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Abstract

Multi-band images beyond RGB are becoming popular

in both commercial applications and research datasets, yet

existing deep learning models were designed for academic

RGB datasets. In this talk, we propose Channel Attention

Networks (CAN), a deep learning model that uses soft atten-

tion on individual channels. We jointly train this model end-

to-end on Spacenet, a challenging multi-spectral semantic

segmentation dataset. In a comparative study, CAN out-

performs previous models. We also demonstrate that CAN

is significantly more robust to noise in individual bands

than the other models, because the attention network allo-

cates attention away from the noisy channels. Our proposed

method marks the first step in designing deep learning al-

gorithms specifically for multi-spectral imagery. Semantic

Segmentation; Convolutional Neural Networks; Attention

1. Introduction

Multi-band data beyond the visible spectrum are becom-

ing prevalent in computer vision, from satellite imagery [1]

to infrared and depth measurements in autonomous driv-

ing [2, 3]. These data range from a few extra channels to

potentially dozens for hyperspectral imaging [4]. For ex-

ample, remote sensing platforms collect imagery beyond

the visible spectrum, which are valuable in applications

ranging from agriculture [5] to surveillance [6, 7] to land

type classification [8]. Recent work has used convolutional

neural networks to leverage hyperspectral imagery for im-

age classification [8, 9, 10, 6] and semantic segmentation

[11, 12, 13, 14].

However, these and other approaches typically merge

the spectral bands into a single multi-channel image and

employ existing deep learning models [15, 16]. On the

other hand, multi-stream models are common in deep learn-

ing when combining information from different modalities,

such as in video recognition [17, 18, 19] or image caption-

ing [20]. With the exception of recent work [21, 3], these

approaches have not been applied to multi-spectral data. In

addition, feature maps from the different streams are fused

by concatenation, leaving the network vulnerable to noise

in the individual streams. It is unclear the optimal approach

to exploiting multi-band data. Furthermore, existing ap-

proaches leverage models that were designed for RGB im-

ages, which may not readily transfer to this domain.

In this paper, we examine which architectures best

leverage multispectral imagery for semantic segmentation.

We propose Channel Attention Networks (CAN), which

employ an attention network to merge multiple network

streams. Our main inspiration is from previous work [22],

who applied a similar mechanism to different scales of the

same image. We use a similar concept, but with an orthog-

onal application. We split the multi-band channels into sub-

sets, each presented to different streams. The predictions

are then combined with a soft attention network, which is

jointly trained with the streams.

We evaluate single stream and different multi-stream

models on the multi-band Spacenet dataset for semantic

segmentation. Controlled experiments demonstrate that

CAN (F1 = 66.2) outperforms both multi-stream concate-

nation (F1 = 64.4) and single-stream models (F1 = 65.0).

More important that the modest performance increase, how-

ever, are several additional benefits. First, from perturba-

tion experiments, the attention network is more robust to

injected noise in the channels than other models, which is

an important property in applications where sensors are sus-

ceptible to noise. Second, attention models are also attrac-

tive for the potential interpretability of the learned attention

masks [22, 23]. However, developing quantitative measure-

ments has proven difficult, with previous approaches rely-

ing on connecting visualizations with human intuition on

individual examples. In this work, we quantify the attention

weights at a population level and show that the robustness

to noise is due to the network shifting attention away from

the affected streams.
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Figure 1. Channel Attention Network. The input bands are split

into a visible stream (blue - 5 bands) and an infrared stream (red

- 3 bands). In these experiments, we use the U-Net architecture

[15] as the encoder-decoder network. A small attention network

generates attention masks that are used to combine the stream pre-

dictions (green) to produce the final segmentation.

2. Related Work

Attentional mechanisms have been shown to enhance hu-

man perception, and play an integral role in visual intelli-

gence [24]. Soft attention are also used in recurrent neural

networks [25, 26]. In vision, recent work has also applied

attention to augment residual networks to produce compet-

itive benchmarks with fewer parameters [27].

Our proposed network is most similar to Chen et al.

[22], who introduced the concept of merging with an at-

tention network and applied this method to merge streams

from multiple scales of the same image. They demonstrate

competitive performance and increased interpretability by

visualizing the attention maps. Our proposed network uti-

lizes this same mechanism, but with a different goal. We

attend to channels instead of scale, thus differentiating the

visual input to each stream. We also introduce interpretabil-

ity methods for interrogating the model behavior.

Recent work [3] explores multi-stream approaches for

object detection, but by merging the streams with concate-

nation. The authors experimented with different merge

points. This approach servers as one of the models we com-

pare. In the image captioning domain, a combination of

spatial and channel-wise attention was used with competi-

tive results [28]. Their channel attention mechanism, how-

ever, is embedded in individual layers of a single stream

model, and orthogonal to our proposal.

3. Methods

We chose to benchmark models on the multi-band

Spacenet dataset1, which contains satellite imagery in 8-

bands from four cities (Vegas, Paris, Shanghai, and Khar-

toum) with labeled building segmentation. Other datasets

with multiple bands exist (e.g. RGB-D [29], or RGB-IR

[30], but we chose this dataset for the number of bands,

and the diversity of environments. The source images con-

sist of 10,557 images in 650 × 640 × 8 GeoTIFF for-

mat. In total, the images cover 5,555 square kilometers

1See: https://spacenetchallenge.github.io/

of area, with 302,601 labeled building polygons. Prior to

training, we filtered images that had > 70% blank pixels.

For training, we applied a random zoom factor uniformly

sampled from 100% to 200%, and rotations drawn from

[0◦, 90◦, 180◦, 270◦]. After these data augmentations, the

images were resized to 256× 256 pixels.

Spacenet uses F1 to evaluate models, with a reference

implementation provided via an open source tool2. First

a threshold T is applied to the confidence scores to pro-

duce the predicted segmentation mask. The segmentation

masks are then converted to discrete polygons. The match-

ing procedure is similar that to used in PASCALVOC [31]

and ILSVRC [32]. Each ground truth polygon is compared

the list of proposed polygons. True positives occur when

the polygons have an intersection over union (IoU) of

IoU(A,B) =
Area(A ∩B)

Area(A ∪B)
> 0.5 (1)

with the constraint that only one match – the highest IoU –

can be assigned to each polygon. Otherwise, the proposed

polygon is a false positive. We then compute the F1 as:

F1 = 2 ∗
Precision × Recall

Precision + Recall
(2)

To match the Spacenet competition, we used T = 0.5 to

threshold the confidence scores. We also ran experiments

measuring F1 while modifying T .

3.1. Single Stream Baseline

For our controlled comparison, we use a single stream

encoder-decoder architecture based on U-Net [15]. We im-

prove on the version used by the winner of the Spacenet

competition3 by adding batch normalization and dataset-

specific augmentation (zoom, rotation). This provides a

robust baseline for comparison to the below multi-stream

models.

3.2. Multistream models

Multi-stream models allow each stream to specialize.

Although widely used in multi-modal tasks, the advantage

of stream segregation has not been fully explored for dif-

ferent channels. In our experiments, each stream uses the

same encoder-decoder network as the single stream base-

line. Each stream s extracts a feature map Xs. We explore

two main methods of merging these feature maps to gener-

ate the final prediction.

We limited our experiments to a visible stream Xvis and

a non-visible infrared stream Xir but this approach can be

generalized to arbitrary subsets of the image channels. We

chose this split to help with interpretability of the learned

attention weights.

2https://github.com/SpaceNetChallenge/utilities
3https://github.com/SpaceNetChallenge/BuildingDetectorsRound2/



3.2.1 Concatenation

In the first approach, we are motivated by prior work to

concatenate the feature maps along the channel dimension

[3, 11] . This merged feature map is then used to generate

the final semantic segmentation prediction. Formally, the

final prediction is generated as:

Y = F (Xvis ⊕Xir) (3)

where F is a 1 × 1 Convolution layer with Pixelwise Soft-

max, and ⊕ denotes channel-wise concatenation.

3.2.2 Channel Attention Network

Our proposed channel attention network applies soft atten-

tion to learn how to weight the individual streams (Figure

1). Given feature maps Xs for each stream s ∈ {1, . . . , S},

the final prediction is generated as:

Y =

S∑

s=1

ws · Softmax(Xs) (4)

The weights ws are computed by an attention network Φ
that takes as input the concatenated feature maps from the

streams, and employs two convolutional layers, the first

with a 5× 5 kernel with K filters followed by a 1× 1 Con-

volution with S filters and a pixel-wise softmax.

w = Softmax (Φ (X1 ⊕X2 ⊕ . . .XS)) (5)

Through joint training of the entire network, the attention

network learns to weight contributions of each stream in

an image-dependent manner. Note that both the attention

and concatenation have approximately the same number of

total parameters, since both have multiple streams with non-

shared parameters.

3.2.3 Loss variants

We explored several variants of the loss for the attention

model. We start with pixelwise cross-entropy loss (CE) on

the final prediction Y used in semantic segmentation tasks.

In CAN-ES, we added extra supervision to each stream by

attaching a cross entropy loss to the pre-attention predic-

tions, Softmax(Xs). The total loss is then,

L = CE(Y,Ygt) + α

S∑

s=1

CE [Softmax(Xs),Ygt] (6)

The hyper-parameter α controls the contribution of the extra

supervision term. The extra supervision forces each stream

to learn reasonable predictions before the attention merge.

For segmentation tasks with a strong imbalance in fore-

ground and background pixels, the dice coefficient loss can

help stabilize training [33]. The dice loss is defined as

DICE = 1−
2 ∗ |Y ∪ Ygt|

|Y|2 + |Ygt|2
(7)

In our experiments denoted as CAN-DICE, our total loss is

then

L = CE(Y,Ygt) +DICE(Y,Ygt) (8)

4. Experimental Results

In all experiments, we used Adam optimizer with a learn-

ing rate of 0.0005 and a batch size of 4. We trained an

individual model for each city. Each city in the Spacenet

dataset has different number of images and characteristics,

so we optimized several hyper-parameters for each city: the

number of filters in the attention network (K), the extra su-

pervision weight (α), and the learning rate of the attention

network. Results from the best performing model are shown

in Table 1. We removed dropout, and used batch normaliza-

tion throughout.

4.1. Performance comparisons

The single stream baseline model is drawn from the re-

cent winner of the Spacenet challenge (xDxD), which is

similar to the U-Net model [15]. We added batch normaliza-

tion and data augmentations to build a better baseline. Ro-

tation augmentations help exploit the symmetry in overhead

imagery, and due to the large distribution of small objects,

we also add random zoom to motivate scale-invariance (c.f.

[34] ). With these changes, and the addition of batch nor-

malization, we arrive at the baseline UNET model that will

be used to benchmark our attention module results. This

baseline UNET model has significant improvements in the

mean F1 score across all cities compared to the Spacenet

model (see Table 1, F1 = 65.0 compared to F1 = 61.92 ).

Bands beyond the visible spectrum, such as infrared,

contain additional information used in many remote sensing

applications. However, when we trained the baseline UNET

model on individual bands, the contribution of the infrared

bands was minimal. Using just the visible stream (UNET-

VISIBLE) obtained an F1 = 64.67, and using both streams

had a minimal improvement of ∆F1 = 0.33 to F1 = 65.00.

(Table 1). An illustrative failure mode is shown in Figure

2, where the 3-band and 8-band models each miss different

components of the building.

We explored two ways to merge the multiple streams:

the commonly used concatenation approach (UNET-

CONCAT), and our proposed Channel Attention Network

(CAN). Concatenation reduced performance compared to



Mean F1 Vegas Paris Shanghai Khartoum # params

Single Stream Models

Spacenet (xDxD) 61.92 83.66 67.33 54.33 42.37 7.9M

UNET 65.00 85.17 69.69 54.83 50.32 7.9M

UNET-VISIBLE 64.67 85.04 69.43 54.29 49.90 7.9M

UNET-IR 63.63 84.88 68.68 52.16 48.79 7.9M

Multi-Stream Models

UNET-CONCAT 64.40 84.76 69.24 53.86 49.75 15.7M

CAN 52.69 75.06 57.59 48.84 29.27 15.9M

CAN-ES 66.17 86.00 71.16 56.30 51.20 15.9M

CAN-DICE 60.00 81.46 69.12 48.68 40.75 15.9M

CAN-ES-DICE 60.59 81.13 66.91 49.39 44.93 15.9M

Table 1. F1 scores for each model, reported for each city in the Spacenet dataset individually, and also as the mean F1.

Figure 2. Example failure image for single stream UNET

model. Segmentation shown in yellow for the ground truth (GT)

and also the individual model predictions. The visible-only model

(UNET-VISIBLE) correctly segments the blue roof, but misses the

adjacent building (see red boxes). The all band model (UNET-

ALL) has the opposite prediction.

the single-stream approach (F1 = 64.4). For the attention-

based networks, with extra supervision (CAN-ES), per-

formance outperformed the naive single-stream approach,

reaching F1 = 66.12. Interestingly, the dice coefficient loss

did not improve performance.

As shown in Figure 3 using the same image as the pre-

vious figure, even though the individual streams (Xvis and

Xir) miss different components of the building, the atten-

tion module appropriately combines the predictions to pro-

duce an accurate segmentation. The modest performance

improvement from the attention network is not due to the

number of parameters, since the concatenation (CONCAT)

and attention (CAN) models have similar number of param-

eters, yet concatenation yielded worse results.

4.2. Model analysis

We performed several analyses to better understand the

model’s performance and behavior. We measured perfor-

mance across object area, visualized the learned attention

masks, and conducted experiments where we added noise

to the visible or infrared bands with a gamma correction,

and observed the model response.

Figure 3. Example prediction from our Channel Attention Net-

work. Same image as shown in Figure 2. The individual stream

Xvis and Xir predictions reproduce the failures of the single

stream models in Figure 2 (see red boxes), but the attention masks

WVIS and WIR combines the results for a more accurate prediction.

4.2.1 Model struggles with small objects.

To better understand model performance, we binned the

ground truth buildings by area and measured the F1 score

between the predictions and the individual bins. Similar

to findings in object detection models [34, 35], our model

performs poorly on small objects (Figure 4), but for dif-

ferent reasons. In object detection models, the network’s

feature downsampling reduces the representation of small

objects. In addition to this issue, the loss function (pixel-

wise cross-entropy loss) used in our segmentation models

is not instance-aware, and penalizes misses of small objects

equally to errors in the fine detail of large objects. However,

the F1 metric has the opposite incentive; it weighs missing

small objects more than the fine detail of large objects. Fur-

thermore, the metric considers IoU > 0.5 as a match, and

does not credit the model for predicting closer overlaps with

the ground truth.

4.2.2 Attention network is more robust.

We observed anecdotally that the attention network adapts

which stream to attend to based on lighting conditions. In

Figure 5, compare two images from Khartoum in A and B.

For the left image, the model uses the visible spectrum to



Figure 4. Sensitivity of model to object area and decision

threshold. For the CAN-ES model on the Paris dataset, (A) we

measured the F1 based on the building footprint size. Despite our

zoom augmentations, the model struggles with small buildings. In

(B), the F1 changes significantly based on the choice of threshold

T applied to the confidence maps to generate the predicted maps,

with T = 0.5 being the optimal threshold.

define the building edges, and the infrared bands to fill the

interior (see attention masks). Note the heavier weighting

on the visible stream. For the right image, with cloud cover

reducing the usability of the visible stream, the attention

masks are instead re-weighted to utilize the infrared stream.

To quantify this across the population, we applied a

gamma correction with a factor γ to the test set, then mea-

sured the average attention weight to the visible versus the

infrared stream. The gamma correction transforms the im-

age via the power law expression,

I ′ = Iγ (9)

with γ = 1 representing the original untransformed images.

This transformation has the effect of modifying the overall

luminance in the image. We applied the gamma correction

to the test set in three conditions, transforming (1) all chan-

nels, (2) infrared channels only, and (3) visible channels

only. We measured the F1 performance using the trained

models from Table 1 while varying the correction strength

γ. Importantly, the tested models were not trained on the

transformed data.

As shown in Figure 6A, when this luminance shift is ap-

plied across all channels, all models perform similarly. The

multi-stream models have a performance advantage (F1 ≈
0.52) compared to the single stream model (F1 ≈ 0.3) for

small shifts (γ = 1.0 − 1.5). However, when individual

streams are affected (Figure 6B and C), our model is signif-

icantly more robust than other models. For example, after

shifting the infrared bands with γ = 1.25, our model drops

to F1 = 0.63, compared to UNET-CONCAT (F1 = 0.42)

and the single-stream UNET model (F1 = 0.0).

We hypothesized that this robustness to noise was due

to the attention model shifting attention away from the af-

fected streams. To test this, we computed the average atten-

tion mask value, |w|, for the visible and infrared streams. As

shown in Figure 7, the model shifts attention to the visible

Figure 5. Model adapts to lighting conditions. Compare two im-

ages drawn from Khartoum. In the image from (A), the attention

masks favor information from the visible stream. However, in (B),

with cloud cover changing the image lighting, the attention masks

are more heavily weighted towards the infrared stream.

Figure 6. Model sensitivity to noise. We applied the gamma

correction in Equation 9 to the test data for (A) all channels,

(B) visible channels only, and (C) infrared channels only, and

measured the F1 score for our model (CAN), the concatenation

model (UNET-CONCAT), and the single stream model (UNET).

When noise is added to all channels, the model performs simi-

larly, with a slight performance benefit to the multi-stream models

in γ = 1.0 − 1.5 range. However, when noise is added to one

of the streams, our model is significantly more robust than other

models.

Figure 7. Model shifts attention away from affected streams.

The average attention weight across the test set for Paris when

applying the luminance shift to individual bands. For the visible

stream (A), the model had a subtle response, but when noise is

added to the infrared band (B), the model shifted more attention to

the visible stream (blue).

stream when the infrared stream (B) is affected. Changing

the luminance of the visible stream (A), yielded a smaller

response.

4.2.3 Trade-off between performance and inter-

pretability.

We also visualized the contribution of the different streams

to the final prediction for the tested attention models (Figure

8). For the CAN-ES model (F1 = 66.2), the extra supervi-



Figure 8. Stream contributions for the attention models. For the

base model (CAN), and the model with extra supervision (CAN-

ES), the contributions from the visual (VIS) and infrared (IR)

streams, as well as the final prediction (PRED).

sion term forced the individual streams to also produce rea-

sonable predictions, leading to less differentiation between

the contributions of the two streams. The lower perform-

ing CAN model (F1 = 52.7), however, did not have the

extra supervision term. As shown in Figure 8, the visible

stream clearly contributing the building edges, whereas the

infrared stream was leveraged to fill the interior. We hope

future work can resolve this tension between performance

and interpretability.

5. Conclusion

With the coming prevalence of multi-band datasets, we

took the first step of designing architectures to better ex-

ploit the additional information in ways that are more robust

to noise in individual bands. We assessed several models

that achieve state-of-the-art results on the Spacenet build-

ing segmentation dataset. We proposed Channel Attention

Networks, which incorporate soft attention to weight chan-

nel contributions. Attention not only improves performance

for segmentation, but also allows better interpretability of

the network function. We demonstrate the CAN is signifi-

cantly more robust to channel noise than other models. By

quantitatively measuring the attention mechanism, we show

that this robustness is due to the attention network allocates

attention away from the affected streams.

Interpretability of the attention masks has always been

appealing but difficult to quantify across the population. In

our luminance perturbation experiments, we measured the

overall effect on the attention weights, averaged over the

dataset. In visualizing the attention masks, we also ob-

served a trade-off between interpretability, as in connection

to human intuition, with overall model accuracy. As models

become deployed, avoiding this trade-off gains significance.

Future work could close this gap by exploring alternatives

to extra supervision that induce equally performing models.

By segregating the streams, we also allow individual

streams, such as an RGB stream, to leverage pre-trained

weights on RGB datasets. We speculate that our attention-

based mechanism to fusing multiple streams can also be ap-

plied more generally to other multi-stream models such as

video recognition and image captioning, as well as other

multi-band datasets that are contributed to the community.
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