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Abstract

Object detection in maritime environments is a rather

unpopular topic in the field of computer vision. In con-

trast to object detection for automotive applications, no suf-

ficiently comprehensive public benchmark exists. In this

paper, we propose a benchmark that is based on the Sin-

gapore Maritime Dataset (SMD). This dataset provides

Visual-Optical (VIS) and Near Infrared (NIR) videos along

with annotations for object detection and tracking. We

analyze the utilization of deep learning techniques and

therefore evaluate two state-of-the-art object detection ap-

proaches for their applicability in the maritime domain:

Faster R-CNN and Mask R-CNN. To train the Mask R-CNN

including the instance segmentation branch, a novel algo-

rithm for automated generation of instance segmentation la-

bels is introduced. The obtained results show that the SMD

is sufficient to be used for domain adaptation. The highest

f-score is achieved with a fine-tuned Mask R-CNN. This is

a benchmark that encourages reproducibility and compara-

bility for object detection in maritime environments.

1. Introduction

Visual object detection in maritime environments be-

longs to the research topics that gain rather little attention

in the field of computer vision. Several applications exist

such as harbor surveillance [11, 40] or collision avoidance

for autonomously operating vessels [9, 10, 48]. However,

in contrast to generic object detection [13, 36, 47], pedes-

trian detection [12, 25, 58], or face detection [55], there

is no sufficiently comprehensive public benchmark avail-

able. Hence, object detection results recently reported in

this field [26, 32, 37, 50] are neither reproducible nor com-

parable. Prasad et al. [43] introduced the Singapore Mar-

itime Dataset (SMD). This dataset is one of the few pub-

licly available that is specifically dedicated to object detec-

tion in maritime environments, but it lacks of representa-

tive benchmarking results. There are some other maritime

datasets tackling challenges such as boat traffic monitor-

ing [4], piracy detection [1], vessel classification [19], or

obstacle detection for unmanned surface vehicles [31]. But

none of them is either sufficiently large to train a Deep

Convolutional Neural Network (DCNN) or specifically de-

signed for object detection. However, we feel that the SMD

can be utilized for both deep learning and representative

benchmarking. In addition, it is beneficial that the SMD in-

cludes Visual-Optical (VIS) and Near Infrared (NIR) videos

since several authors proved the advantages of using multi-

ple spectra for object detection [7, 25, 30]. However, the

annotations lack in some aspects as for example there is no

split proposed to separate training and test data for machine

learning based detection approaches. Furthermore, the an-

notations are inconsistent regarding class assignments and

there are only few samples for some of the ten classes con-

tained in the annotations.

In this paper, the SMD is analyzed in depth and uti-

lized for deep learning. State-of-the-art object detection ap-

proaches are evaluated for their suitability to be applied in

maritime environments. Since semantic instance segmen-

tation turned out to be a promising addition to multi-task

learning for object detection [2, 8, 21], an instance segmen-

tation algorithm is introduced to enrich the SMD data an-

notation, and an approach for weakly supervised recursive

training [28] is evaluated. The overall result of this paper is

a benchmark for object detection in maritime environments.

Since the SMD provides only few samples for some of the

ten contained classes, we cannot sufficiently train our DC-

NNs and thus consider only two classes: object and back-

ground. The contributions of this paper are (1) the analysis

of the SMD in preparation for deep learning and propos-

ing a split into training, validation, and test data, (2) the in-

troduction of a simple algorithm for automated generation



of instance segmentation labels in maritime environments,

(3) the introduction of a maritime object detection bench-

mark using the two state-of-the-art object detection DCNNs

Faster R-CNN [45] and Mask R-CNN [22], and (4) the ex-

amination of weakly supervised recursive training [28] to

improve the results of Mask R-CNN using the generated

instance segmentation labels. The evaluation scripts, the

annotations including the generated instance segmentation

labels, and the necessary python scripts and configuration

files for the Detectron [17] framework are available 1.

The remainder of this paper is structured as follows: re-

lated work is presented in Section 2. The SMD is analyzed

in Section 3. Training strategies, experiments, and results

are described in Section 4. We conclude in Section 5.

2. Related Work

Maritime Datasets: The SMD provides 31,653 frames

with a Ground Truth (GT) of 240,842 annotated bounding

boxes for ten different object classes in total. Mainly due

to its large extent compared to other available datasets we

chose it as data basis for our benchmark. Several public

maritime datasets exist but none of them is promising for

deep learning based object detection. Fefilatyev et al. [14]

introduced a dataset captured from a buoy for horizon detec-

tion. As the annotations do not include bounding boxes for

object detection, this dataset cannot be utilized. The Large-

Scale Image Dataset for Maritime Vessels (MARVEL) [19]

and the Maritime Imagery in the VIS and IR spectrums

(VAIS) [57] do not provide bounding boxes either since they

are datasets for object classification. Kristan et al. [31] in-

troduced the Marine Obstacle Detection Dataset (MODD)

captured from an unmanned surface vehicle. The aim of this

dataset is to provide videos to train and evaluate obstacle

detection approaches in maritime environments. Bovco et

al. [6] improved the MODD by adding segmentation labels

for sky, sea, and shore and thus prepared the dataset to be

usable for anomaly detection using auto-encoders. How-

ever, as this dataset contains only twelve videos and ig-

nores objects above the horizon, it is not applicable for the

benchmark we are aiming at. The IPATCH dataset [1] was

published to tackle the challenge of piracy detection. Its

rather small extent with only fourteen videos and scenes

makes us discard this dataset for further consideration. The

Maritime Detection, Classification, and Tracking Database

(MarDCT) [4] was acquired for surveillance applications.

Object detection is one of the challenges, the dataset was

created and annotated for. 1,739 bounding boxes are pro-

vided in 8,115 frames. Unfortunately, the annotations are

fragmentary and the data extent is definitely not sufficient

to train DCNNs. Finally, many authors [29, 50, 51] use pri-

vate datasets that cannot be utilized for benchmarking.

1https://github.com/smoosbau/SMD-Benchmark

Object Detection: In maritime environments horizon de-

tection is often used as a preprocessing step. This is not a

stringent requirement for this task, but can have a positive

effect on the detection robustness. It is either used to align

consecutive frames [42, 43] to add spatio-temporal infor-

mation or to set up search areas for subsequent detection al-

gorithm(s) [51]. Common techniques for horizon detection

use edge maps [3, 54, 49] or region based horizon detection

[52, 5, 53]. Unfortunately, horizon detection is error prone

if the horizon is occluded by objects or fog. The detected

horizon is then used to learn a background model and per-

form background subtraction. Foreground regions are then

assumed to contain objects. Prasad et al. [43] analyzed var-

ious algorithms such as single image statistics [44, 5] or

feature based classifiers [59]. However, background models

that assume a stationary background usually perform poorly

as illumination changes, waves, and foam are highly dy-

namic and cannot be represented well. An alternative can

be Gaussian Mixture Models (GMM) [15, 56], relatively

stationary pixels [52], or kernel density estimation [38].

Recent state-of-the-art results in multiple computer vi-

sion challenges are achieved using DCNNs and deep learn-

ing techniques. In the maritime domain, horizon detec-

tion [26], object classification [20, 33], and visual anomaly

detection [32], but also object detection are promising tasks

for the application of DCNNs: Kim et al. [29] propose a

spatio-temporal approach. They use Faster R-CNN fine-

tuned on a custom dataset to detect objects and then ap-

ply short-term tracking. Marie et al. [37] utilize statis-

tical machine learning methods to extract Regions of In-

terest (ROIs), which are then further analyzed using Fast

R-CNN [16]. Testing on the SMD their best result achieves

an f-score of 0.78. However, the results are not reproducible

as the data split for training and testing remains unknown.

Tangstad [50] uses Faster R-CNN for obstacle avoidance in

maritime environments. Here, object detection is consid-

ered as a two-class problem (object vs. background). Just

like other authors [4], images showing boats and vessels are

borrowed from benchmark datasets for generic object de-

tection [47, 39]. Together with a custom maritime dataset,

domain adaptation can be performed for the Faster R-CNN

leading to convincing object detection results. However,

those results are not reproducible either.

3. Singapore Maritime Dataset

The SMD [43] is probably the most promising, currently

available public dataset for object detection in maritime en-

vironments. There are 240,842 object labels with ten dif-

ferent classes in 81 videos in total. Table 1 shows some of

its properties. Videos in the VIS and the NIR spectrum are

provided that were acquired on-shore and on-board from a

small boat. Furthermore, different illumination conditions

such as hazy, daylight, and dark/twilight are covered.



Table 1. Properties of the SMD.

Subdataset
Videos Labeled Number of

(Annotated) Frames Labels

NIR 30 (23) 11,286 83,174

VIS on-board 11 (4) 2,400 3,173

VIS on-shore 40 (36) 17,967 154,495

Total 81 (63) 31,653 240,842

However, we can identify some issues that need to be

discussed: first, there is no data split suggested to sep-

arate training and test data. Hence, we propose such a

split in Section 3.1 considering some of the dataset’s con-

straints. Second, the bounding boxes are inconsistently la-

beled. For occluded objects, either only the visible part

or the estimated entire object is annotated. Furthermore,

some objects contain rather large background areas, which

can be a drawback for training well-generalizing DCNN

models [58]. We handle this issue by choosing a smaller

Intersection-over-Union (IoU) threshold (0.3 instead of 0.5)

to determine True Positive (TP) detections within our ex-

periments in Section 4. Third, the labels are inconsistent

in class assignment, which can be an issue when training a

DCNN for multi-class object detection. In order to check

the class assignment consistency, the GT for object track-

ing is used that contains a unique ID for every object. With

this ID it is possible to verify whether the class label of an

object is consistent across the entire sequence or not. Unfor-

tunately, about 9 % of the individual tracks contain at least

one switch in the annotated object’s class assignment. In ad-

dition, the training data for the ten classes contained in the

SMD is strongly imbalanced and there are only few sam-

ples for some of the ten classes. We consider this issue by

evaluating object detection using the SMD not as a ten-class

but as a two-class (object vs. background) problem within

our experiments in Section 4. Finally, the number of indi-

vidual objects is rather small. According to the annotations

for object tracking, there are not more than 534 individual

objects contained in the SMD considering both the VIS and

the NIR spectrum. This can increase the danger of overfit-

ting during training. We handle this issue by making sure

that an object that is contained in multiple videos belongs

either to the training or to the test dataset during data split

in Section 3.1. We also consider that it is not beneficial for

object detection to utilize each frame of a video for training

a DCNN but every second [24].

3.1. Training and Test Data

To utilize the SMD for deep learning, a training, valida-

tion, and test set is needed. As there is no literature avail-

able providing such a split, we propose it in this section.

Table 2 shows the training/validation/test split for all videos

captured in the VIS spectrum. As the number of videos is

rather small, the videos captured on-shore and on-board are

combined. As there are several videos containing the same

object, those videos should be in the same subset, i.e. ei-

ther training or test. The grouped videos highlighted in blue

color in Table 2 contain identical objects. Although there is

a large number of videos with identical objects, it is possible

to create a test set that contains no videos with identical ob-

jects and covers the available illumination conditions: hazy,

daylight, and dark/twilight. Furthermore, it is possible to

add videos with many (ten or more) and few (less than ten)

objects per frame to each subset.

Table 3 shows the proposed data split for the NIR videos.

There are videos containing identical objects, too. Those

are again grouped and highlighted in blue color. Weather

conditions are not taken into account here as it is difficult to

determine them visually from the monochromatic images.

As the number of NIR videos is even less compared to the

VIS videos, no validation set is provided.
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Figure 1. Class distribution for training (green), test (orange), and

validation (red) set.

To analyze the quality of training and test set it is neces-

sary to check if the classes are equally distributed. Figure 1

shows the training, validation, and test set’s distribution of

classes for the VIS data. Actually, there is a strong class

imbalance. Even worse, there are classes that occur in only

one of the two sets. Due to this strong class imbalance it

is doubtful that a DCNN to detect multiple classes can be

trained successfully. Another important property for object

detection is object size. Figure 2 shows the bounding box

areas present in the dataset. The majority of objects has a

small size of 4,000 pixels or less. Hence, the dataset is more

challenging as small objects are more difficult to detect [36].

The test set has a similar size distribution compared to the

training set. Finally, the width-to-height aspect ratio distri-

bution is shown in Fig 3. There is a similar distribution of

aspect ratios for training and test set.



Table 2. Proposed split into training, validation, and test data for the VIS videos. Grouped videos in blue color contain identical objects.

Set Subset Video Name Condition Frames Labels Objects

Training
On-Shore

MVI 1451 hazy 439 3,270 8

MVI 1609 dark/twilight 505 9,072 20

MVI 1452 hazy 340 1,700 5

MVI 1610 daylight 543 3,166 6

MVI 1478 daylight 477 2,901 7

MVI 1479 daylight 206 1,271 7

MVI 1481 daylight 409 3,095 9

MVI 1482 daylight 454 2,460 6

MVI 1584 dark/twilight 550 7,320 14

MVI 1613 daylight 626 6,574 12

MVI 1614 daylight 582 6,957 13

MVI 1615 daylight 566 3,843 8

MVI 1617 daylight 600 5,940 14

MVI 1619 daylight 473 2,838 6

MVI 1620 daylight 502 3,012 6

MVI 1583 dark/twilight 251 3,186 13

MVI 1622 daylight 309 1,103 4

MVI 1623 daylight 522 3,094 6

MVI 1587 dark/twilight 600 8,858 15

MVI 1624 daylight 494 1,976 4

MVI 1625 daylight 995 8,111 11

MVI 1592 dark/twilight 491 3,629 8

MVI 1644 daylight 252 1,764 7

MVI 1645 daylight 535 3,210 6

MVI 1646 daylight 520 4,533 9

On-Board MVI 0801 daylight 600 919 2

Validation
On-Shore

MVI 1469 daylight 600 5,947 11

MVI 1578 dark/twilight 505 3,535 7

On-Board MVI 0790 daylight 1,010 597 1

Test
On-Shore

MVI 1448 hazy 604 5,443 10

MVI 1474 daylight 445 6,674 15

MVI 1484 daylight 687 2,748 4

MVI 1486 daylight 629 6,713 11

MVI 1582 dark/twilight 540 6,480 12

MVI 1612 daylight 261 2,514 10

MVI 1626 daylight 556 5,329 12

MVI 1627 daylight 600 4,200 7

MVI 1640 daylight 310 2,183 9

On-Board MVI 0797 daylight 600 1258 3

3.2. Instance Segmentation Labels

Multitask learning considering object detection and in-

stance segmentation is beneficial for both tasks’ perfor-

mance [22]. To utilize this promising approach, an in-

stance segmentation GT is needed, which is not included

in the SMD’s annotations. In recent literature [41, 28, 34],

it was proposed to generate this instance segmentation GT

semi-automatically: GrabCut and Multiscale Combinato-

rial Grouping (MCG) are used to create pixelwise instance

segmentations from bounding box annotations. However,

our experiments showed that GrabCut does not work well

for images captured in maritime environments since a large



Table 3. Proposed split into training and test data for the NIR

videos. Grouped videos in blue color contain identical objects.

Set Video Name Frames Labels Objects

T
ra

in
in

g

MVI 1523 600 5,960 11

MVI 1524 579 6,028 28

MVI 1525 566 3,562 7

MVI 1526 600 2,154 4

MVI 1463 317 6,324 20

MVI 1527 602 5,864 14

MVI 1528 600 2,207 7

MVI 1532 295 852 3

MVI 1529 478 2,868 6

MVI 1530 497 2,485 5

MVI 0895 440 3,201 9

MVI 1538 417 1,599 4

MVI 1539 601 3,606 6

MVI 1541 508 7,789 16

MVI 1552 799 2,584 4

MVI 1550 534 3,738 7

MVI 1551 520 4,680 9

T
es

t

MVI 1468 349 3,032 9

MVI 1520 541 2,573 5

MVI 1521 600 3,600 6

MVI 1522 262 2,519 10

MVI 1545 307 3,483 14

MVI 1548 274 2,466 9

0 2k 4k 6k 8k 10k 12k 14k 16k 18k+

2k

4k

6k

8k

10k

0

N
u

m
b

e
r 

o
f 
O

c
c
u

re
n

c
e

s

Areas in Pixels

Figure 2. Distribution of bounding box areas for training (green

color), test (orange color), and validation (red color) set.

number of pixelwise False Positive (FP) annotations occurs

as seen in Fig. 4.

Instead, we propose Algorithm 1 to create instance seg-

mentation labels for the SMD. For each GT box, we cre-

ate an adjacent upper and lower box of constant height hc.
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Figure 3. Distribution of bounding box aspect ratios for training

(green), test (orange), and validation (red) set.

Algorithm 1: Local background subtraction to cre-

ate instance segmentation labels from GT boxes.

Input: image, ground truth boxes

Output: pixelwise instance segmentation

1 annotations← ∅;

2 foreach boxgt do

3 xmin, ymin, ymax ← extrema (boxgt);

4 boxlow ← box (xmin, ymax, w, hc);

5 boxup ← box (xmin, ymin − hc, w, hc);

6 µlow, σ2

low ← gauss (boxlow, image);

7 µup, σ2

up ← gauss (boxup, image);

8 dmin ← dist thresh ();

9 for i← 0 to max iter do

10 dmin ← dmin − i · x;

11 for p← 0 to area (boxgt) do

12 mask[p]← 0;

13 dlow ← dist (image[p], µlow, σ2

low);

14 dup ← dist (image[p], µup, σ2

up);

15 if dlow > dmin and dup > dmin then

16 mask[p]← 1;

17 end

18 end

19 mask← morph opening (mask, kernel);

20 mask← morph closing (mask, kernel);

21 contour← contour (mask);

22 if area (contour) > 0.1 · area (boxgt)

then break;

23 end

24 annotations← add contour (contour);

25 end

26 return annotations

Within each box, we calculate the pixel value mean and

variance (three dimensional in RGB for VIS). This multi-

variate Gaussian normal distribution for each box represents

a simple background model for sky and sea. Each pixel in-



side the GT box is compared to each of the two background

models using the Mahalanobis distance. We mark the pixel

as foreground if both distances are sufficiently large. Clus-

tering foreground pixels gives us the object’s instance seg-

mentation. GrabCut can be initialized with a set of pix-

els that definitely contain foreground [46]. Although Algo-

rithm 1 tends to produce rather FN pixels than FP pixels, it

turned out that it is still impossible to use the GrabCut for

object segmentation even with an initialization using our in-

stance segmentation. Hence, we directly use the clusters as

instance segmentation labels.

GrabCut

Local Background Subtraction

boxup

boxlow

boxgt

Figure 4. Instance segmentation labels created by GrabCut and Al-

gorithm 1. While GrabCut is prone to produce FP segmentations

right above the vessels, Algorithm 1 tends to produce FNs. The

depicted boxes correspond to the ones mentioned in Algorithm 1.

Figure 4 shows the improvements by using the intro-

duced approach to create instance segmentation labels. The

red boxes above and underneath each green GT bounding

box show the areas used for modeling the background. The

new approach significantly reduces the number of FP pixels

compared to GrabCut.

4. Experiments and Results

In this paper, Faster R-CNN and Mask R-CNN are eval-

uated for object detection in maritime environments. Both

DCNNs use ResNet-101 [23] as backbone and are pre-

trained using ImageNet and COCO that both contain many

maritime objects. The models are taken from and trained

using the Detectron [17] framework. We replace the fully-

connected output layer of each DCNN with two fully-

connected output neurons for the two classes object and

background. We also tested using eleven neurons with the

ten classes provided by SMD and background. However,

since the f-score was about 0.03 lower on average compared

to the two-class problem, we discarded this approach.

Three different width/height aspect ratios are available

for the anchors provided by the pre-trained object detection

DCNNs: 0.5, 1, and 2. In order to analyze if these ratios fit
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Figure 5. Training and test samples plotted as width/height points

and the three RPN anchor aspect ratios depicted as straight lines.

well to the dominant aspect ratios of the objects within the

dataset, we plot the training and test samples given by the

width and height of their related bounding boxes in Fig. 5.

The three anchor ratios are visualized as three straight lines

since we apply them scale invariant using a Feature Pyra-

mid Network (FPN) [35]. The object aspect ratios within

the dataset are covered well by the provided anchors. How-

ever, it could be beneficial to use a fourth anchor aspect ratio

of 3 to improve the detection of objects with a much larger

width than height. We tried to introduce such an anchor

but discovered that the dataset is definitely not sufficient to

train the large number of new parameters that appear due to

the introdution of the fourth anchor. As a result, the detec-

tion rate dramatically dropped and thus we discarded this

approach for manipulating the anchors.

We evaluate using precision, recall, and f-score [27]. The

Faster R-CNN is then evaluated for (1) fine-tuning only

(FRCNN). As Lin et al. [35] demonstrated that FPNs im-

prove object detection performance especially for small ob-

jects in the image, we not only apply an FPN within the

Mask R-CNN but also within the Faster R-CNN. To eval-

uate the influence of model weights pre-trained for object

detection and instance segmentation, (2) the Mask R-CNN

is used (MRCNN w/o segm.). As the SMD does not provide

instance segmentation labels for fine-tuning, we disable the

segmentation branch for this training. To further improve

the results, the semi-automatically determined instance seg-

mentation labels are used to train the Mask R-CNN includ-

ing its segmentation branch. This DCNN is evaluated for

(3) fine-tuning with re-initializing only class dependent lay-



ers (MRCNN finetuned) and for (4) fine-tuning with re-

initialization of the segmentation branch’s deconvolution

layer together with the fully connected layers (MRCNN re-

init). Other combinations of re-initialization were tested

but appeared not to be promising. For the last experiment,

(5) the weakly supervised recursive training approach of

Khoreva et al. [28] is adapted (MRCNN recursive). This

approach is related to the Expectation-Maximization (EM)

algorithm and iteratively improves the DCNN model and

the instance segmentation labels simultaneously. As this ap-

proach is applied to object detection in the maritime domain

for the first time, we perform an ablation study for weight-

ing the detection and the segmentation loss within the loss

function during training. As we cannot be sure about the

quality of the semi-automatically determined instance seg-

mentation labels, we need to assure that the segmentation

loss is not dominating and thus biasing the training pro-

cess. Figure 6 shows the resulting precision-recall curves.

We evaluate three different weightings: Loss Ratio (LR) 1/2

means that the detection loss is weighted half compared to

the segmentation loss. This is recommended for faster train-

ing [28]. For LR 2/1, the segmentation loss is weighted half

compared to the detection loss. The f-scores show no sig-

nificant performance difference. For comparison, we also

evaluate a naı̈ve initialization for instance segmentation us-

ing the entire GT rectangle (rect. init.). We did not evalu-

ate GrabCut as we discovered that regularly either all pixels

or no pixel inside a GT box was segmented as foreground.

There is no significant difference between the approaches

regarding the maximum f-score. As a consequence, weakly

supervised recursive training seems to be equally harmed

by either FPs or FNs. Since seg. init. LR 1/2 consistently

performed best, we choose this approach and this ratio for

the next experiments.

All experiments are performed using the same hyper-

parameters as introduced by Goyal et al. [18]. Epoch de-

pendent hyper-parameters are linearly scaled. The best re-

sult of each experiment is shown in Figure 7. Mask R-CNN

with its segmentation branch disabled (colored blue) per-

forms best overall with a rather large margin for one epoch

of training and no additional re-initialization. This is re-

markable since it shows that the Mask R-CNN is well-

generalizing across datasets without the necessity of ex-

tensive fine-tuning. One reason could be that the mar-

itime objects contained in ImageNet and COCO provide

a good basis. Training the Mask R-CNN for five epochs

with re-initialized fully connected and deconvolution lay-

ers (colored purple) performed second best overall. In-

terestingly, the Faster R-CNN trained for ten epochs and

without re-initialization of the fully connected layers (col-

ored red) is able to outperform the Mask R-CNN without

re-initialization trained for five epochs (colored orange).

Training the Mask R-CNN using the weakly supervised re-
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Figure 6. Evaluation of three different detection and segmenta-

tion loss ratios (LR) for weakly supervised recursive training [28]

(MRCNN recursive) initialized with the instance segmentation la-

bels (seg. init.) created by Algorithm 1. Rect. init. represents the

naı̈ve initialization using the entire GT box. Solid curves represent

results for an IoU threshold of 0.5 and dashed curves for 0.3.
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Figure 7. Best results for each experiment represented by

precision-recall curves and maximum f-score. Solid curves rep-

resent results for an IoU threshold of 0.5 and dashed curves for

0.3. The dashed grey curves show the f-score.

cursive training strategy [28] with ten iterations is not able

to outperform any of the other results using this approach.
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Figure 8. Qualitative evaluation using the Mask R-CNN with disabled segmentation branch for VIS and NIR images.

To evaluate (6) the object detection performance for

the NIR spectrum, the best performing parameterization is

adopted from training in the VIS spectrum (MRCNN NIR).

The result is shown in Fig. 7 (colored pink). As the images

from both spectra are not aligned the results are not compa-

rable and multispectral detection is not possible. Neverthe-

less, the performance on NIR images is surprisingly good

without any hyper-parameter tuning.

Figure 8 shows crops of four VIS and two NIR images

for the qualiative evaluation. Detection bounding boxes are

colored green and Ground Truth (GT) bounding boxes red.

All detection bounding boxes are taken from inferencing

the Mask R-CNN. As seen in Fig. 8 (B), hazy images are

very challenging and one of the main reason for the occur-

rence of FNs. Tiny objects are another issue and produce

FNs as seen in Fig. 8 (D). Figure 8 (E) shows a detection

result for the NIR spectrum. The contrast between objects

and background is rather low. Nevertheless, the DCNN is

able to detect the objects correctly. In general, tiny and oc-

cluded objects are most challenging especially under hazy

conditions and produce most of the FN detections in both

the VIS and the NIR spectrum.

5. Conlusions

In this paper, we presented a novel benchmark for deep

learning based object detection in the maritime domain uti-

lizing the SMD. Drawbacks of the current SMD annotations

were discussed and extensions suggested and published.

Furthermore, a data split into training, validation, and test

data was proposed for the VIS and the NIR spectrum of the

SMD. Using a novel object segmentation algorithm tuned

specifically for maritime scenes, instance segmentation la-

bels were generated semi-automatically for weakly super-

vised recursive Mask R-CNN training. Best performance

with a maximum f-score of 0.875 and 0.877 in the VIS and

the NIR spectrum, respectively, was achieved by a fine-

tuned Mask R-CNN with disabled instance segmentation

branch. This actually is nothing else than a Faster R-CNN

initialized with Mask R-CNN weights and subsequently

fine-tuned. The result indicates that the Mask R-CNN is

not only a powerful but also a well-generalizing DCNN for

object detection. Our new benchmark 1 aims at improving

reproducibility and comparability of research for object de-

tection in maritime environments.
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