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Abstract

We consider compressive sensing as a means of
acquiring high-resolution images from low-cost, low-
resolution sensors in the infrared domain. In particular,
we reduce errors arising from basis mismatch between
the observed image and the signal model by modifying a
baseline matching pursuit recovery algorithm. Specifi-
cally, we introduce a modification to the analysis step
which seeks to find more representative image atoms by
searching over a 2-Wasserstein geodesic formed between
the two most-correlated atoms at that step. We test our
extension by quantifying recovery performance on an
ensemble of representative infrared maritime scenes and
find improvement over baseline when measured using
PSNR, SSIM, and a metric that quantifies global edge
recovery performance. We find that the most notable
gains occur for very low sparsity levels which favors
reduced computational load for the recovery.

1. Introduction

Advances in sensor technology have yielded higher
image resolutions than ever before. The obvious ad-
vantages of higher resolution images include increased
performance in problems such as automated detection,
identification, and classification. However, there is an
inevitable initial increase in cost associated with incorpo-
rating new, state-of-the-art components into deployed
imaging systems. While the benefits may outweigh

the cost when limited numbers of imaging systems are
needed, there are many settings in which networks
of imaging systems are required and cost scales pro-
hibitively. In addition, high-resolution (HR) sensors in
wavebands outside the visible spectrum (e.g., infrared)
can also be too expensive for reasonable application.

There has been a push to develop computational
approaches that seek to improve the effective resolution
of images acquired by low-resolution (LR) sensors. Of
these approaches, compressive sensing (CS) [13, 19, 40]
and super-resolution (SR) [33] have received consider-
able attention in recent years due to the availability
of increased computational power. Although CS has
shown promise in the lab, its adoption in deployed sys-
tems has been limited in some part due to the need
to include a dynamic mask within the optical train.
Traditional multi-frame SR [24] also requires a change
in the acquisition model by requiring the accumulation
of multiple frames from which a single higher resolution
image may be constructed−a mandate which effectively
trades time for the possibility of increased resolution.
In both cases, requiring a modification to the acquisi-
tion model and trading time for resolution can limit
adoption by user communities.

As a result, alternatives to multi-frame acquisition
are of interest. One possible approach is single-frame
SR [25, 1] where one means of improving resolution
involves using image models or reconstruction processes
that have been trained on images that are statistically
similar to the images one expects to up-sample and
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where recent advances in sparse coding models and
convolutional neural networks (CNNs) have yielded
significant performance improvements in applications
where access to a set of high-resolution training im-
ages is feasible [46, 38, 17, 18]. There are, however,
applications that preclude the acquisition of a suffi-
ciently representative set of HR images. In particular,
it can be dramatically more expensive to acquire HR
infrared (IR) images (especially labeled images) that
have similar resolution to images acquired in the visible
band. Thus, a key challenge arising in the IR domain
is limited access to HR training data which disquali-
fies many of the state-of-the-art approaches referenced
above. Imaging applications subject to this constraint
are the motivation behind the methodology proposed
herein.

Here we investigate single-shot CS recovery as a
means of acquiring HR images with lower-cost, LR in-
frared imagers. We consider an acquisition architecture
introduced by Romberg [41] and assume access to a
structured dictionary (e.g., discrete cosine transform
(DCT)) where the resolution can be precisely controlled
and use of HR images for training is not required. For
comparison, we also test the method assuming access
to learned, unstructured dictionaries [2, 15, 26] because
they often yield superior image reconstructions (at the
cost of requiring HR training images).

In our approach, we utilize a greedy matching pursuit
(MP) algorithm [7, 32] to reconstruct local LR image
patches from a LR dictionary produced by applying
the CS acquisition model to the HR dictionary. Once
a sparse code describing a LR patch has been found,
we synthesize the HR patch using the HR atoms and
the same set of sparse coefficients found in the LR syn-
thesis. This approach of performing an analysis step in
the compressed space followed by synthesis in the high-
resolution space is known as CoSAMP [34]. Here, we ex-
tend the method by implementing a path-augmentation
step [23, 21] which helps address the known issue of
basis mismatch arising in sparse CS reconstructions
[8, 14]. In addition, we implement the path-augmented
CoSAMP algorithm on image patches with a global
stitching of the recovered patches to produce the final
image reconstruction.

A background on compressed sensing, the CoSaMP
algorithm, and path-augmentation is provided in Sec-
tion 2. In Section 3 we will present our novel path-
augmented image reconstruction algorithm (PAIR). Sec-
tion 4 describes an experimental setup for evaluating
PAIR using paths between atoms and a description of
the three metrics used to benchmark PAIR against the
standard CoSaMP algorithm. Results of the experiment
and a discussion of the findings are presented in Section

5 and Section 6, respectively.

2. Background

2.1. Compressed Sensing

Compressive sensing (CS) is a methodology that
enables higher-resolution digital sampling of natural
phenomena via (1) the design of an acquisition process
that satisfies the restricted isometry property (RIP)
[13, 12, 10] and (2) the selection of good signal models
to reconstruct higher-resolution signals that are under-
sampled according to classical Nyquist sampling theory
[3, 13, 19, 40]. In this case, “good” models are those
that can sparsely represent signals as linear combina-
tions of relatively few atoms drawn from a dictionary.
Signals that can be represented to within some accept-
able error tolerance using at most k atoms are defined
as k-sparse relative to that dictionary. Here, we will use
CS and sparse representation/recovery interchangeably.

CS theory predicts, to a level of probabilistic cer-
tainty, successful reconstruction of an undersampled sig-
nal when the underlying true signal satisfies upper limits
on sparsity relative to a given dictionary [4, 11, 12, 28].
For a fixed dictionary (Ψ) and a signal to reconstruct
(~x) the k−sparse representation can be mathematically
written as

min
~s

||~x−Ψ~s||22 s.t. ||~s||0 = k (1)

where || · ||2 and || · ||0 denote the vector 2-norm and
0-norm, respectively. This problem is non-convex and
no closed form solution exists.

Within the CS framework the search for a k−sparse
representation takes placed in the downsampled, sensed
space that results from the acquisition process. Finding
solutions to Equation 1 quickly becomes intractable
due to its non-convex, combinatorial nature. For this
reason greedy algorithms have been developed to find
good (even if non-optimal) reconstructions.

2.2. Matching Pursuit for Sparse Recovery

Matching Pursuit (MP) algorithms are a set of greedy
algorithms that are used extensively for k−sparse re-
covery problems. MP algorithms are comprised of four
steps which are repeated until a desired level of sparsity
is obtained or a suitable stopping criterion has been
met. These four steps are:

• Identify the dictionary element that is most corre-
lated to the signal (first step only) or the current
residual.

• Append the current most-correlated element to the
support of the reconstruction.
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• Determine the weight of each atom in the current
support.

• Update the residual by subtracting the current
estimate (the weighted sum of the current support)
from the original observed signal.

Differences in MP variants arise from the number of cor-
related elements identified, number of atoms appended
to the support, and how the weights are determined at
each iteration [9, 37, 43, 45, 35, 20, 16, 31].

A variant of the MP algorithm called Compressive
Sampling Matching Pursuit (CoSaMP) has been em-
ployed for a variety of CS tasks [34]. CoSaMP requires
a dictionary from which signals can be reconstructed
(referred to as the measurement matrix ) and a known
forward model for the data acquisition process (called
the sensing matrix/function). Let Ψ = {ψ1, ..., ψD} be
a dictionary composed of high-resolution atoms. Given
a sensing function, denoted F , we can generate a sensed
dictionary Ψ̂ = {ψ̂1, ..., ψ̂D} where ψ̂i = F (ψi).

CoSaMP uses the same general MP steps when
searching for a good k−sparse representation of the
observed/sensed signal with respect to the sensed dic-
tionary. The full resolution signal is then approximated
using the weights identified in the sensed space but
using the corresponding atoms in the high resolution
space. A visual summary of the CoSaMP algorithm is
shown in Figure 1.

2.3. Addressing Basis Mismatch

Basis mismatch refers to the challenge encountered
when discretization of the dictionary used for signal
recovery introduces reconstruction errors. While sig-
nificant effort has been spent on designing dictionaries
which reduce modeling error (e.g. learned, overcomplete
dictionaries constructed from ensembles of expected im-
ages), these prior efforts have not completely solved the
problem because even a perfect signal model will still
have basis mismatch error arising from the discretiza-
tion. Although there is a reduction in basis mismatch
error when using a learned overcomplete dictionary, this
reduction due to overcompleteness comes at the expense
of weaker guarantees on the uniqueness of the k−sparse
representation. Overall, a number of authors have con-
sidered the basis mismatch issue [8, 14, 22, 39, 42, 36]
but the problem remains open.

Here, we will utilize a method for constructing better
patch exemplars from an underlying dictionary that
relies on constructing a geodesic from the optimal
transport map between said atoms (the 2-Wasserstein
geodesic) [44]. This “path-based” augmentation can
be applied to any reconstruction algorithm that relies
on the selection and sorting of high-correlation atoms

during an analysis or identification phase [23] and has
shown recent success in other applications of MP al-
gorithms for sparse recovery and reconstruction [21].
Optimal transport has proven useful in other domains
[29, 21, 27, 30, 5] but this work is the first time that
path-based augmentation appears within the CoSaMP
framework.

The difference between overcompleteness and path-
augmentation can be conceptualized in terms of sam-
pling an underlying model space. Overcomplete dictio-
naries more densely sample the space so as to increase
the likelihood of sampling a point in the model space
“close” to the observed point. With path-augmentation
the sampling is done in two stages. The first stage is
a coarse sampling of the model space that is used to
identify a region of the model space “near” the observed
point. Using the identified region of the model space
a denser sampling of the local region is performed by
generating samples along the geodesic between the two
pin points in the model space.

3. Path-Augmented Image Recovery

We now present our proposed algorithm for image
recovery based on the k−Sparse Compressive Sampling
Matching Pursuit which we refer to as Path-Augmented
Image Recovery (PAIR). For ease of notation a bold-
faced letter will indicate the variable is a matrix and
a vector marker over a lowercase letter will indicate
the variable is a vector. Additionally, for dimensions
we will use lower(upper)case to indicate a dimension
pertaining to the low(high) resolution components of
the model. We assume, without loss of generality, that
both the low- and high-resolution images are square.

Let Y be the observed low-resolution image given by

Y =







y1,1 · · · y1,l
...

. . .
...

yl,1 · · · yl,l






∈ R

l×l. (2)

The vectorized low-resolution, observed image is then
defined as

~y =
[

y1,1 · · · y1,l y2,1 · · · y2,l yl,1 · · · yl,l
]⊤
∈ R

l2×1.

(3)
The unknown high-resolution image we want to recover,
as well as its vectorized counter-part, are given by

X =







x1,1 · · · x1,L
...

. . .
...

xL,1 · · · xL,L






∈ R

L×L (4)

and

~x =
[

x1,1 · · ·x1,L x2,1 · · ·x2,L xL,1 · · ·xL,L
]⊤
∈ R

L2×1,

(5)
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Figure 1. Graphical abstract for using CoSaMP and a known acquisition model to achieve high-resolution image recovery.
The sensing model is assumed to be known and is applied to the atoms of a zero-padded, high-resolution, patch-based
dictionary. Matching pursuit is applied in the sensed space where a set of dictionary elements and their corresponding
weights are identified. PAIR is distinguished from CoSaMP by the addition of a path-augmentation step when constructing
the k−sparse representation which can be seen in Figure 2. A high-resolution image patch is then constructed using the
weights from the sensed space but using the corresponding high-resolution atoms corresponding to the sensed space support.
These high-resolution patches are then stitched together to form a global estimate for the unknown image.

respectively.
We assume an acquisition model based on convolu-

tion with a random mask and a random demodulation.
By placing the random mask in the Fourier plane, i.e.
between two lenses of our imaging system, we are able
to write our forward model as a linear operator. In
order to leverage the theory of CS we assume that our
forward model satisfies RIP, see [41] for verification of
this assumption. Our model then becomes

~y = Φ⊤~x, Φ⊤ = DF−1HF ∈ R
L2×l2 (6)

where Φ is the forward model capturing convolution
with the random mask, H, in the Fourier plane (where

F and F−1 indicate the Fourier transform and inverse
transforms, respectively) followed by a downsampling
and random demodulation (indicated by D). For more
information regarding this formulation we refer the
reader to [41].

Let p and P be the size of image patches from the
low- and high-resolution images, respectively. We can
associate the (i, j)th patches of the observed and un-
known images, denoted ~yi,j and ~xi,j respectively, to
their global image by

~yi,j = Ai,j~y and ~xi,j = Bi,j~x (7)

whereAi,j andBi,j are block matrices defined as follows.
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Figure 2. An example of the path-augmented procedure within CoSaMP. The two most-correlated atoms to the current
residual in the sensed space are identified. The corresponding atoms in the high-dimensional space are identified. The
2−Wasserstein geodesic between the atoms is sampled. These samples are then passed through the forward model. Once
in the sensed space the current residual is compared to each of path samples and the optimal t∗, ψ̂∗, andψ∗ are identified.
Finally ψ̂∗, andψ∗ are augmented to the support in the corresponding space, Ω̂i,j and Ωi,j respectively.

First we define

Ai,j =







a1,1 · · · a1,l
...

. . .
...

al,1 · · · al,l






∈ R

l2×l2 (8)

such that

am,n =

[

Ip 0p,l−p
0l−p,p 0l−p,l−p

]

(9)

when i, j ≤ m,n ≤ i+ p− 1, j + p− 1 and bm,n = 0l,l
otherwise. Similarly, we write

Bi,j =







b1,1 · · · b1,L

...
. . .

...
bL,1 · · · bL,L






∈ R

L2×L2

(10)

where

bm,n =

[

IP 0P,L−P
0L−P,P 0L−P,L−P

]

(11)

when i, j ≤ m,n ≤ i+P −1, j+P −1 and bm,n = 0L,L
otherwise. We note that Φ, Ai,j , andBi,j are rank-
deficient matrices.

Consider a patch-based signal model, Ψ, for high-
resolution image patches. We can then build a sig-
nal model for the (i, j)th patch by appropriately zero
padding the elements to spatially coincide with the
(i, j)th patch. Thus, we defineΨi,j = [ψ1, ψ2, . . . , ψD] ∈

R
L2×D to be signal model for ~xi,j . ~xi,j can be repre-

sented sparsely with respect to this signal model, that
is ~xi,j = Ψi,j~si,j such that ~si,j ∈ R

D is sparse.
We can first relate the information in a low-resolution

patch to the full high-resolution image by

~yi,j = Ai,j~y = Ai,jΦ
⊤~x. (12)

In this way we see that each low-resolution patch cap-
tures information regarding the full high-resolution im-
age. Next, we identify the relationship between the low-

and high-resolution patches by

~yi,j = Ai,jΦ
⊤~x = Ai,jΦ

⊤B†
i,j~xi,j (13)

where † denotes the pseudoinverse. Finally, using the
assumption that each ~xi,j can be written sparsely with
respect to an appropriate signal model we arrive at

~yi,j = Ai,jΦ
⊤B†

i,jΨi,j~si,j . (14)

Using the singular-value decomposition construction for
approximating B†

i,j it can be shown that

B†
i,jΨi,j = Ψi,j . (15)

The model in the low resolution domain takes the form

~yi,j = Ψ̂i,j~si,s (16)

where Ψ̂i,j = Ai,jΦ
⊤Ψi,j is rank-deficient and ~si,j

is sparse. The columns of Ψ̂i,j = [ψ̂1, ψ̂2 . . . , ψ̂D] are
therefore a model for the low-resolution, observed patch.

Given this model in the low-resolution space we are
now in a prime setting to utilize the CoSaMP frame-
work which was conceptually described in Section 2.1.
Here the dictionary is comprised of the vectorized, zero-
padded, high-resolution dictionary patches, i.e. Ψi,j

in the above formulation. The sensed dictionary is
F (Ψi,j) = Ψ̂i,j . The corresponding high-resolution
patch will be sparsely represented with respect to the
corresponding high-resolution dictionary atoms. Pseu-
docode for PAIR is given in Algorithm 1 and is described
below.

A hat over a variable indicates that it is a variable in
the low-dimension sensed space. The algorithm begins
by initializing the residual to be represented in the
sensed space, the estimate for the high-dimensional
patch, and the iteration counter in Lines 3-5. In Lines 7-
10 we identify the two sensed dictionary atoms that are
most-correlated with the current residual as well as their
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indices. The sign of the inner products between the most
correlated atoms are then matched per the rationale
presented in [21] in lines 11-15. The corresponding high-
resolution dictionary atoms are identified in Lines 17-18.
We next form the path between the two high resolution
atoms (Line 19) and then pass it through the forward
model (Line 20). An example of the path-augmentation
phase can be seen in Figure 2. Next, the residual is
compared to the sensed path atoms and we identify the
most-correlated atom along the path, the weight of that
atom, as well at the parameter value corresponding to it
in Lines 21-24 . Both the high-resolution patch and the
low-resolution residual are updated using the identified
weights and corresponding path sample in Lines 25-26.
The PAIR algorithm concludes by stitching together
the individual patches to form a global estimate (not
shown in pseudocode).

4. Experiment

To evaluate the performance of PAIR we test the
algorithm on a total of thirty images taken from an
IR image database of ships. Examples from this data
set are provided in Figure 3. Reconstructions are per-
formed using both a Discrete Cosine Transform (DCT)
dictionary and a kSVD learned dictionary trained on
the high resolution IR images. We compare PAIR
against CoSaMP (recall, no path-augmentation step)
over several sparsity levels. Our high-resolution image
patches, and high-resolution dictionary elements, are
16× 16. Patches in the observed image space are 8× 8
and selected with a stride of one. The image patches
are stitched together via averaging across overlap. In
future work we will explore the effect of varying the
patch sizes and the patch stitching algorithm.

We use three performance metrics to evaluate the
algorithm. The first metric is a standard pixel-based
performance metric measuring the Peak-Signal-to-Noise-
Ratio (PSNR). Second, we use a local patch-based im-
age quality metric called Structual SIMilarity (SSIM).
Both PSNR and SSIM are well known and widely used.
Finally, we propose to measure the global quality of
the reconstruction by measuring the agreement of edge
detection between the high-resolution image and the
recovered images. We refer to this as the Percent Edge
Agreement (PEA) metric. We compute the PEA by
running an edge detection algorithm, the MATLAB
implementation of Canny edge detection for the results
shown, on the true high-resolution image and the recon-
structed image resulting in two binary edge maps. The
percentage of pixels that agree between the two edge
maps is then computed and reported.

The path-augmentation step of PAIR is performed by
discretely sampling along the 2−Wasserstein geodesic

Algorithm 1: Path-Augmented Image Recovery

Data: ~yi,j , the (i, j)th vectorized observed,
low-resolution patch, Ψi,j the
high-resolution, zero-padded,
spatially-coinciding dictionary, Ψ̂i,j the
modeled low-resolution dictionary, Φ the
forward model, and K the number of
iterations/sparsity level.

Result: x̃i,j , the estimate of the (i, j)th

vectorized, high-resolution patch
1 begin
33 ~r1 ← ~yi,j ;
55 x̃i,j ← zeros(1, L2);
77 k ← 1;

99 Ω̂i,j = [];
1111 Ωi,j = [];
12 while k ≤ K do

1414 ψ̂1 = arg max
ψ̂∈Ψ̂i,j

|〈ψ̂, ~rk〉|;

1616 d1 = index(ψ̂1);

1818 ψ̂2 = arg max
ψ̂∈Ψ̂i,j\ψ̂1

|〈ψ̂, ~rk〉|;

2020 d2 = index(ψ̂2);

2222 if sign(〈ψ̂1, ~rk〉) 6= sign(〈ψ̂2, ~rk〉) then

23 ψ̂2 = −ψ̂2

24 else

25 ψ̂2 = ψ̂2

26 end
27 ;
2929 ψ1 = ψd1 ∈ Ψi,j ;
3131 ψ2 = ψd2 ∈ Ψi,j ;
3333 P(t) = path

t∈[0,1]

(ψ1, ψ2, t);

3535 P̂(t) = Ai,jΦ
TP(t);

3737 tk∗ = arg max
t∈[0,1]

〈P̂(t), ~rk〉;

3939 ψ̂k∗ = P̂(t∗);

4141 ψk∗ = P(t∗);

4343 Ω̂i,j ← Ω̂i,j ∪ ψ̂
k
∗ ;

4545 Ωi,j ← Ωi,j ∪ ψ
k
∗ ;

4747 ~si,j ← Ω̂†
i,j~yi,j ;

4949 x̃i,j ← Ωi,j~si,j ;

5151 ~rk+1 ← ~rk −Ai,jΦ
⊤x̃i,j ;

5353 k ← k + 1;

54 end

55 end

between the two most-representative atoms at each iter-
ation. Algorithms for approximating the 2−Wasserstein
geodesic between image patches are based on solving or
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Figure 3. Examples of high-resolution IR images of boats we
seek to recover from their observed, compressed counterparts
(not shown). These images are included in the testing set
for the results provided.

approximating a solution to the optimal transport path
between two images. The results herein were generated
using the Douglas-Rachford approach for solving the
optimal transport problem [6] and geodesic samples
selected uniformly with respect the parameterization of
the path.

5. Results

The proposed PAIR algorithm is able to outperform
standard CoSaMP with respect to the three perfor-
mance metrics (PSNR, SSIM, and PEA) described in
Section 4. Performance as a function of the sparsity of
each patch’s reconstruction are shown in Figure 4. For
PSNR and SSIM we report the average difference in
Figure 4 and the average overall performance values in
Table 1. Results shown are averaged over thirty images
and the error bar correspond to one standard deviation
of the performance. We report performance for both
the DCT and kSVD dictionaries.

The PAIR approach achieves consistently higher val-
ues over all sparsity levels and across both dictionary
types when compared using PSNR. Specifically, we see
maximum performance gains of ≈ 0.5dB and ≈ 1.1dB
for PAIR over CoSaMP using learned and DCT dic-
tionaries, respectively. Interestingly the performance
gain steadily grows (though not rapidly after the first
few atoms) as more atoms are included in the recon-
structions for the learned dictionary while the maximal
performance difference occurs when fewer atoms are
included and then decreases as more atoms are added
despite still achieving higher overall PSNRs (reasons
for which are discussed below).

The local region performance metric, SSIM, still
shows improvement when using PAIR over CoSaMP.
As was the case for PSNR, the SSIM difference between
PAIR and CoSaMP grows and is maintained as more
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Figure 4. Average change in PSNR (top), SSIM (middle),
and PEA performance (bottom) between PAIR and CoSaMP
over the 30 IR boat images as a function of the number of
atoms used for reconstruction of each patch in the image.
Average base values for each metric are shown in Table 1.

atoms are added for the kSVD dictionary whereas di-
minishing returns are seen for the DCT dictionary. Our
global performance metric appears to more strongly dif-
ferentiate the overall quality of reconstruction obtained
using a kSVD dictionary over the DCT dictionary.
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kSVD/DCT CoSaMP PAIR
Atoms PSNR SSIM PEA PSNR SSIM PEA

1 29.38/25.24 0.75/0.61 96.38/93.57 29.53/25.86 0.76/0.65 96.49/94.25
2 29.57/26.08 0.76/0.65 96.43/94.17 29.99/27.15 0.78/0.71 96.65/94.96
3 29.69/26.74 0.76/0.68 96.51/94.65 30.14/27.71 0.78/0.73 96.70/95.23
4 29.78/27.40 0.77/0.71 96.53/94.94 30.26/27.97 0.79/0.74 96.75/95.38
5 29.87/27.94 0.77/0.73 96.53/95.15 30.36/28.19 0.80/0.75 96.78/95.45
6 29.96/28.43 0.77/0.75 96.59/95.29 30.46/28.37 0.80/0.76 96.78/95.52
7 30.03/28.69 0.78/0.76 96.60/95.35 30.54/28.54 0.80/0.77 96.83/95.57
8 30.11/28.87 0.78/0.77 96.60/95.48 30.62/29.65 0.80/0.77 96.86/95.62
9 30.20/29.05 0.78/0.77 96.63/95.61 30.70/29.75 0.81/0.78 96.91/95.68
10 30.29/29.18 0.79/0.78 96.70/95.67 30.80/29.83 0.81/0.78 96.93/95.73

Table 1. Average performances for PAIR and CoSaMP using either the DCT or kSVD dictionary at varying sparsity levels.

6. Discussion

Our computational experiments indicate that aug-
menting the CoSaMP algorithm with a search along
the 2-Wasserstein geodesic at each analysis iteration
always improves performance at when low numbers of
atoms are used regardless of which dictionary is used
for the reconstruction. As more atoms are added to the
reconstruction there are diminishing returns from the
augmentation, especially for the DCT dictionary. We
hypothesize that the reason DCT improvement peaks
and then diminishes as shown in Figure 4 is because
the residual is characterized by information with higher
spatial frequencies at higher iterations and that the
2-Wasserstein geodesic ceases to capture meaningful
relationships between the two most-correlated atoms at
those iterations.

There is, however, clear improvement for the DCT
dictionary when k is small−a useful result in the case of
limited HR training images. The fact that the largest
relative improvements occur when very few atoms have
been included in the reconstruction reduces the compu-
tational burden of repeated MP iterations. Not surpris-
ingly, the results show that the learned dictionary is
generally a better signal model for the tested IR scenes
when compared to the DCT dictionary, however, we
don’t expect to have a learned dictionary given our
operational assumption of limited training data.

A number of avenues exist for improving our reported
results. In particular, we use a näıve stitching algorithm
that averages each reconstructed patch and blurs the
reconstruction. More sophisticated algorithms that con-
strain the stitching according to image quality metrics
such as edge preservation may yield improvements over
our results. In addition, we have not considered the
effects of patch size or stride (degree of overlap)−two
variables that could strongly affect the reconstruction
and overall quality of the stitching algorithm. Patch
size also affects the estimated geodesic and should be

considered more closely in future work. Finally, ad-
ditional performance improvements might arise from
optimizing the mask employed in the CS architecture.
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