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Abstract

Computer vision techniques that operate on hyper- and

multispectral imagery benefit from the additional amount

of spectral information relative to those that exploit tradi-

tional RGB or monochromatic visual data. However, the

increased volume of data to be processed brings about ad-

ditional memory, storage and computational requirements.

In order to address such limitations, a wide range of tech-

niques for dimensionality reduction have been introduced

by previous work. In this paper, we propose a framework

for spectral band selection that is highly data- and compu-

tationally efficient. The method leverages a convolutional

siamese network learned by optimizing a contrastive loss,

and performs band selection based on the low-dimensional

data embeddings produced by the network. We empirically

demonstrate the efficacy of the method on an object detec-

tion task from aerial multispectral imagery. The results

show that, in spite of the method’s frugality, it produces

very competitive band selection results against the evalu-

ated competing techniques.

1. Introduction

Hyper- and multispectral imaging techniques aim at col-

lecting information across the electromagnetic spectrum,

thus enabling the reconstruction of the spectral signature of

the scene –and objects therein– being imaged. Since real-

world materials possess distinct spectral characteristics (i.e.,

different absorption and reflection responses across wave-

lengths of electromagnetic radiation), analysis of hyper-

and multispectral imagery has a wide range of applica-

tions that rely on object identification and localization, in-

cluding healthcare, astronomy, remote sensing, agriculture,

surveillance, and the like. While acquisition and process-

ing of a large number of bands may lead to improved per-

formance, the increased amount of associated data can im-

pose unwieldy storage and computational constraints. Con-

sequently, dimensionality reduction techniques, both during

acquisition/reconstruction [22, 15] and processing and anal-

ysis [24, 4, 2] have been proposed.

In this paper, we investigate methods for supervised band

or feature selection, which aim at finding an optimal subset

of bands by leveraging task-relevant labels associated with

the imagery. More specifically, we focus on deep learn-

ing frameworks for supervised band selection. Some re-

cent work has proposed the integration of a supervised fea-

ture selection mechanism with the decision-making algo-

rithm [16, 17], i.e., the deep classifier. The main shortcom-

ing of such approaches is that deep networks trained in a

supervised manner tend to be data hungry, and since the

band downselection is built into the network, it can only be

enabled by large amounts of data and the accompanying la-

bels. Additionally, band selection is only available after the

classifier has been trained on the full set of data. We be-

lieve there is an advantage to having a band selection entity

separate from the main learning framework, particularly if

it can operate on reduced data corpora; this is especially

true in cases where obtaining large amounts of labeled data

at full spectral resolution is expensive or simply unfeasi-

ble. Another recent body of work [8] implements separate

band selection mechanisms from classification frameworks

which partially alleviates the initial data requirements; re-

markably, the dimensionality reduction is carried out with

the aid of deep networks, while the classification relies on

shallow models. Additionally, although the target decision-

making task is image classification, all spatial information

is discarded when performing band selection, which is done

purely based on pixel-level spectral information. We hy-

pothesize there is an advantage to performing the band se-

lection and the machine learning tasks on comparable do-

mains. Further, we believe that it is more sensible to impose

capacity constraints on the dimensionality reduction front-

end than on the intelligence back end.
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We propose a framework for supervised band selection

that leverages a surrogate, low-capacity deep network em-

ploying a contrastive loss function. While the proposed

band selection mechanism is classifier-agnostic, we demon-

strate its performance towards the goal of object detection

from multispectral imagery, arguably a more difficult one

than the more commonly implemented pixel- or image-level

classification decision-making tasks. The contributions of

this paper can be summarized as follows:

• We introduce the use of a highly data- and computa-

tionally efficient surrogate network to aid the band se-

lection process; the nature of the network allows it to

operate on significantly reduced corpora, thus alleviat-

ing data, label and computational requirements.

• The computational efficiency of the proposed approach

is accentuated by the need to train a single surrogate

network, in contrast with some existing methods which

require learning separate classifiers for each band se-

lection scenario and/or each class under consideration.

• While the proposed band selection framework is

classifier-agnostic, the features on which it relies are

well-matched with those used by deep convolutional

networks.

• We empirically demonstrate the effectiveness of the

proposed framework on a building detection task car-

ried out on the Paris portion of the SpaceNet [1]

dataset.

This paper is organized as follows: Sec. 2 provides an

overview of relevant literature. Sec. 3 describes the pro-

posed discriminability metric and the network architecture

leveraged in its computation. Sec. 4 describes the exper-

imental framework and results, and Sec. 5 concludes the

paper.

2. Related Work

Generally speaking, dimensionality reduction tech-

niques for hyper and multispectral imagery fall in one of

two categories [24]: feature extraction [4] and band selec-

tion (sometimes referred to as feature selection) [2]. Feature

extraction approaches aim at estimating lower-dimensional

representations of the signal [24, 23], while band selection

techniques attempt to find an optimal subset of bands based

on some criterion [2, 16]. The main advantage of band se-

lection techniques is that the resulting compressed repre-

sentation maintains the physical interpretation present at the

source [14].

Band selection approaches can in turn be classified as un-

supervised [7, 13, 20] and supervised [8, 3, 17], while some

frameworks combine both supervision modalities [21, 5].

As their name implies, unsupervised techniques do not re-

quire labels to operate; due to their task-agnostic nature,

they can be applied in a wide variety of scenarios. However,

their performance suffers relative to supervised approaches,

which take advantage of task-relevant labels. When the

band selection is effected simultaneously with the main

analysis task, the band selection framework falls in the

wrapper category [19]; in contrast, when the band selection

is performed before the main task, the approach is termed

a filter. While filter approaches tend to suffer in terms of

performance, their advantage is that they can be trained in-

dependently of the main classifier, and thus, are not subject

to the same computational and data volume requirements.

This is particularly beneficial in cases where the main clas-

sifier is a supervised deep framework, as those tend to be

data- and computationally demanding. In this paper, we

propose a filter approach which affords a significant sav-

ings in data and computational requirements relative to the

deep network used for the object detection task.

Recently, in line with the increasing popularity of deep

frameworks that can be trained in an end-to-end fashion,

supervised band selection approaches that are built into the

network architecture have been proposed [16, 17]. The au-

thors of [16] implement an attention mechanism on top of

the classifier which identifies the most informative bands in

a dataset during the training process for a given task. In con-

trast, the framework from [17] identifies the most influen-

cial bands by measuring the contribution of each band to the

overall loss being optimized. Unfortunately, both of these

methods are wrappers, and as such require the availability

of a large, labeled set of imagery, since they tap into the

iterative training process of the network used for the main

task. This partially defeats the purpose of a dimensionality

reduction scheme whose aim is to reduce data requirements

and computational loads throughout the various stages of

the process. With this in mind, we propose a filter-type,

classifier-agnostic band selection approach that is able to

operate on significantly reduced corpus of labeled data.

The method from [8] is most similar to the one proposed

herein, as it operates independently of a classifier and lever-

ages a neural network. However, the identified features are

not necessarily well matched to the implemented classifiers,

which are shallow in nature (i.e., a k-nearest neighbors clus-

tering algorithm and a regression and a classification tree).

While the architecture of our proposed band selection net-

work is different than that of the classifier used to demon-

strate its efficacy –a natural consequence of its decreased

capacity and lower data requirements–, the band selection

is performed on features that more closely match the do-

main of operation of the classifier.

In order to enable data-efficient band selection, we lever-

age the siamese network architecture [12], first introduced

to be employed in scenarios where data scarcity is an is-

sue, including few-shot learning tasks. We extract band-

dependent representations of input samples and measure the
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discriminability of each band from the normalized inter-

class separation of its resulting embeddings. We train

the network with a contrastive loss [9], which encour-

ages samples from the same/different class to be mapped

onto nearby/distant points in the embedding manifold. We

demonstrate the performance of the proposed framework on

the task of object detection. To that end, we leverage the

publicly available SpaceNet [1] dataset, and modify the ar-

chitecture of the YOLO network [18] to support processing

of multispectral imagery.

3. Estimating Band Discriminability

In this section, we introduce the framework used to es-

timate the discriminative power of each of the bands avail-

able for the ultimate object detection task. As stated, the

desired characteristics of the band selection architecture are

data and computational efficiency, as well as the ability to

operate on a feature space that resembles that of the classi-

fier, in our case, the fully convolutional YOLOv2 network.

Given these considerations, we leverage the data efficiency

of the siamese architecture [12] and implement a convolu-

tional version of it. Fig. 1 illustrates the architecture of the

network. Each branch in the model consists of a sequence

of convolutional layers followed by PReLU [11] activations

and max-pooling layers. The two-dimensional feature map

output by the convolutional stages is flattened into a vec-

tor that goes through two additional fully connected layers,

resulting in a vectorial embedding of length 256.

As illustrated in Fig. 1, the value of a contrastive loss

function [9] is computed between the siamese activations at

the last layer. Specifically, let N denote the minibatch size,

(x
(i)
1 , x

(i)
2 ) the length-m network activations (in our case,

m = 256) for the i-th sample pair in the batch, and y(i)

their corresponding label: y(i) = 1 if both samples belong

to the same class, and y(i) = 0 otherwise. Let X1 and X2

be the N × m matrices obtained by stacking the set of N

activations, x
(i)
1 and x

(i)
2 respectively, and Y be the N × 1

vector containing the correspondingly stacked labels, y(i),

for i = 1, 2, . . . , N . The contrastive loss takes the form:

L(X1,X2,Y) =
1

N

N
∑

i=1

[

(1− y(i))D(x
(i)
1 , x

(i)
2 )2+

y(i) max(0,M−D(x
(i)
1 , x

(i)
2 ))

]

(1)

where D denotes a distance metric, in our case the Eu-

clidean distance, and M a scalar margin selected via hy-

perparameter optimization.

We extract 200 8-channel patches, each with 64 × 64
pixels, chosen randomly from the training set. We separate

the 8-channel patches into 8 single-channel images and feed

them to the siamese network from Fig. 1. The labels asso-

ciated with the images reflect whether they were extracted

from the ‘background’ class or from the ‘object’ class. In-

stead of implementing a generic contrastive learning proce-

dure wherein random pairs of patches are fed to the net-

work, we constrain the pairs of patches to belong to the

same band. In other words, for any particular training pair,

the network sees a pair of image patches extracted from the

same spectral channel. This is because we want to be able to

measure feature discriminability at the band-level in order

to perform band selection; with this goal in mind, learning

attributes that differentiate images from different spectral

bands is not relevant.

Once the network is trained, we estimate the discrim-

inative abilities of each band by measuring the degree of

separation between the learned embeddings of the training

images corresponding to each class for each spectral band

individually. Specifically, we measure between- or inter-

class variance for features from band j, denoted as σ2
b
(j)

according to:

σ2
b
(j) = ω0(j)ω1(j)(µ0(j)− µ1(j))

2 (2)

where ωi(j) and µi(j), for i = 0, 1, denote the fraction of

samples and the mean embedding vector for class i, respec-

tively, for the training data corresponding to band j. σ2
b
(j)

measures how far apart the clusters corresponding to the

embeddings of the different classes are located with respect

to each other; however, it doesn’t consider the spread of

each individual cluster. Discriminative features should push

the embeddings of samples from different classes apart,

while pulling the embeddings of samples from a given class

close together. The spread of the clusters of embeddings

of samples from individual classes for features from band

j can be measured via the within- or intra-class variance,

denoted as σ2
w
(j) and computed according to:

σ2
w
(j) = ω0(j)σ

2
0(j) + ω1(j)σ

2
1(j) (3)

where σ2
i
(j), for i = 0, 1, denotes the variance of the em-

bedding vectors for class i and band j. We measure the

discriminative capabilities of band j by computing the ratio

of the inter-class variance to the total variance, according

to:

∆(j) =
∥

∥σ2
b
(j)⊘ (σ2

b
(j) + σ2

w
(j))

∥

∥ (4)

where ‖·‖ denotes the Euclidean norm and ⊘ denotes the

element-wise, or Hadamard division between vectors.

Eq. 4 enables estimation of the discriminative ability of

features extracted from each individual band j. In order

to select a subset of bands, we need to take into account

the interaction between the bands. It is well known that

good features are not only discriminative but also largely
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Figure 1: Siamese network architecture.

uncorrelated with each other [10]. With this in mind, cross-

correlation coefficients across the embeddings correspond-

ing to different bands are computed. The band selection

process consists in ranking the bands according to their dis-

criminative abilities (based on Eq. 4) and selecting bands

whose cross-correlation coefficient with bands already se-

lected does not exceed a predetermined threshold. If the

full set of bands is processed without having selected the

number of required bands, the remaining bands are selected

from the subset of bands with the largest discriminability.

Alternatively, the cross-correlation coefficient threshold can

be iteratively increased.

The described band selection method assumes that the

classification task involves two classes. In our case, the

classes of interest are ‘building’ and ‘background’. In a C-

class classification task, where C > 2, the siamese network

is trained in a similar fashion. The resulting embeddings are

analyzed in a slightly different manner: in a class-level se-

lection framework, C − 1 one-vs-all discriminative metrics

for each band (Eq. 4) and C − 1 cross-correlation matrices

are computed. The band selection is then performed inde-

pendently for each class. In a global selection framework,

the selection process can operate on an aggregate per-band

discriminative metric and a single cross-correlation matrix.

Note that some supervised band selection methods in exist-

ing literature require the construction of one framework per

band and/or one framework per class, which can quickly

become unmanageable.

4. Experiments

4.1. Dataset

The effectiveness of the proposed band selection method

was tested on an object detection task on multispec-

tral imagery from the Paris portion of the SpaceNet [1]

dataset. The SpaceNet Paris corpus includes approxi-

mately 1,030km2 full-resolution 30cm imagery collected

from DigitalGlobe’s WorldView-2 commercial satellite and

includes 8-band multispectral data. The dataset also in-

cludes 23,816 building labels extracted from the imagery.

The 8-band, multispectral images include the following

bands: Coastal Blue, Blue, Green, Yellow, Red, Red Edge,

Near Infrared 1 (NIR1), and Near Infrared 2 (NIR2). The

object detection performance was tested on a total of 4,591

8-channel images, each with 416× 416 pixels per channel.

An 80/20 partition scheme was implemented, meaning that

the training set comprised 3,674 images while the test set

included 917. Fig. 2(a) shows a sample image and Fig. 2(b)

shows its corresponding annotation file; these images illus-

trate the type of data used in the object detection task. As

stated, the band selection was effected on a subset of 200

8-channel patches, each with 64 × 64 pixels, representing

a mere 0.1% of the total amount of training data available

for the detection task. Fig. 2(c) shows two sample patches

used for band selection purposes, one for the building class

(green box) and one for the background class (red box).

4.2. Experimental Setup

A modified YOLO [18] network was used as the ob-

ject detector of choice. Support of multi-channel imagery

was achieved by incorporating the Geospatial Data Abstrac-

tion Library (GDAL) [6] which enables reading and writ-

ing raster and vector geospatial data formats. The detection

framework was executed on a machine with an Intel Core i7

quad-core processor, 64GBytes of RAM, 3TBytes of stor-

age and dual nVidia GeForce GTX 1080 GPUs, each with

11GBytes of video RAM. The machine ran Ubuntu 18.04,

with nVidia driver version 415.27 and CUDA version 10.0.

The band selection framework, in contrast, was executed

on a MacBook Pro with an Intel Core i7 quad-core proces-
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(a) (b)

(c)

Figure 2: Example images from SpaceNet: (a) RGB im-

age and (b) corresponding annotation image used for object

detection purposes; and (c) sample positive and negative ex-

tracted patches used for band selection purposes.

sor and 32GBytes of RAM and 500GBytes of storage. In

line with our view that band selection should be a resource-

constrained (both computationally and in terms of data) pro-

cess, no GPU acceleration was leveraged for band-selection

purposes.

4.3. Performance Metrics

We evaluate the performance of a given detection algo-

rithm based on the mean average precision (mAP) metric,

which has become a standard in object detection challenges.

The mAP is the average of the maximum precisions across

different recall values, obtained as the detection threshold is

varied. Since it is derived from the Precision-Recall curve,

we sometimes include the curve to facilitate visual exami-

nation of performance, particularly when multiple systems

are being compared. Precision and Recall are functions of

the number of true positives, false positives and false neg-

atives. We determine a detection to be a true positive if its

intersection over union (IoU) with the ground truth annota-

tion is larger than 0.5 and a false positive otherwise. A false

negative is an annotation without a corresponding detection

with larger than 0.5 IoU. Fig. 3 illustrates the dependence of

the triggered detections on the value of the detection thresh-

old as a building detection algorithm is applied to the image

from Fig. 2(a). As expected, the number of detections de-

crases as the detection threshold is incrased, which results

in reduced true and false positives, as well as increased true

and false negatives.

(a) (b)

(c) (d)

Figure 3: Triggered detections as threshold is increased.

4.4. Preliminary Results

By way of an initial sanity check, we computed the per-

formance of an eight-band detection system as the learning

process took place. The curves in Fig. 4 show the Precision-

Recall behavior of the system after having learned from 4,

6, 8 and 10 thousand labeled samples. It can be seen that,

as expected, the area under the curve (or, equivalently, the

mAP) increases as the learning process progresses.

Next, we compared the performance of systems naı̈vely

operating on one-, three-, six- and eight-band imagery. The

selection criterion in this case was approximately uniform

sampling of the spectrum. The bands selected were Band

4 (Yellow) for the one-band case, Bands 2, 4 and 6 (Blue,

Yellow and Red Edge) for the three-band case and Bands

1, 2, 4, 5, 7 and 8 (Coastal Blue, Blue, Yellow, Red, NIR1

and NIR2) for the six-band case. No principled band selec-

tion approach was carried out for this experiment. Fig. 5

contains the results. As expected, having access to larger

number of bands affords a system improved detection per-

formance.

4.5. Band Selection Results

In order to test the efficacy of the proposed band selec-

tion framework, YOLO-based object detectors were trained

on modified datasets containing one-, three- and six-channel
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Figure 4: Precision-Recall curves for an eight-band detec-

tion system as a function of iteration number.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Recall

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
re

c
is

io
n

1-band

3-band

6-band

8-band

Figure 5: Precision-Recall curves for one-, three-, six- and

eight-band detection systems.

imagery. The choice of channels in the imagery were pro-

vided by three different methods, namely: (i) the naı̈ve se-

lection method described in Sec. 4.4 where bands were se-

lected to achieve approximate uniform spectrum sampling;

(ii) the method from [8], which we consider to be state-of-

the-art and closest in nature to our proposed method; and

(iii) our proposed method.

4.5.1 Discriminability and Cross-correlation Esti-

mates

The algorithm described in Sec. 3 on a subset of 1600

one-channel patches of dimensions 64 × 64 pixels (result-

ing from spectrally splitting 200 8-channel patches of the
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Figure 6: Estimated discriminative power of each of the

spectral bands in the Paris dataset (larger is better).
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Figure 7: Cross-correlation matrix for the feature embed-

dings across all bands (larger means higher correlation).

same spatial dimensions) extracted from training set im-

agery, 800 corresponding to each class, namely ‘building’

and ‘background’. The curve in Fig. 6 illustrates the esti-

mated discriminative power for each of the eight bands un-

der consideration as estimated by Eq. 4. Band 7 (NIR1)

and Band 1 (Coastal Blue) were deemed to be the most

and least discriminative bands, respectively, by the pro-

posed surrogate network approach. The heat map in Fig. 7

shows a pseudo-colored version of the cross-correlation ma-

trix R ∈ R
8×8 for the feature embeddings across all bands:

entry R(i, j) corresponds to the cross-correlation coeffi-

cient between bands i and j, for i, j = 1, 2, . . . 8; note that

R(i, j) == R(j, i). There is a strong tendency for neigh-

boring bands to be correlated with each other, as intuition

would indicate.

4.5.2 Single-Band Results

Our proposed method selected Band 7 (NIR1), as evidenced

by the results illustrated in Fig. 6. The naı̈ve method se-
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Table 1: Detection performance in mAP (larger is better)

T/M One Band Three Bands Six Bands

Uniform 0.8288 0.8257 0.8385
Ref. [8] 0.8263 0.8278 0.8371
Proposed 0.8359 0.8372 0.8395
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Figure 8: Precision-Recall curves for competing one-band

detection systems.

lected Band 4 (Yellow), while the method from [8] selected

Band 3 (Green) for a single-band system. The Precision-

Recall curves for these three band choices are shown in

Fig. 8. The resulting mAP figures are included in Table 1

(leftmost column); the table entries correspond to 4-run av-

erages. It can be seen that the system based on the single

band selected by the proposed framework outperforms the

competing methods. Further, it can be seen that the band

discriminability predictions derived from Eq. 4 and plot-

ted in Fig. 6 correspond with the observed performance,

with Band 7 (our method) outperforming Band 4 (naı̈ve ap-

proach), and Band 4 in turn outperforming Band 3 (method

from [8]).

4.5.3 Three-Band Results

Selection of three bands involves iteratively identifying the

individual band with the largest discriminative ability ac-

cording to Eq. 4 and with a correlation coefficient with pre-

viously selected bands smaller than a predetermined thresh-

old. Using a threshold of 0.95, the first band selected is

Band 7 (NIR1), followed by Band 2 (Blue) –Band 8 (NIR2)

can’t be selected given its high correlation with Band 7,

in spite of its high discriminability– and Band 5 (Red).

We point out that R(7, 8) = 0.986, R(2, 7) = 0.660,

R(5, 7) = 0.764 and R(2, 5) = 0.914. According to
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Figure 9: Precision-Recall curves for competing three-band

detection systems.

the uniform sampling approach, the naı̈vely selected set of

bands comprises Bands 2, 4 and 6 (Blue, Yellow and Red

Edge). The method from [8] selected Bands 3, 5 and 8

(Green, Red, and NIR2).

The resulting mAP figures are included in Table 1 (center

column) where, again, the table entries correspond to 4-run

averages. The system based on the three bands identified by

the proposed approach outperforms the other two sampling

approaches. Fig. 9 contains the Precision-Recall curves for

the three competing methods.

4.5.4 Six-Band Results

Continuing to build on the output of the three-band selec-

tion procedure, Bands 7, 2 and 5 are selected first. Since

all remaining bands violate the cross-correlation constraint,

Bands 8, 4 and 3 (NIR2, Yellow and Green) are selected

next, in descending order of estimated discriminability. Ac-

cording to the uniform sampling approach, the naı̈vely se-

lected set of bands comprises Bands 1, 2, 4, 5, 7 and 8

(Coastal Blue, Blue, Yellow, Red, NIR1 and NIR2). The

method from [8] selected Bands 1 through 6 (Coastal Blue,

Blue, Green, Yellow, Red and Red Edge). The Precision-

Recall curves for these three band choices are shown in

Fig. 10. The resulting mAP figures are included in Table 1

(rightmost column); as before, the table entries correspond

to 4-run averages. The system based on the six bands iden-

tified by the proposed approach outperforms the other two

sampling approaches, although in this case by smaller mar-

gins than in the previous scenarios. We believe this is be-

cause the band choice becomes less important as the spec-

tral sampling scheme becomes denser and the full amount

of available bands is approached.
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Figure 10: Precision-Recall curves for competing six-band

detection systems.

4.5.5 Impact of Band Cross-Correlation

Although a rigorous study on the impact of band cross-

correlation on the performance of the detection system is

beyond the scope of this paper, in this section we delve fur-

ther into trends observed with regards to systems where the

bands in the selected set exhibit larger cross-correlation rel-

ative to competing systems. Consider the six-band choice

by the method from Ref. [8] where the selected bands are

contiguous, and note that its performance is worse than both

of the competing methods. In contrast, for the three-band

case, the same method outperformed the system operating

on a set of arguably more highly correlated bands picked

by the naı̈ve approach. To further validate the hypothe-

sis that high feature cross-correlation is detrimental to ul-

timate performance, we considered a hypothetical detec-

tion system based on a traditional RGB camera. We note

that RGB bands exhibit high cross-correlation, being that

they are close spectral neighbors, and the narrowest spec-

tral spread of any three-band system considered. The mAP

resulting from an average of 4 runs was 0.8203, lower than

any other three-band system evaluated.

5. Conclusions

We proposed a highly data-efficient framework for su-

pervised band selection in tasks related to automated anal-

ysis of hyper- and multispectral imagery. The framework

comprises a surrogate convolutional siamese network op-

timized based on a contrastive loss function. The embed-

dings of the training samples learned by the surrogate net-

work are analyzed to extract band-level discriminability and

cross-correlation metrics that aid the band selection pro-

cess. We demonstrated the efficacy of the proposed frame-

work via extensive empirical evaluation on the task of ob-

ject detection from aerial imagery, and compared its perfor-

mance against uniform and state-of-the-art supervised sam-

pling techniques. In spite of the ultra low data and compu-

tational requirements imposed by the approach, the results

show that it can effectively identify the most relevant spec-

tral bands given a desired number of target bands.
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