Using the second order Taylor approxi-

mation method, J(αijl) and J(αij , βij) are then denoted as

follows:

J(αijl) ≥ ln

(

Γ(
∑D

d=1 ᾱijd)
∏D

d=1 Γ(ᾱijd)

)

+

D
∑

d=1

ᾱijd×

[

Ψ

(

D
∑

l=1

ᾱijl

)

−Ψ(ᾱijd)

]

[〈ln(αijd)〉 − ln(ᾱijd)]

+
1

2

D
∑

d=1

ᾱ2
ijd

[

Ψ′

(

D
∑

l=1

ᾱijl

)

−Ψ′(ᾱijd)

]

×

〈(ln(αijd)− ln(ᾱijd))
2〉+

1

2

D
∑

d=1

D
∑

l=1,l 6=d

ᾱijdᾱijl×

Ψ′

(

D
∑

y=1

ᾱijy

)

(〈ln(αijd)〉−ln(ᾱijd))(〈ln(αijl)〉−ln(ᾱijl))

(43)

J(αij , βij) ≥ ln

(

Γ(ᾱij + β̄ij)

Γ(ᾱij)Γ(β̄ij)

)

+ ᾱij(Ψ(ᾱij + β̄ij)−Ψ(ᾱij))(〈ln(αij)〉 − ln(ᾱij))

+ β̄ij(Ψ(ᾱij + β̄ij)−Ψ(β̄ij))(〈ln(βij)〉 − ln(β̄ij))

+
1

2
ᾱ2
ij(Ψ

′(ᾱij + β̄ij)−Ψ′(ᾱij))〈(ln(αij)− ln(ᾱij))
2〉

+
1

2
β̄2
ij(Ψ

′(ᾱij + β̄ij)−Ψ′(β̄ij))〈(ln(βij)− ln(β̄ij))
2〉

+ᾱij β̄ijΨ
′(ᾱij+β̄ij)(〈ln(αij)〉−ln(ᾱij))(〈ln(βij)〉−ln(β̄ij))

(44)

where 〈(ln(αijd)− ln(ᾱijd))
2〉 = (Ψ(uijd)− ln(uijd))

2 +
Ψ′(uijd), 〈(ln(αij) − ln(ᾱij))

2〉 = (Ψ(gij) − ln(gij))
2 +

Ψ′(gij), and 〈(ln(βij)− ln(β̄ij))
2〉 = (Ψ(eij)− ln(eij))

2+
Ψ′(eij) as derived in [24].

Finally, by substituting Equation (43) into Equation (41),

Equation (44) into Equation (42), and Equation (37) into

Equation (36), we yield:

F (q(S,L)) =
∑

S,L

q(S,L)ln (p∗(Xt|~αst,mt
, αst,mt

, βst,mt
)

π∗
s1

∏T
t=2 b

∗
st−1,st

∏T
t=1 c

∗
st,mt

q(S,L)

)

(45)

whereby the optimized q(S,L) can then be denoted as:

q(S,L) =
1

W
π∗
s1

T
∏

t=2

b∗st−1,st

T
∏

t=1

c∗st,mt
×

p∗(Xt|~αst,mt
, αst,mt

, βst,mt
) (46)

where W is a normalizing constant and represents the like-

lihood of the optimized HMM which can be computed with

a forward-backward algorithm [27]. This is defined as:

W =
∑

S,L

π∗
s1

T
∏

t=2

b∗st−1,st

T
∏

t=1

c∗st,mt
p∗(Xt|~αst,mt

, αst,mt
,

βst,mt
) (47)

3. Experimental Results

In this section, we present our experimental results of

the proposed model on the challenging AR IR dataset, In-

fAR [13]. The dataset consists of 12 action classes with a

total of 600 video clips. The average length of the videos is

4 seconds with a frame rate of 25 and a resolution of 293 ×
256. Classes of a single person action with 10 video sam-

ples each were chosen for the training and testing of the

proposed model. This results in a total of seven classes with

extracted example images of each of the classes shown in

Fig. 1.



Figure 1. Example sample images from the InfAR dataset.

We represent each of the videos with a series of extracted

histogram of optical flow (HOF) and motion boundary his-

togram (MBH) descriptors which may be detected using

any interest point detector [31]. In our experiments, we ex-

tract the points along the motion trajectory as in [35]. This

set of extracted features represents the training and testing

data with a leave-one-out cross validation scheme.

A HMM is then trained for each class using the afore-

mentioned data. For the testing stage, the likelihood of each

testing video sequence is calculated by the respective seven

trained HMMs and the class label is assigned according to

the maximum resulting likelihood. We train a BL HMM

with each set of training features for each of the classes

9 times in order to ensure robustness of the methodology.

This results in a total of 630 trained HMMs. We report our

results as an average across the training times. Our experi-

mental setup can be observed in Fig. 2. It is noteworthy to

mention that the number of states and the respective num-

ber of mixture components of the proposed BL HMM for

this application have been set experimentally to K = 2 and

M = 2 respectively. A similar setup is carried out for a

Gaussian-based HMM for comparison of the final classifi-

cation results.

We achieve superior results of 77.94% when training

with the HOF features compared with 42.86% with the

Gaussian HMM. Moreover, the average accuracy of pro-

posed model is 89.05% and 92.06% with the horizontal and

vertical MBH features respectively versus 85.7% using the

benchmark. As such, the proposed HMM clearly outper-

forms the benchmark and shows promising results. The

confusion matrices of the different features with the pro-

posed BL HMM can be observed in Fig. 3, Fig. 4, and Fig.

Figure 2. Experimental setup for testing of the proposed trained

hidden Markov models (HMM) for infrared (IR) action recogni-

tion (AR) classification. p1, p2, p3, p4, p5, p6, p7 are the respec-

tive likelihoods of each of the trained HMMs.

Figure 3. Confusion matrix for BL HMM trained with HOF fea-

tures.

Figure 4. Confusion matrix for BL HMM trained with horizontal

MBH features.

5.

Furthermore, our results are comparable to other meth-

ods reported in the literature. This includes the the

two-stream 3D convolutional neural network (CNN) that

achieves 77.50% average precision (AP) [18], the optical

flow field 3D CNN with 75.42% AP [18], and 79.25% for

the three-stream trajectory-pooled deep-convolutional de-

scriptors methodology in [22]. This is also the case for



Figure 5. Confusion matrix for BL HMM trained with vertical

MBH features.

Table 1. Comparison of the Average Precision (AP) of the pro-

posed BL HMM with other methods in the literature. Results of

the proposed model are highlighted in italics.

Method AP

Two stream 3D CNN [18] 75.42%

Optical flow field 3D CNN [18] 77.50%

Deep-convolutional descriptors [22] 79.25%

HOF [13] 68.58%

Dense trajectories [36] 68.66%

Improved dense trajectories [37] 71.83%

BL HMM (HOF) 78.41%

BL HMM (Horizontal MBH) 89.57%

BL HMM (Vertical MBH) 92.29%

various handcrafted features extracted for the InfAR dataset

such as 68.58% for the HOF [13], 68.66% for the dense

trajectories [36], and 71.83% for the improved dense trajec-

tories [37]. A comparison of the achieved results with the

AP of the proposed model can be observed in Table 1.

4. Conclusion

Robust AR is an active area of research. IR imaging

offers a relatively unexplored alternative to the traditional

employment of the visible light spectrum for automatic AR

systems. It has the advantage of insensitivity to variability

in lighting conditions, appearance, and shadows. In this pa-

per, we propose a novel BL-based HMM trained with vari-

ational learning and introduce it for IR AR. To the best of

our knowledge, this is the first application of HMMs to AR

in the IR domain, and the first use of BL HMMs for AR. We

achieve state-of-the-art results on the InfAR dataset with the

proposed model. Finally, our future plans include investiga-

tion of multiperson IR AR and other computer vision appli-

cations with the proposed HMM as well as integration of

feature selection within our model.
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