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Abstract

Currently, for the task of color (RGB) and thermal in-

frared (LWIR) disparity estimation, handcrafted feature

descriptors such as mutual information are the methods

achieving best performance. In this work, we aim to as-

sess if convolutional neural networks (CNNs) can achieve

competitive performance in this task. We developed an ar-

chitecture made of two subnetworks, each consisting of the

same siamese network, but taking different image patches as

input. Each siamese network, in the feature space, searches

for the disparity between the left and right patch. The out-

put of the two subnetworks are summed together so that we

can be more confident in the predicted disparity by enforc-

ing left-right consistency. We show that having two subnet-

works working together in parallel to get the final prediction

helps achieve better performance when compared to a sin-

gle subnetwork by itself. We tested our method on the LITIV

dataset and found the results competitive when compared

to handcrafted feature descriptors. The source code of our

method will be available online1 upon publication.

1. Introduction

Stereo matching remains one of the most fundamental

task in the field of computer vision. With it, we can regis-

ter stereo images from two different cameras into the same

coordinate system from which operations such as depth es-

timation and object detection can be performed. Recently,

more work with stereo image pairs outside of the visible do-

main has been done. Having one of the images in the LWIR

(Long Wavelength Infrared or thermal infrared) spectrum

can help with some problems affecting a stereo image pair

in the visible spectrum. For example, a person wearing dark

clothes at night will be more difficult to perceive in the vis-

ible spectrum than in the infrared spectrum. Anytime a per-

son has a low color contrast with its environment, detection

in the visible domain will be challenging. However, in the

thermal infrared domain, this will be much easier because

1Available at https://github.com/beaupreda

we use the heat of the person’s body to do the detection. In

the LWIR domain, detections do not rely on textures or col-

ors, but simply on the person having a different temperature

from its environment. Nonetheless, this restricts the class

of objects that we can work with i.e. we cannot work with

objects that do not emit heat. For example, stereo matching

is a method widely used in self-driving car and the usage

of an infrared camera, in this case, would not be always

helpful as road signs and urban furniture often do not emit

heat. This is because objects of interest need to have a dif-

ferent temperature than the ambient temperature in order to

be detected. So, in the case of humans, working in the in-

frared domain makes sense because our body temperature,

in most cases, is warmer than the ambient temperature when

working with indoor or outdoor videos. Thermal images,

while not perfect, seem well adapted for detecting humans

and their combination with visible images can be beneficial.

This is why the proposed model is targeted to do disparity

estimation for human silhouettes.

Recently, convolutional neural networks (CNNs) have

shown to perform very well in multiple tasks of com-

puter vision such as object detection [18, 19], classifica-

tion [13, 24, 9], tracking [28, 29] and stereo matching

[5, 11, 12, 17, 15, 30, 20, 6]. Most of the recent works

in deep learning for stereo matching is, however, mostly in

the visible domain, where we know that CNNs are able to

extract meaningful features in order to do matching. In the

thermal infrared domain, there is less textures and intensity

differences, therefore the task of stereo matching between

the visible and thermal domain is harder [2]. This work

aims at investigating if the recent successes of deep learn-

ing in visible stereo matching can be translated to visible-

thermal stereo matching. More precisely, we want to as-

sess if a method that learns descriptors outperform the ones

using handcrafted feature descriptors that are presently the

state-of-the-art for visible-infrared image pairs. Classical

methods to match pixels from two different spectrum (vis-

ible and thermal) often consist of using descriptors (SIFT

[14], HOG [7], mutual information [27] and others) and

then using a sliding a window approach to match the fea-

tures between the images.



We developed a new model, consisting of two subnet-

works working in parallel, where each subnetwork receives

a pair of multispectral stereo image patches as input. The

domains of these inputs are inverted for each subnetwork.

Each input pair is made of a small square patch and a larger

patch. The stereo pair image patches are forwarded into a

CNN module (siamese network) where the goal is to find

the location of the small patch inside the bigger one. This

is done through a siamese network made of convolutions,

batch normalization [10] and ReLU activations [16], with

the two branches being merged with a correlation layer to

output a log-probability vector for each possible disparity

location. Since we have two subnetworks working in par-

allel, we have two vectors of log-probabilities (one that

predicts the disparity of RGB inside LWIR, and the other

that predicts LWIR inside RGB). We sum those two log-

probabilities vector and take the index of the maximum

value to get our final disparity prediction. The goal of hav-

ing two subnetworks is that they enforce some sort of con-

sistency by learning to give the same disparity prediction.

In summary, our main contributions are:

• We propose a new model made of two subnetworks,

each of them taking multispectral stereo pair image

patches as input. The outputs are log-probabilities

vector which when summed, give a disparity predic-

tion between the visible and the infrared domain. Our

model also enforces left-right consistency for the dis-

parity predictions.

• We perform experiments on the LITIV dataset [3] to

validate the performance of our model. These results

show that a CNN is able to be competitive with hand-

crafted feature descriptors.

The organization of the paper is the following: in section

2, we discuss related work. In section 3, we present our

proposed model. In section 4, we present the dataset used

to evaluate our method, some data augmentation that we did

and our results. Finally, in section 5, we conclude this paper.

2. Related Work

In the task of disparity estimation for human silhouettes

between the visible and the thermal infrared domain, hand-

crafted feature descriptors are still the preferred approach.

There are three families for categorizing similarity mea-

sures. The first category consists of methods that com-

pute similarity across all the pixels inside a given window.

Methods such as mutual information [27] fall into this cat-

egory. Mutual information [27] computes statistics of co-

occurrence of intensities for all pixels of two given win-

dows. Because it is able to find a match between a textured

region and an uniform one, this method gives good result for

disparity estimation between two different domains. An-

other method falling into this category would be Sum of

Squared Differences (SSD) [3] consisting of summing the

squared difference of each pixels in two windows, one in

each image of an image pair. The second category includes

methods that model data as distributions. This category in-

corporates methods [3, 25, 26] that rely on descriptors such

as LSS [21], SIFT [14] and HOG [7]. LSS is a local de-

scriptor able to capture self-similarity among colors, tex-

tures and repetitive patterns, which makes it, like mutual in-

formation, proficient at matching textured regions with uni-

formed ones. SIFT is different from LSS because it is based

on gradients. SIFT uses interest points that are invariant to

illumination, rotation, viewpoint and scale to match objects

from two different images or windows. For HOG, since it

is already based on windows, we simply need to measure

the distance between two histograms coming from two dif-

ferent windows to get a similarity score. The third category

measures the binary comparison of pixels and include meth-

ods [3] based on FREAK [1] and BRIEF [4]. Both of these

features compute a binary vector representing each window

to match and with the hamming distance, the similarity be-

tween the windows is obtained. These methods have the

advantage of being faster than SIFT.

In the task of stereo matching in the visible domain, deep

networks are the methods that achieve state-of-the-art re-

sults. We can separate deep learning methods into two cat-

egories: the ones that are patch-based and the ones doing

end-to-end learning. In the patch based methods, Zbontar

et al. [30] were the first to show that it was possible to use

a CNN to do stereo matching. Their method consisted of

taking two small patches from a stereo image pair and with

a CNN, classifying if the two patches were a good match or

a bad match. Luo et al. [15] takes one small patch from the

left image and a larger one from the right image and treats

the problem as a multi-class classification, where the differ-

ent classes are all possible disparity values. They also join

the features of their siamese network with a inner product

which produces very good results in term of computation.

Our siamese network showed in section 3.2 is inspired by

this previous work. Jie et al. [11] used constant highway

networks [20] to produce a stereo matching cost volume

and then used it as input inside a recurrent neural network

(RNN) to do the disparity estimation. The main idea was

to learn the left-right consistency verification during train-

ing and utilizing the error maps given by that verification

as attention module to guide the network towards those ar-

eas during training. Constant highway networks [20], as

mentioned above, produce a matching cost volume based

on both inner and outer residual shortcuts. They also in-

troduce a way to output a disparity map and a confidence of

said map with the creation of a global disparity network fea-

turing a reflective confidence. For the end-to-end methods,



Figure 1. Architecture of our proposed model showcasing the two

subnetworks NL and NR.

Kendall et al. [12] said that many problems in stereo match-

ing could be solved by using geometry i.e. knowledge of the

environment around the matching points. They proposed

using 3-D convolutions to incorporate context and act as a

regularizer over the cost volume. They also show that treat-

ing the problem of stereo matching as regression gives bet-

ter performance than treating it as a classification problem.

Chang et al. [5] also tries to take advantage from context

information. In order to do this, they introduced a spatial

pyramid pooling module to get different scales i.e. generate

feature maps of different sizes and also introduced a stacked

hourglass (encoder-decoder architecture) to get more infor-

mation from the context. Pang et al. [17] proposed an end-

to-end cascade method composed of two stages. The first

stage is responsible of producing fine-grained disparities

with an up-convolution module and is the input of the sec-

ond stage where the disparities are rectified with residual

signals.

Our method is based on patches because densely anno-

tated visible-thermal infrared datasets are not available.

3. Method

This section presents the proposed model made of two

subnetworks working in parallel, each being a siamese net-

work, to achieve the final disparity prediction. The global

architecture can be viewed in figure 1.

3.1. Network Architecture

Our network is composed of two siamese networks tak-

ing a total of four different inputs to achieve a final disparity

prediction y for a given location. We will refer to each sub-

network (siamese network branch) as NL and NR for the

left and right subnetworks respectively. There are two in-

puts for each subnetwork, the left input being a small square

patch of size ps × ps and the right input being much larger,

but of the same height, of size pr × ps where ps and pr are

defined as follows:

ps = 2× phs + 1 (1)

pr = 2× phr + ps + 1 (2)

where phs and phr are hyperparameters of the network,

where they represent half the size and range of a patch.

These two values will be discussed in section 4.1. The sub-

network NL has two patches as inputs, PRGB
NL

and PLWIR
NL

,

the first one being in the visible domain (RGB) and the other

one being from the infrared domain (LWIR). For the NL

branch, the patch PRGB
NL

is the left input while PLWIR
NL

is

the right input. For the other subnetwork (NR), the domains

of the inputs are simply inverted, so the left input is PLWIR
NR

and the right one is PRGB
NR

. Basically, we try to find the

location of an RGB patch inside an LWIR patch in subnet-

work NL, while in NR, we try to find the location of an

LWIR patch inside an RGB patch. NL and NR share all

their parameters.

Each subnetwork, composed of a siamese network mod-

ule (see figure 2, outputs a vector of log-probabilities,

log(pL) and log(pR) for the left and right branches respec-

tively, of size pr. These vectors represent the probability of

finding the center of the left patch at disparity location d in-

side the larger right patch. We can then define the prediction

of the left and right branch as yNL
and yNR

respectively. In-

stead of working with only one of the two branches and tak-

ing the maximum of either pL or pR as the prediction, we

sum those two vectors together and take the position j of the

maximal value as the prediction for the disparity. Formally

we can then define the final prediction y as follows:

y = argmax
j

(log(pL) + log(pR)) (3)

This is done for a number of reasons. First of all, adding

the predictions of both subnetworks NL and NR enforces

some sort of left-right consistency where the two subnet-

works will work together to learn to give the same disparity

prediction yL and yR. If both branches consistently give

the same output, then we can be more confident in the said

prediction. Second of all, there are cases where one of the

two subnetworks give more information than the other one.

For instance, let us say that the distribution of pL is mostly

uniform and therefore, there are no clear disparity location

where a maximum arises. If we were to only use this branch

for our final prediction y, we would obtain incorrect predic-

tions most of the time. However, in a case like this one,

the distribution of pR might have a clear maximum at a

correct disparity location, meaning that if we add both log-

probability vectors together, pL being mostly uniform and



Figure 2. Details of the siamese network (NL)

pR having a clear maximum, we will get a disparity pre-

diction that is informative. So, in the cases where finding

the best match is easier in either NL or NR, having the two

branches makes our model much more consistent in its pre-

dictions. This will also be shown in section 4.3 where we

compare our model with the individual subnetworks and

show that there can be variation in performance between

NL and NR.

3.2. Siamese Network

This module is the same for both subnetworks NL and

NR. As stated in section 3.1, the only difference is the

domains of the input patches, being either RGB-LWIR or

LWIR-RGB. In this section, we will use the left branch

(NL) to showcase the inner workings of the CNN mod-

ule which is shown in figure 2. This module is a siamese

network that takes a pair of stereo images as inputs PRGB
NL

and PLWIR
NL

and is inspired by [15]. Each patch is for-

warded into a network of six layers composed of convo-

lutions, batch normalization [10] and ReLU [16]. There is

no ReLU activation for the last layer. For the convolutional

layers, we used 32 filters of size 7× 7, for the first two lay-

ers, and 64 filters of the same size for the remaining four

layers. We also applied Dropout [22] to reduce overfitting

because the datasets that we were working with are some-

what small.

After the left patch PRGB
NL

exits the sixth and last layer,

we are left with a 64 dimensional feature vector ~v. For

the right patch PLWIR
NL

, we have a feature volume of size

pr × 64, named M . We then do a correlation operation to

obtain a vector of scores ~s of size pr, with one score for

each possible disparity location. We compute ~s as follows:

~s = ~vM (4)

This means that each element si of ~s is the result of the

dot-product between the feature vector ~v from the left patch

PRGB
NL

and the column i of the feature volume M given

by the right patch PLWIR
NL

. Once we have our vector of

scores, we feed it into a LogSoftMax layer to obtain the log-

probability vector log(pL) that is the output of one the CNN

module.

As stated before, the same process is done in the network

NR with the left input PLWIR
NR

and the right input PRGB
NR

to

get log(pR).

3.3. Training

During training, we extract the small patches PRGB
NL

and

PLWIR
NR

at pixel locations (x, y) for which we know the true

disparity d. We also take the larger patches as PLWIR
NL

and

PRGB
NR

at pixel locations (x+d, y). These pair of patches are

then forwarded into our network as presented in section 3.2.

We use the Adagrad [8] optimizer during backpropagation.

For our loss function, we minimize the cross-entropy

with regards to the weights w just as [15] did. Our loss

function is defined as follows:

loss = min
w

∑

i,yi

pgt(yi) log pi(yi,w) (5)

We also smooth the target distribution centered around the

value of the ground-truth disparity. Since we are interested

in the 3-pixel error metric, the possible values for the target

distribution are defined as:

pgt(yi) =



































λ1, if |yi − yGT
i | = 0

λ2, if |yi − yGT
i | = 1

λ3, if |yi − yGT
i | = 2

λ4, if |yi − yGT
i | = 3

0, otherwise

(6)

In this work, we set these values as λ1 = 0.32, λ2 = 0.40,

λ3 = 0.20 and λ4 = 0.08. With this target distribution, we

can be sure that the network learns to minimize the disparity

prediction error.

4. Experiments

This section will present the datasets used to conduct our

experiments and present the various hyperparameters used

for our model. We will also discuss the different manip-

ulations that we did on our data in order to augment the



(a) (b)

(c) (d)

(e) (f)

Figure 3. Some examples of the multispectral stereo image pairs

found in the LITIV dataset, one row being a different video se-

quence. First column is in the RGB domain while the second col-

umn is in the LWIR domain.

original datasets. Finally, there will be a discussion about

the obtained results.

4.1. Experiment Details

During training, we used two different datasets, one be-

ing the LITIV dataset [3] and the other one being the St-

Charles et al. [23]. All images, in both datasets, were rec-

tified so the search for the matching point will be in one

dimension i.e. at the same y coordinate in the images of the

stereo pair. The LITIV dataset, showed in figure 3 contains

three video sequences, named vid01, vid02 and vid03, each

of them consisting of people walking in a room at different

depths. The number of person in a scene varies between

one and five. The main difficulty in these videos are the

occlusions between the different subjects and the visual ap-

pearance between the modalities. The video sequences re-

spectively contain 89, 67 and 53 annotated images. Dispar-

ities are annotated for 11 166 points in vid01, 7529 points

in vid02 and 6524 points in vid03. The St-Charles et al.

dataset, showcased in figure 4 is also separated in three

video sequences (v04, v07 and v08) and consists of one to

(a) (b)

(c) (d)

(e) (f)

Figure 4. Example of a multispectral stereo image pair found in the

St-Charles et al. dataset. Each row corresponds to a different video

sequence featuring from one to three subjects in each of them.

three subjects walking in a room at different depths. Once

again, the main difficulty is the amount of occlusion be-

tween the people walking in the room and the visual ap-

pearance between the modalities. The first sequence, v04,

contains 117 images and 4252 disparity points, the second

sequence, v07, has 144 images and 5653 disparity points

and the last sequence, v08, contains 89 images for 5277

disparity points.

Our model was compared against handcrafted feature de-

scriptors that required no training and that were tested on

the LITIV dataset [3], so we had to separate the dataset in

three different folds in order to do a fair comparison with the

other handcrafted feature methods and we applied a three-

fold cross-validation. Table 1 summarizes the separation for

each fold. The St-Charles et al. dataset was always part of

the training data exclusively, while the LITIV dataset was

separated between training, validation and testing. One im-

portant thing to notice is that the amount of training and

testing points differ greatly depending on which video se-

quence we use, while the number of validation points al-

ways stay the same. We had to use exactly 10 000 validation

points because we were limited by the memory of our GPU.



LITIV dataset St-Charles dataset

Training Evaluation Testing Training

Fold 1 96 516 (vid01, vid02) 10 000 (vid01, vid02) 32 106 (vid03) 65 310 (vid04, vid07, vid08)

Fold 2 67 608 (vid02, vid03) 10 000 (vid02, vid03) 60 978 (vid01) 65 310 (vid04, vid07, vid08)

Fold 3 80 622 (vid01, vid03) 10 000 (vid01, vid03) 45 678 (vid02) 65 310 (vid04, vid07, vid08)

Table 1. Number of points used for training, evaluating and testing for both the LITIV and St-Charles et al. dataset. These number of points

are after the data augmentation of section 4.2. The three different folds result in the testing of our method over all the images in the dataset.

The fold 1 is trained on all the St-Charles et al. data plus the

images from vid01 and vid02, minus 10 000 randomly se-

lected images kept for the validation. Vid03 was kept for

the testing. For fold 2, the training set was composed of all

the image pairs of the St-Charles et al. dataset with the addi-

tion of vid02 and vid03, once again, minus 10 000 randomly

chose image pairs kept for the validation set. We tested on

all the images in vid01. For the last fold, the training data

was taken from the entire St-Charles et al. dataset in combi-

nation of vid01 and vid03 of the LITIV dataset, excluding

the 10 000 image pairs that were put aside for the valida-

tion. The testing was made on the video sequence vid02 of

the LITIV dataset. With these three folds, we are able to test

our model on all three video sequences vid01, vid02, vid03.

With a weighted average, we will be able to compare our

method with the handcrafted feature descriptors that were

all tested on the entirety of the LITIV dataset.

For all three folds, we kept the same hyperparameters.

We will list the ones that are the most important i.e. the

ones that have an impact on the results. The first ones are

phs and phr, corresponding, respectively, to half the size

and half the range of one patch. They are set to 18 and

60 respectively. As stated in section 3.1, these are the two

parameters that control the size of the inputs of the CNN

module. Dropout was also applied on our model. We used

a drop-rate of 0.5 for all six layers, except the input layer

which has a drop-rate of 0.2 as was suggested in the paper

[22]. The learning rate α was set to 0.001 and was decreased

after 24 000 iterations by a factor of α
5

. After that, every

4000 iterations, the learning was further decreased by the

same rate. We trained our network for a total of 40 000

iterations, which correspond to 20 epochs. The batch size

was set to 64.

4.2. Data Augmentation

One of the difficulties of working with stereo image pairs

of both visible and infrared domains is that it can be quite

hard to come by large datasets. We worked with both the

LITIV dataset and the St-Charles et al. dataset and together,

they contained a little more than 40 000 points. However,

since we worked with patches, some of these points that

were close to the images border were not valid, so in re-

ality, we had less points to train our model. In order to

have more data to work with, we did some data augmenta-

(a) (b)

(c) (d)

Figure 5. Example of the mirror operation of the data augmenta-

tion. The first row shows the original multispectral stereo image

pair while the second row shows the mirrored image pair.

tion operations. The first manipulation we did was to mir-

ror every image in both dataset, which simply doubles the

amount of data available. An example of a mirrored RGB-

LWIR stereo image pair is shown in figure 5. The other

operation applied on the data is that for each ground-truth

point p = (x, y) which we know the disparity d, we cre-

ated two neighboring points one pixel above and one pixel

below. Formally, we created the point pa = (x, y + 1) and

pb = (x, y − 1) with the same disparity d (we are assum-

ing that neighboring points should most of the time have

the same disparity). This has the effect to triple every point,

so with these two data augmentation operations, we have

multiplied by a factor of six the amount of data that we can

work with. Concretely, we now have a total of 136 300

points for the LITIV dataset and 65 310 points for the St-

Charles dataset. Although we could benefit of having more

diversified data, the quantity that we now have is sufficient

to train and test our model effectively.

4.3. Results

We used the recall metric to do the comparison between

our model and the handcrafted feature descriptors. In this



Recall

Proposed model Left subnetwork (NL) Right subnetwork (NR)

Fold 1 0.839 0.753 0.705

Fold 2 0.783 0.663 0.642

Fold 3 0.731 0.555 0.614

Table 2. Ablation study results of our model with three network configurations: with both subnetworks NL and NR, and with each of them

individually. Boldface: best results.

Method Recall

Proposed model (37× 37) 0.779

Mutual Information (40× 130) 0.833

Mutual Information (20× 130) 0.775

Mutual Information (10× 130) 0.649

Fast Retina Keypoint (40× 130) 0.641

Local Self-Similarity (40× 130) 0.734

Sum of Squared Differences (40× 130) 0.656

Table 3. Results of our model, average over the three folds, com-

pared with best handcrafted feature descriptors as reported in [3].

Patch sizes are in parentheses. Boldface: best result, italic: second

best.

case, the recall is defined as the correct number of matches

on the total number of matches. Formally, using the 3-pixel

error, we can define the recall as:

recall =
mcorrect

mtotal

(7)

where mcorrect is the number of correct matches and

mtotal is the total number of possible matches. A match is

considered correct if the predicted disparity y is at exactly

three pixels or less than the ground-truth disparity.

Table 2 shows the results of our method compared with

the performance of each individual subnetwork, where the

prediction of either NL or NR is considered as the final

disparity prediction y. We evaluated these three networks

on all three folds that were presented in table 1. As we

can see, this ablation study shows that the results of our

proposed model are always better than the individual sub-

networks. For the first fold, our model with the two sub-

networks achieves a better recall by a margin of 8% when

compared to the best individual subnetwork. The margin is

even bigger for the second and third folds, being of 12% and

11% respectively. Therefore, it demonstrates that the use of

two parallel subnetworks help improve the performance of

our model. This is expected because, as we explained ear-

lier in section 3.1, when working with the two branches, our

model can learn to have a similar prediction as the output of

both subnetworks NL and NR which gives us a high confi-

dence in the disparity prediction by verifying the left-right

consistency. When working with only one branch (either

NL or NR), whatever the prediction, we have to take it as

final, which will lead to more errors than the case where we

have the predictions of both branches.

Table 3 compares the handcrafted feature descriptors as

reported in [3] with our proposed method. We took as

a comparison, the best results reported. Therefore, the

patches for the handcrafted features include more pixels as

the patches have the same width as us, but are about three

times higher. The recall for our network is a weighted av-

erage with the weights being proportional with the num-

ber of evaluated points from table 1. This way, we can

have a fair comparison between our model and the descrip-

tors, which were evaluated on all three videos of the LITIV

dataset. Globally, we see that our model ranks in second

place across all methods, being surpassed only by mutual

information (40×130). We believe this happens for a num-

ber of reasons. First of all, we reported the best results for

each method, which were obtained with window sizes of

40 x 130. This window size is similar to a the size of a

human silhouette in an image. Thus, these methods had

more relevant information to work with than our method

with patches of size ps×ps where ps = 37. We believe this

can lead to better recall results for mutual information [27].

In fact, with patches containing the same number of pixels

as ours, about 1300, the results of mutual information are

lower than ours with a recall of 0.649 for 10× 130 patches.

With twice the number of pixels as ours, that is 20 × 130
patches, our method is marginally better with a recall of

0.779 when compared to 0.775 of mutual information.

Second, if we look at table 1, we see that there are vari-

ations in the results of our method depending on the folds.

Between the best fold and the worst one, there is a differ-

ence of almost 11%, with the other fold being in the middle

of the two with a difference of close to 6% for the best fold

and 5% with the worst one. If we refer to table 1 with all the

folds data separation, we can see that the training set sizes

vary between all folds. Although the difficulty of the test

samples in the folds may vary, we remark that the best re-

call results were obtained on the fold with the most training

samples available while worst results were obtained with

less training data. This leads us to believe that with more

data available, we would be able to get better results be-

cause, with the current folds, there is a correlation with the

recall results and the amount of training data. This is why,

in the case of the first fold, we are able to get slightly better

result than mutual information, but that is not the case for



the second and third folds.

Even with achieving second place across all methods, we

believe that our model is competitive with the handcrafted

feature descriptors and with more data available, we could

get event better performance. We believe this consists ev-

idence that CNNs are able to, in the context of disparity

estimation between visible and infrared domains, be com-

petitive with the current feature descriptors.

5. Conclusions

In this paper, we presented a new model capable of doing

disparity estimation between pairs of visible-infrared im-

ages. Our model is made of two subnetworks, each being a

siamese network and outputting a log-probability vector for

each possible disparity location. These two log-probability

vectors are then summed together to get the final prediction.

The goal of having two subnetworks working in parallel is

to enforce left-right consistency in order to be more confi-

dent the final disparity prediction. We used two datasets,

one used exclusively for training while evaluating on the

other. Because of a lack of data, we did two data augmenta-

tion operations and performed a three-fold cross-validation.

We demonstrated that we can achieve competitive perfor-

mance with our proposed model when compared to hand-

crafted feature descriptors.
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