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Abstract

Thermal images are mainly used to detect the presence

of people at night or in bad lighting conditions, but perform

poorly at daytime. To solve this problem, most state-of-the-

art techniques employ a fusion network that uses features

from paired thermal and color images. Instead, we pro-

pose to augment thermal images with their saliency maps,

to serve as an attention mechanism for the pedestrian detec-

tor especially during daytime. We investigate how such an

approach results in improved performance for pedestrian

detection using only thermal images, eliminating the need

for paired color images. For our experiments, we train

the Faster R-CNN for pedestrian detection and report the

added effect of saliency maps generated using static and

deep methods (PiCA-Net and R3-Net). Our best perform-

ing model results in an absolute reduction of miss rate by

13.4% and 19.4% over the baseline in day and night im-

ages respectively. We also annotate and release pixel level

masks of pedestrians on a subset of the KAIST Multispec-

tral Pedestrian Detection dataset, which is a first publicly

available dataset for salient pedestrian detection.

1. Introduction

Detecting the presence and location of pedestrians in a

scene is a crucial task for several applications such as video

surveillance systems [38] and autonomous driving [13]. De-

spite the challenges associated with it, such as low resolu-

tion and occlusion, pedestrian detection has already been

successfully studied widely in color images and videos us-

ing state-of-the-art deep learning techniques for object de-

tection and/or semantic segmentation [4, 24, 11, 3]. Color

images of reasonable quality are good for detecting pedes-

trians during the day. Thermal images, however, are very

useful in detecting pedestrians in conditions where color

images fail, such as nighttime or under bad lighting con-

ditions. This is because at nighttime, thermal cameras cap-
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ture humans distinctly as they are warmer than their sur-

rounding objects. During the day however, there are other

objects in the surroundings which are as warm as or warmer

than humans, making them less distinguishable. There-

fore, there appears to be a clear complementary potential

between color and thermal images. In order to exploit this

complementary potential, there has been a lot of work on

building fusion architectures combining color and thermal

images [37, 41, 26, 23]. But color-thermal image pairs

might not always be available, as they are expensive to col-

lect and need image registration to be completely accurate.

Misaligned imagery can also reduce the performance of a

detector that leverages multiple data modalities. This mo-

tivates us to use only thermal images for the task of pedes-

trian detection.

To address the challenge of pedestrian detection in ther-

mal images, especially during daytime, we propose the use

of saliency maps. Koch and Ulman [21] define saliency at a

given location by how different this location is from its sur-

roundings in color, orientation, motion, and depth. Looking

for salient objects in a scene can be interpreted as being a vi-

sual attention mechanism which illuminates pixels belong-

ing to salient objects in a given scene. We therefore hypoth-

esize that using saliency maps along with thermal images

would help us improve the performance of state-of-the-art

pedestrian detectors, especially on thermal images captured

during the day. To test our hypothesis, we first establish a

baseline by training a state-of-the-art object detector (Faster

R-CNN [32]) to detect pedestrians solely from thermal im-

ages in the KAIST Multispectral Pedestrian dataset [18].

We then train pedestrian detectors on thermal images aug-

mented with their saliency maps generated using static and

deep learning techniques (PiCA-Net[28] and R3-Net[7]).

Our experiments show that the pedestrian detector trained

using this augmentation technique outperforms the base-

line by a significant margin. Moreover, since deep saliency

networks require pixel level annotations of salient objects,

we annotate a subset of the KAIST multispectral pedestrian

dataset [18] with pixel level masks for pedestrian instances

to facilitate research on salient pedestrian detection.



The key contributions of this paper are as follows:

1. To the best of our knowledge, this is the first paper to

show the impact of saliency maps in improving the per-

formance of pedestrian detection in thermal images.

2. We release the first pixel level annotations for a

multispectral pedestrian detection dataset and provide

saliency detection benchmarks on it using state-of-the-

art networks.

The rest of the paper is organized as follows: Section 2

reviews existing work on pedestrian detection in color and

multispectral images and methods for saliency detection in

images. Section 3 outlines the baseline method for pedes-

trian detection and our efforts to improve it using saliency

maps. We also present a new salient pedestrian detection

dataset that we annotated for this purpose. In Section 4

we report implementation details, benchmarks for our novel

dataset and evaluate the performance of different techniques

qualitatively and quantitatively. Finally, we present our con-

clusions and future work in Section 5.

2. Related Work

Pedestrian detection. Traditionally, pedestrian detec-

tors involved the use of hand crafted features and algorithms

such as ICF [10], ACF [9] and LDCF [31]. Deep learning

approaches have however been more successful recently.

Zhang et al. [44] investigate the performance of the Faster

R-CNN [32] for the task of pedestrian detection. Sermanet

et al. [34] introduce the use of multistage unsupervised fea-

tures and skip connections for pedestrian detection. Li et al.

[24] introduce Scale Aware Fast R-CNN which uses built-

in sub-networks to detect pedestrians at different scales. In

[3], Brazil et al. introduce SDS R-CNN which uses joint

supervision on pedestrian detection and semantic segmen-

tation to illuminate pedestrians in the frame. This motivates

us to use saliency maps as a stronger attention mechanism

to illuminate pedestrians for detection.

With the release of several multispectral datasets [18, 6,

45, 39], multimodal detectors have seen increasing popular-

ity. To exploit the complementary potential between ther-

mal and RGB images, Liu et al. [26] introduce a fusion

method based on the Faster R-CNN. Li et al. [23] intro-

duce Illumination Aware Faster R-CNN which adaptively

integrates color and thermal sub-networks, and fuses the re-

sults using a weighting scheme depending on the illumina-

tion condition. Region Re-construction Network is intro-

duced in [41] which models the relation between RGB and

thermal data using a CNN. These features are then fed into

a Multi-Scale Detection Network, for robust pedestrian de-

tection. In our approach however, we use solely the thermal

images and not their color counterparts.

Saliency detection. Salient object detection aims to

highlight the most conspicuous object in an image and a

substantial number of methods have been developed for it

over the past few decades. One of the earliest works on

saliency detection was presented in [21], inspired by the vi-

sual system of primates which shift focus to most conspicu-

ous objects across the visual scene. Traditional saliency de-

tection methods involved using methods like global contrast

[5], local contrast [20] and other hand crafted features like

colour and texture [29, 42]. Methods described in [17, 30]

form the basis for our experiments using static saliency. A

complete survey of these methods is available in [1].

Recent works typically use CNNs for salient object de-

tection. DHSNet [27] first learns global saliency cues such

as global contrast, objectness, and compactness, and then

uses a novel hierarchical convolutional neural network to

refine the details of the saliency maps using local context

information. The use of short connections to the skip layer

structure of a Holistically-Nested Edge Detector is intro-

duced in [16]. Amulet [46] integrates multi-level features

at multiple resolutions and learns to predict saliency maps

by combining the features at each resolution in a recursive

manner. In our experiments with deep saliency techniques,

we use two state-of-the-art networks, PiCA-Net [28] and

R3-Net [7] (explained in Section 3.2.2), to generate saliency

maps from thermal images and to benchmark our salient

pedestrian detection dataset.

3. Approach

In this section, we explain the task of pedestrian detec-

tion in thermal images using Faster R-CNN [32]. We then

present our proposed method of augmenting thermal images

with their saliency maps to improve detection performance.

Finally, we describe our motivation and efforts at annotat-

ing a subset of the KAIST Multispectral Pedestrian dataset

[18] at the pixel level, for use by deep saliency networks.

3.1. Baseline for Pedestrian Detection in Thermal
Images using Faster R­CNN

We adapt the Faster R-CNN [32] object detector for the

task of pedestrian detection in thermal images. The Faster

R-CNN architecture consists of a Region Proposal Network

(RPN) that is used to propose regions in an image that

are most likely to contain an object, and a Fast R-CNN

[14] network that classifies the objects present in that re-

gion along with refining their bounding box coordinates.

Both these networks operate on shared convolutional fea-

ture maps generated by passing the input image through

a backbone network (typically VGG16 [35] or ResNet101

[15]). We train the Faster R-CNN end-to-end on the thermal

images from the KAIST Multispectral Pedestrian dataset

[18] and present the results in Table 2.



(a) (b)
Figure 1. (a) Procedure for augmenting thermal images with saliency maps, (b) Faster R-CNN training procedure on augmented images

3.2. Our Approach: Using Saliency Maps for Im­
proving Pedestrian Detection

We propose to use saliency maps extracted from thermal

images in order to teach the pedestrian detector to “see” bet-

ter through pixel level context. We expect that such a sys-

tem would perform better especially during daytime when

humans are more indiscernible from their surroundings in

thermal images. However, saliency maps discard all tex-

tural information available in thermal images. In order to

mitigate this, we augment the thermal images with their

saliency maps. We do this by replacing one duplicate chan-

nel of the 3-channel thermal images with the corresponding

saliency maps as shown in Figure 1(a). As seen in Figure 2,

the combination of saliency maps with thermal images help

illuminate the salient parts of the image, while retaining the

textural information in the image. As shown in Figure 1(b),

we then proceed to train the Faster R-CNN described in Sec-

tion 3.1 on (i) saliency maps extracted from thermal images

and (ii) thermal images augmented with their saliency maps

generated using the two approaches described below.

3.2.1 Static Saliency

In this paper, we generate static saliency maps using

OpenCV library [2] that uses methods described in [17] and

[30]. However, the saliency maps generated using this naı̈ve

method highlight not only pedestrians but also other salient

objects in the image (as seen in Figure 2 (b) & (c)). This

leaves room for a more powerful saliency detection tech-

nique that would highlight only the salient pedestrians and

not any other salient objects in the image.

3.2.2 Deep Saliency Networks

We investigate two state-of-the-art deep saliency networks

in this paper.

PiCA-Net [28] is a pixel-wise contextual attention network

which generates an attention map for each pixel correspond-

ing to its relevance at each location. It uses a Bidirectional

LSTM to scan the image horizontally and vertically around

a pixel to obtain its global context. For the local context,

the attention operation is performed on a local neighboring

region using convolutional layers. Finally a U-Net archi-

tecture is used to integrate the PiCA-Nets hierarchically for

salient object detection.

R
3 Net [7] uses a Residual Refinement Block (RRB) to

learn the residuals between the ground truth and the saliency

map in a recursive manner. The RRB alternatively uti-

lizes low-level features and high-level features to refine the

saliency maps at each recurrent step by adding the previous

saliency map to the learned residual.

As seen in Figure 2 (d) & (e), these techniques illuminate

only the pedestrians in a scene.



(a) (b) (c) (d) (e)
Figure 2. Thermal images and generated saliency maps for day (top 2 rows) and night (bottom 2 rows) images from the test set. (a)

Original thermal images, (b) Static saliency maps, (c) Thermal images fused with static saliency maps, (d) Deep saliency maps, (e) Thermal

images fused with deep saliency maps

3.3. Our Dataset: Annotating KAIST Multispectral
Pedestrian for Salient Pedestrian Detection

In order to train a deep saliency network, we need pixel

level annotations for salient objects. Since there are no pub-

licly available thermal datasets with ground truth saliency

masks for pedestrians, we create a pedestrian saliency

dataset and make it publicly available 1 to facilitate further

research on the use of saliency techniques for multispectral

pedestrian detection.

We select 1702 images from the training set of the

KAIST Multispectral Pedestrian dataset [18], by sampling

every 15
th image from all images captured during day and

every 10
th image from all images captured during night,

containing pedestrians. These images were selected in or-

der to have roughly the same number of images captured at

both times of the day (913 day images and 789 night im-

ages), containing 4170 instances of pedestrians. We manu-

ally annotate these images using the VGG Image Annotator

[12] tool to generate the ground truth saliency masks based

on the location of the bounding boxes on pedestrians in the

1https://information-fusion-lab-umass.github.io/Salient-Pedestrian-

Detection/

original dataset. Additionally, we create a set of 362 im-

ages with similar annotations from the test set to validate

our deep saliency detection networks, with 193 day images

and 169 night images, containing 1029 instances of pedes-

trians. Figure 3 shows sample images and annotations from

the new KAIST Pedestrian Saliency Detection Dataset. The

distribution of pedestrians per frame in the training and test

sets are shown in Figure 4. Note however that the pixel

level annotations are not completely precise, so these anno-

tations might not be suitable for fine semantic segmentation

tasks. However, benchmark results in Table 1 show that this

dataset works reasonably well for salient pedestrian detec-

tion tasks.

4. Experiments

4.1. Datasets and Evaluation Protocols

For training the pedestrian detectors, we use the thermal

images from the KAIST Multispectral Pedestrian Dataset

[18] that contains approximately 50k training images and

45k test images from videos captured during different times

of the day using thermal and RGB cameras. Following the

evaluation protocol in [25, 26], we sample images every



Figure 3. Sample annotations from our KAIST Pedestrian Saliency Dataset. Top: Original images, Bottom: Pixel level annotations

(a) (b)
Figure 4. Distribution of Pedestrians in (a) training images (b) test images

3 frames from training videos and every 20 frames from

test videos, and exclude occluded, truncated, and small

(< 50 pixels) pedestrian instances. This gives us 7,601

training images (4,755 day, 2,846 night) and 2,252 test im-

ages (1,455 day, 797 night). We use the improved annota-

tions for these 2,252 test images given in [26]. For training

deep saliency networks, we annotate a subset of the KAIST

Multispectral Pedestrian dataset as described in Section 3.3.

Once the deep saliency networks are trained, we use them

to generate saliency maps for the 7,601 training and 2,252

test images and these are then used to augment the thermal

images as described in Section 3.2.

For evaluating pedestrian detection, we report the Log

Average Miss Rate (LAMR) over the range [10−2, 100]

against the False Positives Per Image (FPPI) under reason-

able conditions [8] for day and night images. We also re-

port the mean Average Precision (mAP) of detections at

IOU=0.5 with the ground truth box. For evaluation of

saliency detection, we use two metrics - F-measure score

(Fβ) which is a weighted harmonic mean of the precision

and recall, and Mean Absolute Error (MAE) which com-

putes the average absolute per pixel difference between

predicted saliency maps and corresponding ground truth

saliency maps [16].

4.2. Implementation Details

4.2.1 Faster R-CNN for Pedestrian Detection

We use an open source implementation [43] of the origi-

nal Faster R-CNN network with a few modifications. First,

we remove the fifth max-pooling layer of the VGG16 back-

bone network. The original Faster R-CNN used 3 scales

and 3 ratios for the reference anchors. We use 9 scales for

the reference anchors, between 0.05 and 4. The Faster R-

CNN network is initialized with VGG16 weights pretrained

on ImageNet[33] and fine-tuned on data sources described

in Section 3.2 for 6 epochs. We fix the first two convo-

lutional layers of the VGG16 model and fine-tune the rest

using SGD with momentum of 0.9, learning rate of 0.001,

batch size of 1, and train our model using two NVIDIA Ti-

tan X GPUs with 12GB memory each.



4.2.2 Deep Saliency Networks

We train PiCA-Net [28] and R3-Net [7] on thermal images

with pixel level annotations. For PiCA-Net, we use an open

source implementation [19] and keep the same network ar-

chitecture as described in the original paper. For train-

ing, we augment the training images with random mirror-

flipping and random crops. The decoder is trained from

scratch with a learning rate of 0.01 and encoder is fine-tuned

with a learning rate of 0.001 for 16 epochs and decayed by

0.1 for another 16 epochs. We used SGD optimizer with

momentum 0.9 and weight decay 0.0005. The entire setup

is trained with a batch size of 4 on a single NVIDIA GTX

1080ti GPU. Also, since the generated saliency maps are

of size 224 × 224, we resize it to the original image size

using Lanczos interpolation [36]. For R3-net we use the

authors’ implementation. As described, we initialize the

parameters of the feature extraction network using weights

from the ResNeXt [40] network. We use SGD with learning

rate 0.001, momentum 0.9, weight decay 0.0005 and train

for 9000 iterations using batch size of 10 on two NVIDIA

Titan X GPUs with 12GB memory each.

4.3. Results and Analysis

4.3.1 Performance of Deep Saliency Networks on our

KAIST Salient Pedestrian Detection dataset

We evaluate the performance of the PiCA-Net and R3-Net

on the test set of our annotated KAIST Salient Pedestrian

Detection dataset to provide a benchmark. The results are

summarized in Table 1 and show reasonable saliency de-

tection performance. Saliency masks generated using these

networks can be seen in Figure 2 (d) & (e). Note that the

saliency maps generated from the R3-Net have been post-

processed using a fully-connected CRF [22] to improve co-

herence, resulting in the slightly better results as compared

to PiCA-Net.

Method Fβ score MAE

PiCA-Net 0.5942 0.0062

R3-Net 0.6417 0.0049
Table 1. Performance of deep saliency networks on our anno-

tated test set

4.3.2 Quantitative analysis of Pedestrian Detection in

Thermal Images using Saliency Maps

After evaluating the pedestrian detectors trained separately

on thermal images, saliency maps, and thermal images aug-

mented with saliency maps from different techniques, we

find that the saliency maps indeed contribute to improved

performance. The detector performance for each technique

is summarized in Table 2, and Miss Rate vs FPPI plots are

Figure 5. Comparison of Miss Rates from different models

shown in Figure 6. Below, we discuss some of the important

results.

Using only Thermal Images. Our baseline detector us-

ing only thermal images achieves a miss rate of 44.2% on

the day images and 40.4% on the night images displaying

a large scope for improvement. It is evident from the re-

sults however, that thermal images give better performance

at nighttime compared to daytime due to low contrast heat

maps during the day, as seen in Figure 7(a).

Using Thermal Images with Static Saliency Maps. The

pedestrian detector achieves a miss rate of 39.4% on day

thermal images combined with their static saliency maps,

which is an absolute improvement from the baseline by

4.8%. However, we do not notice any improvement at

nighttime, and find this method to have induced a signifi-

cant number of false positives hurting the precision. This

indicates that although static saliency methods show some

potential, they are not viable for deployment in round-the-

clock applications.

Using Thermal Images with Saliency Maps generated

from Deep Networks. Our approach augmenting thermal

images with deep saliency maps extracted using PiCA-Net

achieves a miss rate of 32.2% for day images and 21.7%

for night images, which is a considerable improvement of

12% and 18.7% respectively over the baseline. The ap-

proach augmenting saliency maps from R3-Net achieves a

miss rate of 30.4% for day images and 21% for night im-

ages, which is an even better improvement of 13.4% and

19.4% over the baseline respectively, as illustrated in Fig-

ure 5. These improvements can be explained by the visu-

alizations in Figure 7 which shows that these methods illu-

minate only pedestrians in the scenes, helping the detector

identify pedestrians even under difficult lighting conditions.

Moreover, R3-Net achieves a mean Average Precision of

68.5% during daytime which is a 6.9% improvement, and

73.2% during nighttime which is a 7.7% improvement over

the baseline. This suggests that deep saliency methods are

useful at all times.



Testing

Condition
Metric

Dataset Used

Thermal

Static

Saliency

Maps

Static

Saliency

+ Thermal

PiCA-Net

Saliency

Maps

PiCA-Net

Saliency

+ Thermal

R3-Net

Saliency

Maps

R3-Net

Saliency

+ Thermal

Day
mAP 0.616 0.590 0.645 0.571 0.640 0.576 0.685

LAMR 0.442 0.479 0.394 0.342 0.322 0.352 0.304

Night
mAP 0.655 0.605 0.641 0.639 0.676 0.585 0.732

LAMR 0.404 0.462 0.405 0.285 0.217 0.320 0.210
Table 2. Comparison of results from different techniques. Our deep saliency map fused thermal images surpass all approaches in mean

Average Precision (mAP) and Log Average Miss Rate (LAMR). Top 2 results are in bold.

(a) (b)
Figure 6. Miss Rate vs FPPI curves for a) Day reasonable conditions b) Night reasonable conditions. Our deep saliency + thermal methods

are the lower curves indicating better performance compared to baseline approaches.

4.3.3 Qualitative analysis and effectiveness of saliency

maps for Pedestrian Detection

Figure 7 shows detections on 4 images in different settings

using all techniques. In image 1, we can see that augment-

ing saliency map 1(b) helps capture the rightmost missed

detection in 1(a), showing its potential in cluttered scenes.

In image 2(a), we see a tree detected as a false positive

in the thermal image, which is a frequently occurring phe-

nomenon in our observations. Note that the saliency maps

in 2(d) & (f) puts very little emphasis on this region. There-

fore, after combining the thermal image with the saliency

map, the detector is able to get rid of this false positive

(see 2(c), (e) & (g)). Image (3) shows comparable perfor-

mance of thermal and saliency detection methods at night-

time. Note that the center-right detection missed in the

saliency map in 3(d) was captured in 3(e) after including

the thermal information. In Image 4, the car tail-light cap-

tured by the saliency map in 4(d) is removed with the help

of information from the thermal image in 4(e); whereas the

detection in the middle missed by 4(a) is captured in the

deep saliency maps in 4(d) & (f) and therefore included in

the final detections in 4(e) & (g). This emphasizes the com-

plementary nature of the two techniques, thus confirming

our hypothesis.

5. Conclusion and Future Work

We make two important contributions in this paper. First,

we provide pixel level annotations of pedestrian instances

on a subset of the KAIST Multispectral Pedestrian dataset.

Second, we show that deep saliency networks trained on this

dataset can be used to extract saliency maps from thermal

images, which when augmented with thermal images, pro-

vide complementary information to the pedestrian detector

resulting in a significant improvement in performance over

the baseline approach.

In this paper, we augmented thermal images with their

saliency maps through a channel replacement strategy prior

to feeding them into the network. It would be interesting

to see if infusing the saliency map into shared layers in the

network using a saliency proposal stage, and then jointly

learning the pedestrian detection and the saliency detection

task similar to SDS R-CNN[3] would improve the detec-

tor performance. Deep saliency techniques would also ben-

efit from the presence of large amounts of pixel level an-

notations, indicating a necessary expansion of our dataset.

Moreover, saliency techniques used for thermal images are

also expected to work for color images and our annotations

can be used for the same purpose.



Day Night

(a)

(b)

(c)

(d)

(e)

(f)

(g)

1 2 3 4
Figure 7. Sample results from pedestrian detection on images (1)-(4) from methods: (a) Thermal Images, (b) Static Saliency, (c) Static

Saliency + Thermal, (d) PiCA-Net Saliency, (e) PiCA-Net Saliency + Thermal, (f) R3-Net Saliency, (g) R3-Net Saliency + Thermal
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