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2Escuela Superior Politécnica del Litoral, ESPOL,

FIEC, CIDIS, Campus Gustavo Galindo,

Guayaquil, Ecuador

sappa@ieee.org

Abstract

This paper presents a novel approach for colorizing

near infrared (NIR) images. The approach is based on

image-to-image translation using a Cycle-Consistent ad-

versarial network for learning the color channels on un-

paired dataset. This architecture is able to handle un-

paired datasets. The approach uses as generators tailored

networks that require less computation times, converge

faster and generate high quality samples. The obtained re-

sults have been quantitatively—using standard evaluation

metrics—and qualitatively evaluated showing considerable

improvements with respect to the state of the art.

1. Introduction

In recent years, image acquisition devices have expanded

significantly due to the increase in computational power and

the reduction in electronics prices. Improving the sensor

technology has lead to a large family of cameras capable of

capturing information from various spectral bands or addi-

tional information (3D, 4D); hence nowadays we can have:

panoramic 3D images; multispectral images; HD 2D im-

ages; video sequences at a high frame rate; and many others.

Regardless of the large number of possibilities, the fact that

the human visual system is sensitive to (400-700 nm) the

classical RGB representation is preferred if the information

needs to be provided to the final user. Therefore, for bet-

ter user understanding, representing the information in the

range of 400-700nm is preferred [24]. Out of this spectral

range the NIR band is one of the most widely used band.

The NIR spectral band is the nearest band to the hu-

man eye perception system, so NIR images share various

attributes with visible spectrum images. The use of NIR

images is concerned with their ability to segment images

according to the material of the object. For example, most

coloring matter utilized for colorization of materials are

slightly transparent to NIR. In other word, the distinction

within the NIR intensities is not solely due to specific color

of the material, however conjointly to the absorption and

coefficient of reflection of the materials of a given object.

The aforementioned attributes (absorption and reflectance)

are interesting for applications such as video surveillance,

detection and remote sensing for crop stress. In these two

contexts (i.e., video surveillance and remote sensing), it is

quite troublesome to orient once near infrared images are

provided to the final users, as color discrimination is lack-

ing or incorrect color deployment. Hence, obtaining realis-

tic RGB image representations from NIR images is a needed

in most of these applications.

NIR image colorization shares some similarities with

those approaches proposed in the literature for gray scale

image colorization or color transfer functions (e.g., [20],

[5], [29]). In spite of the similarity with these approaches,

due to the nature of NIR images, their colorization is more

challenging. In recent years several approaches for NIR im-

age colorization have been proposed (e.g., [24], [16], [25]).

Most of them are learning based approaches where couple

of registered NIR and RGB images are provided during the

training stage. The limitation with all these approaches is

related with the need of these couple of paired images (NIR-

RGB). In general, although there are Single Sensor Cameras

(e.g., [23]) where RGB and NIR information is acquired at

the same time, NIR images are taken by one camera while

the corresponding RGB image by another camera. This

means that there are shifts between the acquired images,

or in some cases even worse since just the NIR images are

provided.

In the last few years, Generative Adversarial Networks

(GANs) have drawn attention in many field of computer vi-

sion to help researchers to build powerful models, where

there were difficulty by using only simple Convolutional

Neural Networks (CNNs). Nevertheless, most of the GAN

techniques [13] have focused on supervised context. The
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unpaired (NIR-RGB) problem mentioned above, can be

tackled by a GAN architecture in the unsupervised con-

text under a cyclic structure (CycleGAN) [31]. CycleGAN

learns to map images from one domain (source domain)

onto another domain (target domain) when paired images

are unavailable. This functionality makes models appropri-

ate for image to image translation/colorization in the con-

text of unsupervised learning. In the current paper a novel

CycleGAN architecture is proposed for colorizing unpaired

NIR-RGB images; the main contributions of our proposed

model, compared with baseline [31], are as follows: i) it

utilizes tailored generators, which can work better in col-

orization context and have less computation time and less

parameters size; ii) it converges faster than the baseline ap-

proach [31]; finally, iii) it produces higher quality images.

This paper is organized as follow. In section 2, a sum-

mary of related works is given. In section 3, the proposed

approach is presented in details. Then, experimental results

are depicted in section 4 and finally conclusions are pro-

vided in section 5.

2. Related Work

Colorization problem has been studied during last

decades, several techniques have been proposed to unravel

this difficult task. Some of the methods proposed in the

literature follow a semi-automatic approach, which means

they need user interactions or to employ some user-defined

search table. Other approaches, mainly learning based ap-

proaches, are based on having aligned image pairs (NIR-

RGB), which in most of the cases are not available. The

issues mentioned within the current paper are expounded

with infrared image colorization, as mentioned above, it

somehow shares some common issues with monochromatic

approaches to image colorization. Monochromatic image

colorization algorithms vary in the ways they obtain and

process data for modeling between gray-scale and RGB im-

ages.

Colorization approaches can be usually classified into

two groups: parametric and non-parametric. At the training

time, parametric techniques try to learn predictive functions

from large color image datasets, posing the problem either

as a classification of quantified color values or as a regres-

sion to continuous color space. On the other hand, in the

non-parametric techniques a gray-scale image is provided

as an input and then one or more color provided as source

images by user or automatically; then color from reference

images transferred statistics onto homogeneous regions of

the input image, such as Welsh et al. [27], Gupta et al.

[9], Irony et al. [12]. All the papers mentioned before are

example-based approaches, which works as semi-automatic

methods to transfer color statistics from reference images

onto input gray-scale images. Although good results are

obtained, there is a big drawback with all these techniques

that is related with the requirement that input and reference

images should share the same content, actually both of them

should be perfectly registered, which is not the case in most

of the real scenarios.

GAN networks are a kind of Convolutional Neural Net-

work (CNN) that are able to generate samples from a given

latent space, this network has been introduced by Goodfel-

low et al. [7]. The mentioned GAN architecture build up

by a series of linear layers (fully-connected layers) and so

insufficient to complex dataset. The model consists of two

networks a Discriminator (D) and a Generator (G), which

going to against each other. In other words, the discrimina-

tor try to distinguish the real samples from fake samples that

have been generated by the generator. On the other hand,

the generator job is to fool the discriminator with the gener-

ated samples (fake images) to be classified as real images.

Both networks, D and G, are simultaneously optimized. As

mentioned above, the main issue of the standard GAN was

limited to simple datasets so shortly afterwards researcher

proposed the new architecture for GAN to address this lim-

itation, DCGAN (Deep Convolutional Generative Adver-

sarial Network) [21] has been introduced by Radford et al.

and changed the standard for most of GAN architectures.

DCGAN architecture became one of the most popular and

successful network design for GAN. In DCGAN instead of

using series of linear layers that is only suitable for simple

datasets, convolution layers without max pooling or fully

connected layers are considered and furthermore convolu-

tional stride for the down-sampling and transposed convo-

lution for the up-sampling are used that made DCGAN ar-

chitecture appropriate for complex dataset. DCGAN stan-

dard has been applied in various computer vision problems

such as image colorization [24], image enhancement [15],

style transfer [6], data augmentation [1] and many others.

Previous approaches are useful when paired images are

provided for the training process. In the case of unpaired

images, architectures such as CycleGAN [31] or Dual-GAN

[28] have been proposed by learning mapping between dif-

ferent visual domains jointly, each as a separate generative

adversarial network. Via a cycle-consistency loss ensures

that applying each mapping followed by its reverse yields

the identity map (i.e., ”if we translate from one domain to

another and back again we must arrive where we started”).

Regardless of the used architecture, Generative Adver-

sarial Networks usually suffer from multiple challenges

during training that needs more attention than Convolu-

tional Neural Networks (CNNs). Such as mode collapse,

convergence properties, diminished gradient and highly

sensitive to the hyper-parameter selections. Arjovksy et

al. [2] illustrated that the discriminator in standard GAN

cannot be trained well or with a high learning rate; other-

wise gradient vanish may show off and generator not able

to generate samples anymore and learning will stop. They
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Figure 1. Illustration of the CycleGAN architecture used for NIR image colorization with unpaired NIR-RGB datasets.

also proved that the standard GAN loss function cannot ac-

curately deal with inappropriate distributions, for example

those with disjoint supports, often found during training

stage of GAN. To solve the mentioned challenges many dif-

ferent GANs have been proposed by using vary loss func-

tions during training or using different D during the learn-

ing process such as LSGAN [18], WGAN [3] and many

others. Even though the proposed approaches have been

relatively successful solving these challenges (training sta-

bility, data quality, etc.), Lucic et al. [17]’s large - scale

research suggests that such approaches are not improv-

ing standard GAN consistently. In addition, some of the

best proposed approaches, like WGAN-GP [8], requires far

more computational comparing with standard GAN. Alexi

[14] illustrated that a relativistic discriminator based on in-

tegral probability metrics (IPM), is essential to make GANs

similar to divergence minimization and generate reasonable

forecasts on the basis of a previous knowledge. In such dis-

criminator, half of the images in the mini-batch consider

as fake. The proposed approach prove that GANs are able

to generate higher quality samples, less computational and

more stable than the previous approaches.

3. Proposed Approach

This section explains in details the approach proposed

for colorizing NIR images. As mentioned in the section 2,

most of recent work on colorization have proposed the us-

age of a deep convolutional generative adversarial network

on aligned paires of images, which in most of the cases do

not represent a real scenario. In the current work the usage

of a CycleGAN to colorize NIR images to a RGB repre-

sentation is proposed (see Fig. 1), when an aligned paired

dataset does not exist. In order to handle inputs and outputs

in both generators, a model that is feed with three channels

is proposed. This model will receive as an input three chan-

nels, which could correspond to: i) a given NIR image three

times (this is in the GC case); or ii) a RGB image (this is

the GN case). A loss function different to the one proposed

in [31] is used to minimize the overall classification error

in the training process, which improves the generalization

capability of the model.

The proposed architecture built up by a series of con-

volutional and transposed convolutional layers; relu and

leaky relu as non-linear activation functions; for generators

and discriminators respectively. Moreover, every layer of

D uses the spectral normalization and instance normaliza-

tion in G. Also, it is worth to mention pooling layer have

not been used in the networks, instead strided convolutions

used in order to keep as much features as possible, since

a pooling layer is down-sampling the feature depends on

stride number, which leads to data in features map to loss.

Dropout layers are used in the terms of noise to few lay-

ers of generators in order to prevent overfitting and modal

collapse. Added noise in few layers of G leads network to

generate the necessary variability of the training set, to be

able to generalize the learning of the colorization process.

Both networks (G, D) are based on feed-forward deep

neural networks, which play a min-max game against each

other. The near infrared image given to G as an input data

with the image size 256×256 pixels, and networks try to

transforms the given sample (NIR image) onto the inter-

ested form of the data we concerned, a RGB representation.



Encoder

Convolutional

Instance Norm

Leak ReLU

INPUT OUTPUT

Decoder

Instance Norm

ReLU

OUTPUT INPUT

DeConvolution

Figure 2. Illustration of the Encoder and Decoder structures of the proposed approach.
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Figure 3. Illustration of the structure of generators for NIR image colorization.

On the other hand, D takes a set of data, either a real sam-

ple or a produced sample, and produces a probability of that

data being real. The network D is optimized in order to in-

crease the likelihood of giving a high probability to the real

data and a low probability to the generated data (i.e., if the

probability is near to 1 it means the NIR image is correctly

colored, while if probability is near to 0 it means that NIR

image is wrongly colored).

3.1. U-net as Generators

ResNet architecture [10] has been used as a part of the

generators in the CycleGAN [31], showing that it is quite

powerful in transfiguring one image to another image and

has been achieved the reasonable results in style transfer,

photo enhancement, season transfer and other several ap-

plications. Unfortunately, it could not achieve acceptable

results in learning the color between domains and transfer-

ring the learned color without affecting the samples’ shapes,

since the network after some number of epochs starts to

transfigure between domains; hence the net will stop to

learn the color and also networks need plenty of data in

RGB domain. The first contribution of current work with

respect to baseline model [31] is to select the generators,

which are able to generate better samples and learn ac-

curately the colors of the different objects in images and

works better when not enough data are available in both

domains. The architecture proposed in this paper (U-net

[22]) also leads to have less computational time in training

process. U-net based architecture [22], proposed as gener-

ators of the models, has showed efficiency on a wide range

of approaches, especially in the colorization problems (e.g.,

[13],[30]).

The Unet architecture build up based on three compo-

nents: 1) encoder where the input passes through a series of

down-sampling layers (i.e., convolutional layers to extract

the feature samples); 2) bottleneck layer, which helps the

model to share all information pass through all the layers

so low-level information will be available directly among

the net. To give the generator a means to circumvent the

bottleneck for information like this, in the pix2pix model

[13] the skip connections, following the general shape of

a U-Net, which simply concatenates all channels at layer i

with those at layer n − i; 3) decoder, the last component

of U-net, which do the reverse process of the encoder (i.e.,

back to the normal image from the extracted feature by pass

through the series of transposed convolutional layers (up-

sampling)). Also, U-net shows that is quite powerful in the

case of understanding the color from one domain and trans-

ferring onto another domain (NIR images). U-net architec-

ture with skip connections is illustrated in Fig. 3.

3.2. Loss Functions

In the proposed model a multi-term loss function

(Lfinal) has been used by combination of RaLSGAN loss,

Cycle Consistency loss, Structural Similarity loss (SSIM)

and Identity loss. The combination of these loss functions

leads to achieve better image quality for human perceptual

criteria as presented in the experimental result section.

The RaLSGAN loss function [14] is applied to both gen-

erators GC , GN and their discriminators DC , DN of the



model respectively:

LGi

RaLSGAN = Exf∼P[(C(xf )− Exr∼PC(xr)− 1)2]

+ Exr∼P[(C(xr)− Exf∼QC(xf ) + 1)2]
(1)

LDi

RaLSGAN = Exr∼P[(C(xr)− Exf∼QC(xf )− 1)2]

+ Exf∼Q[(C(xf )− Exr∼PC(xr) + 1)2]
(2)

where P and Q are the distributions of real and generated

data respectively; C(xr) and C(xf ) are the probability of

D for real and fake data.

The Cycle Consistency loss function is defined as follow:

Lcyc(GC , GN ) = En∼pdata(n)[||GN (GC(n))− n||]

+ Ec∼pdata(c)[||GC(GN (c))− c||]
(3)

where n and c correspond to domain images (n for NIR

images and c for color images).

The Structural Similarity Index (SSIM) [26] has been

used during training process, where the aim of using such

loss function is to help the learning model to generate a vi-

sually improved image. The structural loss function defined

as below:

LSSIM =
1

NM

P
∑

p=1

1− SSIM(p). (4)

The Identity loss function employed to regularize the

generator. The aim of using such loss function is if some-

thing already looks like from the target domain, should not

map it into a different image.

Lidentity(GC , GN ) = Ec∼Pdata(c)[||GC(c)− c||]

+ En∼Pdata(n)[||GN (n)− n||].
(5)

The final objective Lfinal is obtained as below:

Lfinal = LRaLSGAN + λLCycle + LSSIM + γLIdentity

(6)

where λ, γ are the weights to Cycle Consistency and Iden-

tity loss function, which play as regularization terms im-

pacting on the optimization of the model. Assigning a big-

ger weights lead the model to have better reconstruction loss

and model will make smaller changes. On the other hand,

a smaller weights increase the risk of artifacts and lead the

model to bring more dramatic changes with respect to input

images.

3.3. Spectral Normalization

The performance control of the discriminator is an ongo-

ing challenge in training Generative Adversarial Networks.

The density ratio estimates by the discriminator in high-

dimensional spaces is often imprecise and unstable during

learning phase, so generators do not learn the multimodel

structure of the target. To solve the mentioned issue [19]

proposed the normalization method. It helps to stabilize the

training of discriminators by applying spectral normaliza-

tion. Hence, discriminator becomes more stable and the

network converge faster in less number of epochs. In the

current work spectral normalization has been used so that

the network learns the structure of images much better and

generates better image quality comparing to baseline model

[31].

3.4. Better Cycle Consistency

Cycle Consistency loss function is one of the main fea-

tures of CycleGAN, which simply motivates generators to

prevent needless changes and generates images that share

structural similarity with inputs. Also, the Cycle Consis-

tency helps a lot to make training phase stable in the early

stages, but becomes a problem in later stages to generate

realistic images. Since Cycle Consistency is a form of reg-

ularization we propose to progressively decrease the weight

of cycle loss after half way of training process. Neverthe-

less, λ (in eq. (6)) needs to be checked to not become 0 in

order to prevent the generators become unstable and uncon-

strained.

3.5. Two Time-Scale Update Rule

Training GANs, unlike of CNNs, needs more atten-

tion since mode collapse may occur in the learning pro-

cess, when the generator generates a restricted variety of

samples, or even the same sample, regardless of the in-

put and prevent GAN to learn the target distribution. In

[11] the authors propose the two time-scale update rule

(TTUR), which improves the general performance, con-

vergence speed and helps to prevent the mode collapse of

GANs. TTUR has been applied to the proposed approach

with ADAM stochastic optimizer to risk reduction of mode

collaps and also to make sure that the discriminators con-

verge in the training process.

4. Experimental Results

The proposed approach has been evaluated by using NIR

images and their corresponding RGB, which were used as

ground truth. The data set has been obtained from [4];

it contains pairs of NIR-RGB images of 1024×680 pixels

each from different categories. It should be mentioned that

dataset images are correctly registered and a pixel-to-pixel

correspondence is guaranteed for quantitative and qualita-



Figure 4. Unpaired set of images (256×256 pixels each) used for training the proposed approach and CycleGAN [31]; (top − row) NIR

images from [4]; (bottom− row) RGB images collected from internet.

tive evaluation. Only categories with similar scenarios have

been chosen for training the proposed model. The selected

categories are as follow: country (50 pairs of images), field

(51 pairs of images), forest (52 pairs of images) and moun-

tain (50 pairs of images). The objective is to train the net-

work in scenarios that contain similar objects.

The NIR images from the mentioned categories have

been used during training while the corresponding RGB im-

ages (ground truth) have not been used neither during the

training nor testing phases; they are only used for quantita-

tive and qualitative evaluations. The RGB images used dur-

ing the training process have been collected from internet

(700 images); all the collected images correspond to sce-

narios similar to those from the aforementioned categories.

Each pair of the original NIR and RGB images (from [4])

has been split up into two smaller images of 680×680 pix-

els each, resulting in a total of 406 pairs. From this set 68

pairs of images have been randomly selected and keep aside

for evaluating the performance of the proposed approach.

The rest of NIR images have been resized to 256×256 pix-

els, which was the size used to feed the network. All the

RGB images collected from internet have been also resized

up to 256×256 pixels each. In order to increase the num-

ber of images for training a data augmentation process has

been applied (horizontal flipping and random crop). Fig-

ure 4 shows just four pairs of these unpaired (NIR-RGB)

images used for training.

Results obtained with the proposed approach have been

compared with results obtained using the baseline model

presented in [31]. Quantitative and qualitative results from

this NIR image colorization are presented in next sub sec-

tions. The proposed network has been trained using a 3.2

eight core processor with 62GB of memory with a NVIDIA

GeForce GTX TITAN X GPU; on average the training pro-

cess took near to 13 hours to complete 200 epochs. The

model has been trained by using ADAM stochastic opti-

mizer due to several advantages, slight memory require-

ments, it is computationally effective, also leads network

to converge faster compared with the other stochastic op-

timizer and it prevents from overfitting. Dataset has been

normalized from range of (0, 255) to (-1, 1); normal weights

initialized with mean 0 and standard derivation 0.2 used

in the proposed approach. The hyper-parameters were

tuned during training stage as follows: learning rate 0.0003

and 0.0009 for generators and discriminators respectively;

weight decay 1e-8 for generators, exponential decay rate

0.50, 0.999 for the first and second momentum (beta1,

beta2); leak relu 0.2; cycle consistency weight 100; dropout

with 0.5 probability.

4.1. Evaluation Metrics

In order to assess the performance of the proposed ap-

proach average Angular Error (AE) is considered. It is

a widely used evaluation measure in color constancy re-

search. AE is defined as the average angular distance be-

tween every obtained RGB pixel (RGBoi,j) with the corre-

sponding ground truth (RGBgi,j). AE is used as an evalua-

tion metrics since this measure is quite similar to the human

spectator. AE is defined as:

AE = cos−1

(

dot(RGBo, RGBg)

norm(RGBo)× norm(RGBg)

)

. (7)

Additionally, Frchet Inception Distance (FID) [11] has



AE FID

CycleGAN [31] 13.87 146.77
Prop. App. 10.04 105.21

Table 1. Comparative results between proposed approach and Cy-

cleGAN using evaluation metrics from Sec. 4.1.

Proposed Approach CycleGAN
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Figure 5. Avarage AE distribution for both approaches.

been used for comparing the similarity between obtained

images and ground truth images in an embedded space. The

FID is computed by using the Inception model up to a spe-

cific layer. Hence, in the case of two sets of multivariate

Gaussians the FID between two distributions is obtained by

calculating their means and covariances:

FID(Xg, Xo) = ||µg − µo||
2
2

+ Tr(Σg +Σo − 2(ΣgΣo)
1

2 )
(8)

where the Xg is the set of real images (ground truth) and Xo

is the set of obtained images. Lower FID results show the

obtained images are more similar to ground truth images.

4.2. Quantitative Results

Table 1 presents the quantitative results based on average

AE and FID with the scenarios mentioned above (set of 68

pairs used as ground truth) for both models (proposed ap-

proach and baseline model [31]). According to the obtained

average AE, the proposed approach improves CycleGAN

in about 40%. In the case of FID metrics, the proposed ap-

proach gets an improvement of almost 39% with respect to

CycleGAN. It can been seen that the proposed approach has

smaller errors than the baseline model [31]. These results

show that Relativistic loss and SSIM loss functions help to

enhance the performance of the original CycleGAN [31].

Figure 5 depicts the box plot for the average AE of both

approaches.

4.3. Qualitative Results

Figure 6 depicts some illustrative results for compar-

isons, both with respect to CycleGAN [31] and the cor-

responding ground truth. These images correspond to the

set of 68 pairs of images mentioned above that have not

been used neither during the training nor during the vali-

dation stages. Each column shows the given NIR images,

colorized with baseline model [31], colorized with the pro-

posed approach and the ground truth respectively. It should

be mentioned that all categories are trained simultaneously

and also our colorized NIR images look quite better than the

baseline model when compared with the ground truth.1

5. Conclusions

This paper proposes a novel architecture by using a

Cycle-Consistent Adversarial Network in the context of col-

orization. The proposed approach address the challenging

problem of colorizing NIR images when the ground truth is

not available during the learning phase (i.e., in the unsuper-

vised learning context) by using the appropriate generators

and loss functions. Experimental results have shown that

the NIR images colorized with proposed approach are visu-

ally better than those obtained with the CycleGAN baseline

model as well as lower quantitative values are obtained.
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