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Abstract

In this paper, we propose a three-stream convolutional

neural network (3SCNN) for action recognition from skele-

ton sequences, which aims to thoroughly and fully exploit

the skeleton data by extracting, learning, fusing and in-

ferring multiple motion-related features, including 3D joint

positions and joint displacements across adjacent frames as

well as oriented bone segments. The proposed 3SCNN in-

volves three sequential stages. The first stage enriches three

independently extracted features by co-occurrence feature

learning. The second stage involves multi-channel pairwise

fusion to take advantage of the complementary and diverse

nature among three features. The third stage is a multi-

task and ensemble learning network to further improve the

generalization ability of 3SCNN. Experimental results on

the standard dataset show the effectiveness of our proposed

multi-stream feature learning, fusion and inference method

for skeleton-based 3D action recognition.

1. Introduction

Human action recognition has been an active topic in

computer vision, as it has a wide range of applications

such as video understanding, intelligent surveillance sys-

tem, human-computer interaction and so on [8, 12, 14, 17].

Compared with the conventional RGB videos recorded

by two-dimensional cameras, the skeleton-based sequences

contain three-dimensional (3D) coordinates of key joints of

the human body, which can provide an effective and robust

representation for describing human actions with compli-

cated background [8, 11, 19]. Thus, representation methods

based on skeleton data have attracted considerable attention

for action recognition in recent years.

Considering the time correlation of actions in skeletal

videos, many of the early works regard recurrent neural
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Figure 1. The illstration of three motion-related features extract-

ed from skeleton sequences, including 3D joint positions (denoted

by black points), joint displacements across adjacent frames (i.e.,

motion vectors shown by blue dashed lines) and oriented bone seg-

ments (represented by the red vectors).

networks (RNN) as natural choices [3, 15, 17]. Although

the RNN-based models were designed to model the tempo-

ral dependency, it is difficult to train the stacked RNN so

that the high-level feature cannot be learned directly from

skeletons [4, 11]. CNN models can easily to build the deep

network and equipped with excellent ability to extract high-

level information. Thus, many researchers encode the skele-

ton joints to multiple 2D pseudo-images, and feed them in-

to a multi-stream framework with CNN to separately learn

spatial-temporal features, and then perform a simple feature

fusion [1, 6, 7, 10, 18, 19]. Despite the significant improve-

ments in performance, there exist two problems to be ad-

dressed. First, features used in the above methods merely

focus on the displacement of skeleton joints in time and s-

pace. The body’s size, direction and other attributes play

an important role in skeleton action recognition, however,

these features are usually neglected. Second, most work-



s based on a multi-stream framework regard each stream as

independent in the feature extraction stage and take a simple

feature fusion in the final classification stage [1, 7, 17–19],

which may not effectively exploit the complementarity and

diversity among multiple features.

To address these issues, we propose a novel three-stream

CNN (3SCNN) model which can comprehensively exploit

information of skeleton sequences. Firstly, we design the

feature of bone segment containing information of body’s

length and direction, and combine bone segment with skele-

ton position and skeleton motion [10, 11], as shown in Fig

1, for a comprehensive description of skeleton-based ac-

tion. Thus, we use a three-stream framework to handle the

three features. Secondly, we propose pairwise feature fu-

sion and a multi-task and ensemble learning network for

better fusing information from multiple features in different

stages and exploring the relationship among multiple fea-

tures. Fig 2 shows the flowchart of our model that contains

three stages. In the first stage, skeleton’s position, motion

and bone segment after the view adaption processing ex-

tract their own global co-occurrence feature [11] indepen-

dently. In the second stage, the pairwise feature fusion is

performed on the output of the previous stage. The third

stage is the multi-task learning network during training and

is the ensemble learning network during inference for better

performance on action recognition.

The main contributions of this paper are listed as follows:

• We introduce a new feature that is the oriented bone

segment from the perspective of the subject in action.

The bone segments are combined with skeleton posi-

tion and the skeleton motion in a three-stream frame-

work for improving the recognition performance.

• We propose pairwise feature fusion to fully take advan-

tage of the complementary and diverse nature among

three features by a two-stage fusion strategy.

• We design a multi-task and ensemble learning network

to further improve generalization ability of the model

and our 3SCNN obtains the state-of-the-art results on

the largest in-door dataset NTU RGB+D.

2. Related Work

We briefly review the existing literature in related re-

search from two perspectives as follows.

RNN-based and CNN-based approaches for skeleton-

based action recognition RNN-based network has become

prevalent due to its advantage for modeling sequence da-

ta. Part-aware LSTM [15] designed a part aware extension

of LSTM to take advantage of the physical structure of the

human body. The work of [22] introduced a regularization

scheme to a fully connected deep LSTM network in order to

automatically learn co-occurrence feature. View-Adaptive

RNN (VA-RNN) [20] designed a view adaptive subnetwork

in LSTM-based model, which assists the network in select-

ing the most suitable virtual observation viewpoint. Ensem-

ble temporal sliding LSTM (TS-LSTM) [5] utilized an aver-

age ensemble to merge multiple parts containing short-term,

medium-term, long-term temporal dependencies and even

spatial skeleton pose dependency. Two-stream RNN [17]

architecture was employed to separately model both spatial

and temporal relations of joints of skeleton and then lever-

aged the features from each stream to weighted fuse. Com-

pared with RNN, there is a growing tendency of using C-

NN for skeleton-based action recognition owing to its good

parallel ability and easier training process. Skeleton-based

CNN (SK-CNN) [2] treated skeleton sequence as 2D pseu-

do image then employed CNNs for skeleton-based action

recognition. Ke et al. [4] proposed a new representation of

skeleton sequences based on cylindrical coordinate and fed

the new representation to a multi-task learning deep con-

volutional neural network for action recognition. Accord-

ing to the property of skeleton sequences, ensemble neural

network (Ensem-NN) [19] designed four different subnets

and fused them using one ensemble network. Two-stream

CNN [10] employed a two-stream framework to combine

position and motion information of human joints. Then

motivated by co-occurrence learning [22], hierarchical co-

occurrence network (HCN) [11] was proposed which uti-

lized CNN to learn co-occurrence and achieve state-of-the-

art performance.

Multiple feature learning and feature fusion For com-

prehensively describing skeleton sequence, multiple fea-

tures usually are combined to represent skeleton action.

Wang et al. [18] proposed Joint Trajectory Maps(JTM) to

encode body joint trajectories and employed multiply-score

fusion to the three JTMs projected onto three Cartesian

planes. Li et al. [7] encoded the joint distances in the three

orthogonal 2D planes and in the 3D space into four joint

distance maps, and combined information of four spaces for

action recognition. Liu et al. [13] leveraged multi-stream C-

NN to learn fusion feature from 10 kinds of spatial-temporal

images with skeleton encoding. Li et al. [6] found differ-

ent size skeleton images encoded by the translation-scale

invariant image mapping method bring different frequency

variance, thus adopted the multi-scale CNN model and the

average fusion strategy to combine the multi-frequency in-

formation.

Inspired by the above works, we adopt multi-stream C-

NN to extract features from the skeleton’s position, motion

and bone segment. In addition, we design the pairwise fea-

ture fusion for comprehensively using information that is

implicit in different features and introduce the idea of multi-

task learning and ensemble learning to our 3SCNN for im-

proving the generalization ability of the model.
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Figure 2. The flowchart of 3SCNN. The first stage independently extracts features. The second stage is feature fusion. The third stage is a

multi-task learning network during training and is an ensemble learning network during inference.
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Figure 3. The architecture of the global co-occurrence feature

learning module. T×N×D is the input tensor’s size. T×D×N is

tensor’s size after the transpose layer processing. Transpose layer

permutes the dimensions of the input tensor according to the order

parameter. Conv represent the convolution layer, in which the last

dimension denotes the number of output channels. The ReLu is

activation function. The ”/2” stand for an appended Maxpooling

layer with stride 2 after convolution. The following figure annota-

tions use the same mark.

3. Proposed Three-stream CNN Framework

In this section, we first briefly review the co-occurrence

feature learning with convolutional neural network. Then

we describe three stages of our proposed three-stream CNN

(3SCNN) separately.

3.1. Co­occurrence Feature Learning with CNN

An action is usually only associated with and charac-

terized by the interactions and combinations of a subset of

skeleton joints [22]. For example, for the action of “making

a phone call”, the joints “hand”, “arm”, and “head” consti-

tute the discriminative set of joints. Some joints set of the

skeleton is considered as a co-occurrence feature that can

intrinsically characterize a human action.

In HCN [11], the convolution operation is decomposed

into two steps. In the first step, an independent convolution

kernel slides on each channel of input so that the features

are aggregated locally from neighborhoods of kernel. In the

second step, an element-wise summation across channel is

used for global features aggregation from all channels of

inputs. So, Li et al. [11] suggest that the information if it is

specified as channels, can be aggregated globally.

In traditional CNN-based methods [6, 10], they cast the

frame, joint and coordinate dimensions of a skeleton se-

quence into width, height and channel of an image respec-

tively. It causes the co-occurrence features to only be aggre-

gated locally. For globally aggregating co-occurrence fea-

tures, HCN corresponds to the joint dimension to channels

by transposing the tensor of CNN’s input. In addition, HC-

N can step by step learn the point-level representation and

global co-occurrence features. Following the main idea of

HCN, we introduce the point-level convolution and global

co-occurrence feature learning module for which the archi-

tecture is shown in Fig 3, to our model.

3.2. Feature Enhancement

In order to enrich expression of skeleton sequences, we

introduce the bone segment feature and multi-coordinate

transformation to the point-level feature learning stage.

Multi-Feature Module Existing methods based on

two-stream architecture leverage coordinates and temporal

movements of joints as input for action recognition. Be-

sides these information, bone segments between adjacen-

t joints also provide the crucial cues to describe the human

action because bone segments can directly reflect the body’s

length and direction information. We explicitly propose a

model to regard the bone segment feature as another stream

combined with two-stream architecture, and construct the

three-stream network. We define J = (x, y, z)
T

that is a



3D joint coordinate. In frame t, ST is raw skeleton coor-

dinates, MT describe raw skeleton motion, and BT stands

for the bones information. They are formulated as:

ST =
{

J t
1, J

t
2, · · · , J

t
N

}

, (1)

MT =
{

J t+1

1 − J t
1, J

t+1

2 − J t
2, · · · , J

t+1

N − J t
N

}

, (2)

BT =
{

BT
i = J t+1

n − J t
m, i = 1, 2, · · · , N − 1

}

, (3)

where N is the number of joints. n and m are the index

of adjacent two joints. So, the number of bone segments

equals N − 1.

Coordinate-Adaptive Module The same action cap-

tured by different camera viewpoints provides the variously

discriminative information. Intuitively, if the various skele-

ton sequences information at multiple coordinate systems

are combined, the action will gain more comprehensive

expression. A skeleton sequence at arbitrary viewpoint can

be attained by rotation in 3D space. Therefore, given a

3 × 3 rotation matrix Ri, some rotations of one skeleton

sequence ς = {St, t = 1, 2, · · · ,T} can be represented as:

ςi = (ςRi)
T
=
{

S1Ri, S
2Ri, · · · , S

TRi

}T
, (4)

where ςi is the sequence after rotation. For exploiting the

completer information from different aspects, we employ

R1, R2, · · · , RL rotation matrix to transform original ς cor-

responding to obtain L new sequences. These rotated se-

quences are concatenated as the set {ς1, ς2, · · · , ςL}. The

above operations are called multi-coordinate transforma-

tion. Then, we perform point-level convolution operation

which consists of 1 × 1 convolution layer that adaptive-

ly combines sequences of multiple coordinate systems and

1 × 3 convolution layer that extracts the point-level feature

in temporal. These rotation matrix Ri learn from the skele-

ton data, so we achieve the operation with L fully connected

layers. Fig 4 shows the details of coordinate-adaptive mod-

ule architecture which consists of multi-coordinate transfor-

mation and point-level convolution.

3.3. Pairwise Feature Fusion Learning

In the first stage, position, motion and bone segment fea-

tures are extracted independently. To effectively exploit the

complementarity and diversity among the three features, we

proposed Pairwise Feature Fusion (PFF). As illustrated in

Figure 5, PFF consists of two procedures which are pairing

and fusing for each feature. In pairing, any two of three fea-

tures can be made a pair by concatenating operation. Then,

there are two alternative fusion architectures (shared fusion

and split fusion) in fusing. In split fusion, each pairwise fea-

ture possesses exclusive fusion block to learn fusion pattern
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Figure 4. The architecture of coordinate-adaptive module. The in-

put is raw data where T is number of frames, N is number of

joints. Reshape layer transforms the input tensor to a certain shape.

Concat layer concatenate the various same shape tensor on chan-

nel dimension. L is the number of fully connected layers (FC).

L = 10 in our experiments.

respectively. In shared fusion, learning the fusion pattern

of the three pairs uses one shared block. For those activ-

ities involving human-human interaction, we follow Li et

al. [10, 11] adopting element-wise max scheme for the fea-

tures of multiple person at end of pairwise feature learning

stage.
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Figure 5. The two kinds of architecture of pairwise feature fusion.

Conv block contains two convolution layers with kernel size of

3 × 3 and channels of 128, 256 respectively, and ReLu activation

function and maxing-pooling are applied on each layer.

3.4. Multi­task and Ensemble Learning Network

As shown in the third stage in Fig. 2, three features af-

ter pairwise fusion learning are sent to their own classifier.

Consequently, our three-stream model predicts three prob-

ability vectors p1,p2, p3 for each action. During training,

we optimize it as a multi-task learning problem with cross-

entropy loss and each classifier produces a loss component

as:

Lk = −

c
∑

i=1

yi log
(

pk
i

)

, (5)



where k ∈ {1, 2, 3} is the number of each stream, y is the

one hot vector of true label, and c is the number of action

categories. Thus, the final loss can be defined as:

L = L1 + L2 + L3. (6)

During inference, we refer to the main idea of ensem-

ble learning, which is a machine learning paradigm with

multiple learners trained for the same task, for better per-

formance.The output f i of the last fully connected layer of

each classifier is jointly used to make a decision for human

action recognition. For mitigating the high level of noise to

make ambiguous classification, we choose the sum rule to

joint these feature vectors. It can be represented as follows:

ŷ = softmax

(

k
∑

i=1

f i

)

, (7)

where ŷ is the vector of final predicted class probabilities.

Assuming the posterior probability is P (j|ŷ) for class j,

the final category belonging to class c can computed by

c = argmax
j

P (j|ŷ) . (8)

4. Experiments

We verify the effectiveness of our proposed model on

a common benchmark dataset, the NTU RGB+D [15]. To

find the impact of each component in our model, we perfor-

m the ablation study on the dataset, and we also compare

and analyze the results of different fusion structures.

4.1. Datasets and Implementation Details

NTU RGB+D To the best of our knowledge, the dataset

is currently the largest in-door daily skeleton-based action

recognition dataset, which contains more than 56000 se-

quences in 60 classes of action performed by 40 subjects.

Each sequence consists of 25 joints with one or two person-

s. The large intra-class and view point variations make the

datasets have two recommended evaluation protocols, i.e.

Cross-Subject (CS) and Cross-View (CV). For the cross-

subject setting, the sequences of 20 subjects are used for

training and the rest from other 20 subjects are used for test-

ing. For the cross-view setting, samples are split by camera

views, where two view-points are used for training and the

rest for testing.

During the data processing, we randomly crop sub-

sequence from entire sequence for data augment. The

cropping ratio is drawn from uniform distribution between

[0.5,1] for training and then is fixed with 0.9 for inference.

Due to the variety in action length, we normalize the se-

quence to a fixed length 32 with bilinear interpolation along

the frame dimension.

During training, we apply the weight decay of 0.001 on

the weights of the first fully connected layer of each classi-

fier. The network is trained using the Adam optimizer. The

learning rate is initialized to 0.001, followed by an exponen-

tial decay with a rate of 0.99 per 1k batches, and the batch

size is set to 64. The training is stopped when the learning

inclines to 0.00001. We append the dropout with ratio of 0.5

on last convolution layer of the global feature learning mod-

ule of each stream, on all layers in pairwise feature fusion

and on the first fully connected layer of each classifier.

4.2. Ablation Study

Importance of multi-task and ensemble learning net-

work To understand the impact of the third stage network

in our model, we perform an ablation study. We deliber-

ately use element-wise sum to merge the three classifiers’

output to one and then only use one loss to optimize the

model which is shown in Fig 6 (a). The modified network

is referred to as 3SCNN-1L without multi-task learning and

ensemble learning. We train 3SCNN-1L model with the

same hyper-parameters as 3SCNN. The results are listed in

Table 1. Compared with 3SCNN-1L, the multi-task learn-

ing network can make output of each stream maximize its

role as much as possible. To further understand the effec-

t of ensemble learning network in 3SCNN model, we al-

so list the three classifiers’ result, which are 3SCNN-1S,

3SCNN-2S and 3SCNN-3S shown in Fig 6 (b), before en-

semble learning in Table 1. Table 1 shows that combining

all classifier predicts using ensemble learning network will

attain stronger generalization ability than each independent

predict. In the following experiments the multi-task learn-

ing and ensemble learning network is adopted.
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Figure 6. The two different third stages of our proposed model.



Methods CS CV

3SCNN-1L 87.1 92.5

3SCNN-1S 86.4 92.2

3SCNN-2S 87.5 92.5

3SCNN-3S 83.9 89.5

3SCNN 88.6 93.7

Table 1. The cross-view and cross-subject performance of the

multi-task learning and ensemble learning network.

Comparisons on different fusion strategies Firstly, we

evaluate the two fusion strategies proposed in section 3.3.

As shown in Table 2, split fusion has higher precision than

shared fusion, while shared fusion has fewer parameters

with less precision loss. The reason might be that fusion

between different features has its own unique fusion pat-

tern and thus split fusion can better maintain the uniqueness

in fusing than shared fusion. To further understand the be-

havior of pairwise feature fusion, we perform an ablation

study. We replace pairwise feature fusion (PFF) with al-

l concatenate fusion (ACF) which concatenate all features

from previous stage in channel dimension and then feed it

to one convolution block for extracting fusion feature, thus

three streams are merged to one stream in here. The above

operation is equivalent to removing the pairing process in

PFF. So, the following network use only one classifier and

the modified model is optimized with one loss. We can see

that model with PFF outperforms the model with ACF. It

indicates that PFF can better exploit relationships among

features. To avoid the impact of multi-task and ensemble

learning network, comparing 3SCNN-ACF and 3SCNN-1L

further directly reflects the effectiveness of PFF.

Methods CS CV

3SCNN(PFF-Shared) 88.3 93.4

3SCNN(PFF-Split) 88.6 93.7

3SCNN-ACF 86.5 91.5

3SCNN-1L 87.1 92.5

Table 2. Evaluation of different fusion methods.

Impact of multi-coordinate transformation The core

of coordinate-adaptive module described in section 3.2 is

multi-coordinate transformation (MCT). Thus, we reduce

our original 3SCNN method by removing the MCT step,

leading to an algorithm referred to as 3SCNN∗, where the

raw joints, raw motions and raw bone segments are used

as the inputs. The results in Table 3 demonstrate that the

model with complete coordinate-adaptive module achieve

a better performance. It indicates that MCT can provide

more discriminative information from different coordinate

space, and point-level convolution operation can effectively

combine these information.

Methods CS CV

3SCNN∗ (without MCT) 88.2 93.3

3SCNN (with MCT) 88.6 93.7

Table 3. Evaluation of multi-coordinate transformation.

4.3. Comparison to Other State­of­the­art Methods

We compare the performance of our proposed model

with several state-of-the-art methods on the NTU dataset

in Table 4. Our method achieves the best action recog-

nition accuracy in both CS and CV protocols. Compared

with the RNN-based approach [21], the accuracy is im-

proved by 7.9% in cross-subject setting and 5.3% in cross-

view setting. And our 3SCNN outperforms the CNN-based

method [11] by 2.1% in cross-subject setting and 2.6% in

cross-view setting.

Methods CS CV Year

Part-aware LSTM [15] 62.9 70.3 2016

Two-stream RNN [17] 71.3 79.5 2017

Ensemble TS-LSTM [5] 74.6 81.3 2017

VA-RNN [20] 79.4 87.6 2017

Clips + CNN + MTLN [4] 79.6 84.8 2017

LSTM + CNN [9] 82.9 90.1 2017

Two-stream CNN [10] 83.2 89.3 2017

Ensem-NN [19] 85.1 91.3 2018

HCN [11] 86.5 91.1 2018

EleAtt-GRU [21] 80.7 88.4 2018

SR-TSL [16] 84.8 92.4 2018

3SCNN 88.6 93.7

Table 4. Comparisons of the proposed method with the previous

approaches for action recognition on the NTU RGB+D dataset.

5. Conclusion

In this paper, we have proposed a novel three-stream C-

NN model, referred to as 3SCNN, for skeleton-based ac-

tion recognition. To effectively exploit the joint, motion and

bone segment features, we introduced a three-stream frame-

work to handle the three kinds of inputs jointly. To fur-

ther enrich feature expression, we designed the coordinate-

adaptive module. We also proposed a pairwise feature fu-

sion scheme and a multi-task ensemble learning network

to take advantage of the complementary and diverse na-

ture among multiple features. The proposed 3SCNN mod-

el shows impressive performance when compared with the

state-of-the-art algorithms the NTU RGB+D dataset.
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