
 

 

 

Abstract 

 

In this paper, a method to segment out gas or steam 

plumes in IR videos collected from fixed cameras is 

presented. We propose a spatio-temporal U-Net 

architecture that captures deforming blobs of gas/steam 

plumes that have a unique temporal signature. In this task, 

the blob shapes are not semantically meaningful and 

change from frame to frame with no consistency across 

different exemplar plumes; however, there is spatial and 

temporal continuity in the way blobs deform suggesting a 

need for a low-level spatio-temporal segmentation network. 

The proposed method is compared to an LSTM-based 

segmentation network on a challenging IR video dataset 

collected in a controlled environment. In the controlled 

dataset there is motion due to steam plumes with deforming 

blob patterns as well as due to walking people with more 

structured high-level patterns. The experiments show that 

plume patterns are successfully segmented out with no 

confusion to moving people and the proposed 

spatio-temporal U-Net outperforms LSTM-based network 

in terms of pixelwise accuracy of output masks. 

1. Introduction 

Thermal monitoring and inspection of industrial assets 

using Long-wavelet Infrared (LWIR) or Mid-wavelet 

Infrared (MWIR) cameras is an important application with 

several use cases. Infrared modality is preferred over visible 

range as it provides more robustness against illumination 

changes, shadows and has obvious advantages when 

observed phenomena has a distinct thermal signature. 

Plume detection is one such application where methane and 

other types of gas leaks present a distinguishable pattern 

with good thermal contrast to background depending on the 

leak rate. There are several cameras that are specifically 

tailored to leak inspections [1]; however, the concept of 

operations still involves a human inspector observing the 

camera feed and manually segmenting out plumes if 

present. This is a labor-intensive procedure for the inspector 

and also prone to human errors. In this paper, a generic 

spatio-temporal segmentation framework is proposed to 

automate plume detection process where a plume 

segmentation mask is provided as output for each frame in 

an input video sequence. Accurate and detailed frame by 

frame segmentation masks can robustly signal existence of a 

leak as well as enabling quantification of leak rate by further 

analysis [2].  

 
Figure 1: A sequence-to-sequence encoder-decoder model with 

the proposed temporal extension to U-Net. The output masks are 

different in each frame capturing the deformation of the plume in 

the input sequence. Note that the plume is water vapor in this case 

and it is barely visible to human eye. On the output mask, green 

pixels show the ground-truth plume annotation and red pixels 

show the plume prediction. 

In this paper, a generic end-to-end deep learning 

framework is proposed to process a sequence of IR images 

captured from a fixed camera that delineates low level 

spatial patterns with a temporal coherence from other types 

of movement or from background. This network is designed 

for use cases where the camera is observing a portion of the 

facility where humans/vehicles can be occluding the scene 

from time to time or there are other types of spatio-temporal 

motion such as background thermal fluctuations due to 

vegetation, wind, reflections, etc. More specifically, a 

spatio-temporal encoder-decoder network extending a 

spatial U-Net [3] to temporal domain is proposed to create a 

pixel-level mask for each frame in an input sequence, see 

Figure 1. Note that the proposed algorithm is generic and 

would apply to segmentation of plumes from different types 

of gas or steam in LWIR or MWIR video in both 

hot-foreground or cold-foreground scenarios. The proposed 

algorithm is a supervised technique which requires frame by 

frame ground-truth annotations in a set of training 

sequences. 

An alternative network architecture is to restrict the 

decoder and encoder to spatial domain while capturing a 

temporal signature in the encoding space, see Figure 2. Such 

an architecture can be accomplished as a combination of 

standard LSTM cells with spatial encoders and decoders 

which are commonly employed in semantic segmentation 

tasks such as DeConvNet [5] and SegNet [6]. With this 
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architecture, temporal relations in the final high-level 

encoding space are captured by the recurrent structure. 

Such a network would cover use cases where the nature of 

temporal phenomena builds upon high abstractive concepts. 

For example, concepts such as head, limbs etc. which are 

observed in human pose space for purposes of human action 

recognition and segmentation on a per-frame basis. 

However, in our use case, the shape of the plume is not 

semantically meaningful, has low abstraction, high texture 

and changes from frame to frame with no consistency across 

different exemplar plumes. This phenomenon suggests 

using a spatio-temporal encoder-decoder scheme as 

proposed in this paper which can capture and isolate 

lower-level patterns. 

 
Figure 2: A sequence-to-sequence encoder-decoder with an 

alternative LSTM-based recurrent neural network which performs 

only spatial encoding and decoding on a per-frame basis and 

learns temporal patterns only in the encoding space. Note that the 

hidden state of decoder LSTM is initialized with the final state of 

encoder LSTM. The output masks are the ground-truth plume 

annotations and red pixels show the plume predictions. 

In Section 3,  we explain the network architecture of the 

proposed technique as well as the alternative LSTM-based 

segmentation network in more details. In Section 4, we 

explain details of our dataset: a set of 12 IR video sequences 

which are collected in a controlled environment where 

water vapor is escaping from a steamer in varying rates. 

This IR steam video database will be made publicly 

available in support of further research. In Section 5, we 

provide comparison of the methods proposed in this work 

and show that the spatio-temporal U-Net successfully 

segments out water vapor patterns without confusion to 

more structured moving human patterns that occlude the 

steam from time to time while outperforming LSTM-based 

technique. 

In summary, the contributions of the paper are: 

• Extending spatial U-net architecture to temporal domain 

for purposes of creating pixelwise segmentation masks from 

IR image sequences that capture low-level temporal 

phenomena such as deforming gas/steam plumes. 

• A database of 12 IR video sequences captured in 

controlled environment with varying steamer settings and 

occlusion conditions. 

• Comparative performance analysis of the proposed 

network on the IR steam video database where an 

LSTM-based temporal segmentation network is used as an 

alternative. 

2. Related Work 

Due to uncertainty and complexity of gas flow in leaky 

regions, early plume detection algorithms that use linear 

classifiers fail to capture the spatio-temporal patterns and 

result in a poor performance. In [23], temporal redundancy 

is used to estimate the location of plume followed by a 

Binary Partition Tree which is finally pruned according to 

the previous estimate to identify the extent of plume. The 

temporal redundancy assumption is no longer valid if the 

plume trajectory is non-linear. 

Principal Component Analysis (PCA) is used in [24] to 

reduce the dimensions of multi-channel IR video to retain 

the most information. This is followed by image processing 

and clustering techniques to remove flicker for maintaining 

a consistent pixel signature. However, plumes that arise 

from small cross section or those that move slowly 

compared to the median velocity will be treated as noise by 

PCA which otherwise could be very important. For gases 

that travel at higher velocities or that have an abrupt 

acceleration in the initial frame, the pixel signature 

consistency can no longer be maintained. 

Different image processing techniques such as Discrete 

Cosine Transform (DCT), Continuous Wavelet Transform 

(CWT), Hidden Markov Models (HMM) etc. were used to 



 

 

detect flame and smoke from videos [25-30]. [30] uses a 

Hidden-Markov model to analyze the temporal behavior of 

smoke but the stationarity assumption is no longer valid 

when spatio-temporal correlation is at play. Such statistical 

methods frequently fail when dealing with non-linear data 

because of underlying linearity assumptions in 

mathematical models and they suffer from the curse of 

dimensionality [24]. This motivates use of a CNN based 

technique which can capture non-linear relationships and 

learn complex problem-specific feature spaces to separate 

out background phenomena from plume patterns.  

Abnormal plume patterns would be reflected in the 

fine-detail texture features that are present in the lower 

layers of a CNN. However, we should notice that an 

unknown pixel activation in the lower level layers can also 

be categorized as abnormal if it is present in the blob of 

abnormal plume patterns in higher levels of the abstraction 

hierarchy, i.e. in cases where the receptive field of the first 

layer is not large enough to capture the whole blob. So, in 

order to create a fine grained and accurate segmentation 

map, a U-Net [3] type architecture is needed which can 

exploit the lower layers for texture and higher layers for 

context. This idea has been explored in other tasks such as 

image restoration [9]. 

In plume detection use case, temporal low-level patterns 

also need to be learned from a stack of input frames. Action 

recognition literature provides examples of spatiotemporal 

feature extraction techniques. For example, [33] exploits 

3D convolutions over spatial and temporal dimensions 

proving the value of the technique in comparison to 2D-only 

feature extraction on multiple frames followed by various 

temporal fusion techniques. Similar 3D convolution idea is 

also applied in IR domain [32] for action recognition task.  

 
Figure 3: Input layer of proposed network with 8 single channel 

frames with size 128x128 where spatial convolutions of kernel 

size 3x3 and stride 1x1 are applied to all frames. Convolution 

kernels applied to all eight frames have shared weights but there 

are 16 sets of kernels producing an output tensor of size 

128x128x8x16. 

In the field of spatio-temporal data, videos are well-studied, 

for tasks such as video-prediction, human action 

recognition and pose estimation etc.  Almost all of these 

propose a hybrid of two powerful neural network models 

the CNN, for capturing spatial information and the RNN, 

for capturing temporal information. Such a CONV-LSTM 

model was first proposed for precipitation nowcasting [10]. 

A CNN is first used to extract spatial features followed by 

an LSTM to learn temporal features of variation. Following 

their work, several attempts were made to combine a CNN 

and an LSTM for spatio-temporal feature extraction 

especially for combining computer vision and natural 

language processing tasks such as image/video description 

generation [11-13], visual activity recognition [14], video 

classification [15] and, traffic flow forecasting [16]. For 

predicting citywide crowd flows, [17] proposed a deep 

spatio-temporal residual network in which the input frames 

are grouped into distant, near and recent frames that are 

eventually fed through a CNN to obtain features from 3 

different times. 

Inspired from their success, spatio-temporal models are also 

applied to graph structured data, while a few are a direct 

extension of the models used for structured data, others are 

modified with graph convolutions. Structural-RNN [18], a 

spatio-temporal graph is modelled into a mixture of 

recurrent neural networks for human pose estimation. [19] 

uses a diffused convolutional layer for extracting spatial 

features from each timestamp of a graph structured input 

followed by an encoder-decoder LSTM network. A Graph 

Convolutional Network (GCN) is used in [20-21] to extract 

spatial features. While a gated CNN is used to extract 

temporal features in [20], spatial features are fed to a Gated 

recurrent unit (GRU) in ST-UNet of [21]. The U-net 

structure processes the data through multiple scales in order 

to understand the local and global properties in the input 

data for pixel-level tasks as introduced in [22]. It has the 

capacity to represent both the global information and also 

the locally distributed features. ST-UNet achieves the 

required multi-granularity using spatio-temporal Pool and 

Unpool operations. Note that though we picked the same 

abbreviation as ST-UNet for the architecture proposed in 

this paper, our ST-UNet is significantly different from [21]. 

The architecture proposed in this paper uses 3D 

convolutions to capture non-linear temporal features at 

multiple scales as opposed to a GRU. 

3. Spatio-temporal Segmentation Networks 

In this section, we will provide more detailed 

descriptions of proposed temporal extension to U-Net, 

Section 3.1, and the alternative LSTM-based 

encoder-decoder network, Section 3.2. Note that all the 

figures in these sections will be provided for input frames of 

size 128 by 128 but the input layers can be extended to any 

size since both networks entail only convolutions or 

deconvolutions and no fully connected networks. Also, we 

chose the length of image sequence as 8 frames without loss 

of generality. 

3.1. Spatio-temporal U-Net (ST-UNET) 

The proposed network consists of an encoder followed by 

a decoder unit that are comprised of spatial and temporal 



 

 

convolutions during the encoding phase and transpose 

convolutions during the decoding phase. The input layer 

consists of spatial convolutions as shown in Figure 3, 

generating eight activation maps  with shared 

weights applied to each of the eight frames. If the plume 

patterns exhibited linear temperature profiles as in Figure 4, 

then plume could be separated from other phenomena by 

just calculating the slope: 

( 1 ) 

Using any gradient descent optimizer, there exists weights 

 which can be trained to 

represent  as the plume heat 

transfer pattern. A single 3D convolutional layer as in 

Figure 4 would be able to represent this sum and learn the 

necessary slopes in temporal dimension.  

 
Figure 4: 3D convolution with one layer capable of capturing 

differences between patterns of linear temperature variation 

profiles.  

However, there are more complex non-linear variations 

in temperature profile of plume blobs over time as 

illustrated in Figure 5. To mitigate this, we propose to add a 

hidden layer and introduce nonlinearity using nonlinear 

activation functions like sigmoid, ReLU etc. 

 
Figure 5: Neither target plume patterns nor other background 

phenomena do not necessarily follow linear temperature profiles 

over time. A 2-stage 3D convolution is applied to capture 

nonlinear patterns in temporal dimension.  

For our architecture, we are using a 3D convolutional block 

with a hidden layer as shown in Figure 6. First stage consists 

of 16 filters with a kernel of size 3x1x1 and stride 2x1x1. 

Second 3D convolutional layer consists of 16 filters each 

with a kernel of size 3x1x1 and stride 2x1x1. 

 
Figure 6: 3D convolutions applied in two stages to extract 16 

temporal feature maps with a final tensor size of 128x128x1x16. 

From here onwards, all the 2D convolutional layers have 

kernel size 3 x 3 and stride 2 x 2 to halve the resolution and 

the number of filters is doubled after each stage, see Figure 

7.  

 
Figure 7: Full network architecture of proposed spatio-temporal 

U-Net (ST-UNet). Left side is the encoder network and right side 

is the decoder network. The arrows denote spatial, temporal and 

transpose convolution operations following the same color palette 

in Figure 6.  

For the decoding stage, we have feature maps from 6 stages 

each varying in degree of texture and context they capture. 

Starting from the 4 x 4 x 512 feature map of stage-6 which 

captures the highest context (largest receptive field), we 

increase the resolution of the segmentation map 

incrementally by incorporating higher context from ith stage 



 

 

with fine-detailed texture from (i-1)th stage via the 

operations shown in Figure 8. During the decoding stage, 

the 2D transpose convolutional layer has a kernel size of 3 x 

3 and stride 2 x 2 to double the resolution and the 2D 

convolutional layer has a kernel size of 1 x 1 and stride 1 x 

1. 

 
Figure 8: Decoding stage operations on a given layer where 

feature map size from previous layer is doubled via transpose 

convolutions and the temporal feature map of encoding layer is 

concatenated to the feature map of the current layer.  

Figure 7 shows full architecture of the proposed network 

where the output is a binary mask per 8-frame sequence 

separating plume pattern from all other phenomena. The 

ground-truth mask of the last frame in an 8-frame sequence 

is used to train the network. During training, the energy 

function of U-Net is used where a pixelwise soft-max over 

the final feature map is combined with the cross-entropy 

loss function. Since this is a relatively shallow network, no 

weight initialization schemes with other tasks such as 

compression-decompression are used but rather all weights 

are initialized randomly. 

Requiring one ground-truth mask per 8-frame sequence is 

advantageous as it reduces the amount of annotation 

required to create training datasets. However, an alternative 

network, ST-UNet-Full is also implemented with a slight 

variation to the decoder network architecture where the 

network outputs one mask for each frame in a given 8-frame 

input sequence. With this variation, all 8 ground-truth 

masks are used by the loss function to train the network. 

Although this change increases the network size 

considerably, the experiments in Section 5 show that 

pixelwise precision improves over ST-UNet.   

3.2. LSTM-based Encoder-Decoder 

In this section, the details of the recurrent model that will be 

compared to our proposed temporal U-Net architecture will 

be explained. This model utilizes convolutional LSTM cells 

as the bottle neck structure between the image feature 

encoder and predicting decoder that works as a memory unit 

between multiple consecutive input frames. Here, an RNN 

architecture is trained end-to-end in order to capture the 

dependency between image frames similar to Markov 

Random Processes. This helps the model in learning the 

conditional dependency rules for final decisions on the 

thermal images. 

Each module of recurrent architecture is composed of an 

encoder, an LSTM unit, and a decoder, as shown in Figure 

2. The encoder part of the model is a classical convolutional 

segmentation network encoder which is a very common 

backbone architecture called VGG-8 [31]. It is composed of 

15 convolutional, max pooling and rectified linear unit 

(RELU) layers as shown below in the figure. We also use 

drop-out technique after the 7th conv layer in order to reduce 

the overfitting to the training data. 

Between the encoder-decoder network, the convolutional 

LSTM units are connected by operating on the low 

dimensional (8x8x2) embedded space where these 

embeddings store the useful spatio-temporal features. The 

LSTM unit outputs are connected to a decoding structure 

which is an end-to-end trainable network composed of 

deconvolutional layers that learns to propagate the encoded 

activations back to original input signal resolution in 

addition to inferencing pixel level prediction scores for the 

target labels. This architecture is also inherited from the 

decoder part of VGG8 [31] network. Since VGG is a 

relatively deeper architecture, a version of it with weights 

pre-trained on PASCAL VOC object segmentation 

challenge is used. Weights of LSTM layers were initialized 

randomly. 

3.3. Training 

All networks are trained on 3 GPU's with an effective batch 

size of 12 examples (each example has 8 frames) using 

TensorFlow ADAM optimizer with a learning rate of 

2e-5. Batch normalization is applied after each layer for 

faster training and to reduce overfitting. 

 
Figure 9: IR steam video dataset collected for the experiments in 

this paper. A total of 12 sets are collected with varying humidifier 

speeds and with a person walking and occluding the steam or not.   

4. IR Steam Video Database 

To support comparative study in this paper, a controlled 

environment is set up to collect a series of IR videos using a 



 

 

FLIR T640 camera with a 41 mm lens. In this setup, a 

humidifier with adjustable speeds is used to generate 

varying rates and density of steam plumes. To introduce 

varying foreground conditions, a person walked in front of 

the steamer in some of the videos. A total of 12 videos are 

generated with 3 humidifier settings: very slow, slow and 

medium where 4 videos per setting are collected. For each 

setting, two of the videos contained a human walking in 

front of the camera occluding the humidifier and the plume. 

Figure 9 shows the names of videos as set1, 2, etc and the 

Figure 10: Results on selected frames for LSTM network. Red outlines are ground-truth plume annotations and green outlines are 

predictions of the network. 

Figure 11: Results on selected frames for ST-UNet-Full network. Red outlines are ground-truth plume annotations and green outlines 

are predictions of the network. 



 

 

combinations of environment conditions. 20 to 30 second 

video clips are collected at 30 fps rate. The videos are 

scaled, and contrast enhanced using FLIR SDK with 

emissivity 0.95 and reflective temperature 77°F settings.  

 To support training and performance analysis, a total of 

900 frames are manually annotated with the outline of the 

steam in Sets 1, 3, 4, 5, 6, 7, 9, 10 and 11. A total of 450 

frames are manually annotated with the outline of the steam 

plume in Sets 2, 8 and 12 as a separate test set. 

5. Experiments and Results 

We verify the effectiveness of the proposed spatio-temporal 

U-Net on the IR steam video database. All three networks 

are trained on the annotated training frames by generating 

random exemplars of 8-frame sequences. Standard 

precision and recall measures at pixel level are calculated 

on 8-frame test sequences by comparing ground-truth 

manual annotations to network predictions. For fairness, 

only the last frame’s ground-truth mask is compared to last 

frame’s prediction for all three networks even though 

ST-UNet-Full generates a mask for all eight frames in the 

sequence. Figures 10 and 11 show prediction results as 

overlaid on ground-truth plume annotations for LSTM and 

ST-UNet-Full networks respectively. Table 1 summarizes 

prediction performance of all three networks on test 

sequences from three sets of IR videos. ST-UNet variations 

clearly outperform LSTM-based network especially in 

terms of precision. Even if full plume is not segmented out 

fully (around 70% recall), ST-UNet does a better job at 

overlapping with the ground-truth polygons (better than 

80% precision). LSTM seems to be more vulnerable to 

some random perturbations in the background heat patterns 

generating false alarms at irrelevant parts of the frames. The 

results are especially impressive for Set2 where the plume is 

barely visible to human eye.  

Table 1: Comparison of pixelwise mask prediction performance 

for proposed ST-UNet and ST-UNet-Full architectures with 

LSTM-based network on test video sequences. 
Method  Set12 Set8 Set2 

 Precision Recall Precision Recall Precision Recall 

LSTM 0.70 0.62 0.73 0.76 0.60 0.57 

ST-UNET 0.63 0.68 0.72 0.85 0.67 0.86 

ST-UNET-Full 0.82 0.62 0.84 0.77 0.83 0.71 

6. Conclusions 

In this paper, a deep learning based low-level segmentation 

framework is proposed to detect gas/vapor plumes in IR 

videos. A new IR video dataset is generated by collecting 

sequences in a controlled environment where there is a 

combination of both low-level and high-level 

spatio-temporal motion patterns. The proposed technique is 

shown to isolate low-level plume patterns from high-level 

ones successfully on this dataset as well as outperforming an 

alternative LSTM-based spatio-temporal segmentation 

network. 
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