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Abstract

The most prominent machine learning (ML) methods in

use today are supervised, meaning they require ground-

truth labeling of the data on which they are trained. An-

notating data is arduous and expensive. Additionally, data

sets for image object detection may be annotated by draw-

ing polygons, drawing bounding boxes, or providing single

points on targets. Selection of annotation technique is a

tradeoff between time to annotate and accuracy of the an-

notation. When annotating a dataset for machine object

recognition algorithms, researchers may not know the most

advantageous method of annotation for their experiments.

This paper evaluates the performance tradeoffs of three

alternative methods of annotating imagery for use in ML. A

neural network was trained using the different types of an-

notations and compares the detection accuracy of and dif-

ferences between the resultant models. In addition to the

accuracy, cost is analyzed for each of the models and re-

spective datasets.

1. Introduction

Over the past few years, a tremendous amount of re-

search has focused on improving deep neural network

(DNN) architectures and their efficacy for applications in

computer vision. A majority of these works focus on the

architectures themselves, and less has been done to explore

the data which makes these networks run. Since neural net-

works can only be as good as the data they are trained on,

the input data is possibly the single most important part of

the neural network. For supervised methods, this includes

the annotations that are used as ground truth.

Today’s deep networks require an even greater burden of

labeled data than previous generations [4, 30]. Annotating

datasets for use in supervised machine learning is expen-

sive and time consuming due to the amount of data often

required. While a number of works have looked at the ef-

fects of noise [26, 11, 19, 12, 30], and adversarial pertur-

bations [18, 16, 17, 14] in the training set, little informa-

tion is currently available on the tradeoffs between image

annotation types and the resulting performance of the net-

work. Approaches for manually annotating imagery, such

as with polygons, bounding boxes, or target centroids, have

considerably different annotation cost due to their varying

complexity, and the utility of each may depend on the use

case. Therefore it is essential to understand the tradeoffs

between cost and performance for each type so as to select

the most appropriate method for a given use case. Cost per

label information can be gathered from commercial annota-

tion companies.

To the authors’ knowledge, no prior work compares the

effect of annotation types on neural network performance.

[5] describes the need for exploring different data annota-

tions and a method of sequentially feeding higher fidelity

annotations when the prior annotation was not sufficient for

a traditional segmentation model. The lack of work ex-

ploring annotations type with deep networks is surprising,

considering the cost of image annotation, amount of im-

ages needed for training, and the widespread ramifications

of such research for appropriately tailoring annotations to

the demands and goals of a given application. The potential

to cheapen data annotation, even for small numbers of use

cases, could be felt throughout the computer vision indus-

try.



2. Background

The most prominent machine learning methods require

ground-truth labeling of the data on which they are trained.

Supervised learning using deep convolutional neural net-

works represents the current art in machine vision. When

trained with sufficient quantities of properly labeled data,

these networks have been shown to be highly accurate, close

to or potentially exceeding human performance for many

classification and detection tasks [6, 13, 10, 24, 8, 9]. For

the current investigation, we focus on the challenge of de-

tecting vehicles in satellite images.

Despite its potential, supervised learning carries a heavy

data requirement that is often a limiting factor for success.

Labeling sufficient amounts of data may be prohibitively

expensive, especially when using the highest fidelity meth-

ods. Commercially, datasets become a competitive advan-

tage and barriers to entry grow ever higher for new players.

For academic and commercial researchers alike, annotating

datasets can become an extremely costly activity, setting re-

search back months or taking up significant portions of bud-

gets. In many of these cases researchers may pay for more

annotation fidelity than they need. If high fidelity annota-

tions are not required to achieve the necessary performance,

cheaper options may represent a significant cost or time sav-

ings. We present a workflow that supports the type of cost

benefit analysis needed to realize these savings.

While a lot of work in computer vision has labeled im-

ages with a single class per chip, this is only appropriate

when a single object dominates the field of view. Here, we

focus on pixel-wise annotation methods that are more use-

ful for image segmentation and semantic labeling, includ-

ing the detection and classification of multiple objects in a

scene. The three most common pixel-wise annotation meth-

ods used for this purpose are polygons, bounding boxes, and

centroids.

Polygons, closest to ground truth, often require an an-

notator to identify many points around a target of interest

to fit its shape. This makes polygons the most time con-

suming, and thus the most expensive of the three annotation

types. Bounding boxes are defined as the tightest fitting box

around a target. These are more time efficient to produce

than polygons, requiring only two clicks from the annota-

tor, however they may encapsulate a large number of pixels

outside of the true target area. Centroids are relatively trivial

to annotate, requiring only a single point at the geographic

center of the target. For this investigation, we extrapolate

a circular “point-target” region around each centroid hav-

ing the same area as the average target. This allows the

network to train on a region instead of a single pixel. Simi-

lar to bounding boxes, these regions may not fit well to the

identified target. While there are generally fewer false posi-

tive pixels with point targets than bounding boxes, they also

contain false negative pixels where the circular regions clip

the targets.

Pixel discrepancies resulting from bounding boxes and

point targets may potentially hamper network performance,

discouraging researchers from pursuing these data annota-

tion methods. However, the cost savings for annotation

makes them more attractive options otherwise. One com-

mercial annotation company estimated that it takes humans

six times longer to draw a polygon around a target and two

times longer to draw a bounding box than simply putting

a marker on a target centroid [27]. Another source shows

the time difference between bounding boxes and polygons

as 7 seconds per bounding box and 54 seconds per polygon

[5]. Figure 1 shows a single vehicle annotated with the three

methods described above.

Figure 1. Images of targets identified with polygons (left), bound-

ing boxes (middle), and target centroid (right). Image from [28].

Images courtesy of the U.S. Geological Survey.

3. Experimental design

We trained three separate networks, one for each annota-

tion type (polygon, bounding box, and centroid), and com-

pared network performance for detecting two classes (car

/ non-car) at each pixel location. The following describes

the data, network architecture and evaluation metrics used

in our experiment. An overview of our workflow, starting

with separating and conditioning the data for use in network

training as described in this section, is presented in Figure

2.

3.1. Data selection and mask creation

Our experiments are based on the Overhead Imagery Re-

search Dataset (OIRDS) [28]. OIRDS is open source, freely

available, and includes both centroid and polygon annota-

tions, in addition to other vehicle features. For training the

networks, we generated binary masks for each annotation

type. Bounding boxes were calculated from the polygons,

using the maximum and minimum x and y coordinates. For

point targets, we generated a circle around each centroid

with an area of the average target size. Despite the rich-

ness of OIRDS, it is still a very small dataset compared



Figure 2. Image processing workflow starting with polygon targets, extracting separate data sets for each annotation type and then feeding

each dataset into an individual Deep Neural Network before analysis with a ROC Curve.

to most modern datasets required for deep learning. The

OIRDS contains approximately 1000 images with approx-

imately 2000 targets versus ImageNet with its 14+ million

annotated images [4].

3.2. Network architecture and implementation

We used the Overfeat [22] network architecture because

of its simplistic architecture, ease of implementation, and

competitive results. We then modified this network to retain

its spatial dimensions, by setting padding [23] to “same,”

making sure that edges were not lost, as well as removing

stride in the convolution and pooling layers. This main-

tained a 257 by 257 output size equal to the input image di-

mensions, where each output node represents the detected

class for an image pixel. This is compared to our training

masks, or ground truth information, as presented in Figure

3. The last two fully connected layers of the network were

also removed to retain satisfactory spatial resolution for the

pixel map output. Our pooling layers were max pooling and

prior to our output layer we implemented a dropout [25]

layer with probability of 0.5.

We used the Tensorflow [1] deep learning package for

building and training the networks. Training was performed

using RMS-Prop optimizer [21] with a softmax cross-

entropy loss function [2] and a learning rate of 0.00005.

Each network was trained for two-hundred epochs with

each epoch consisting of 192 batches of four images. The

training subset of our dataset was eighty-nine percent of

Figure 3. Example of, from left to right, an input image from

OIRDS, a polygon input mask, and the output of the trained net-

work for reference. See Figure 6 and 7 for input masks and outputs

for the bounding boxes and point targets. Input Image (left) cour-

tesy of the U.S. Geological Survey.

the dataset with the remaining eleven percent set aside

for later testing and validation. Training took roughly 24

hours for each network on a NVIDIA V100 [15] graph-

ics processing unit. While trained for two-hundred epochs,

the network only saw incremental improvement after thirty

epochs. Based on this we estimate that an effective network

for testing could be trained in as little as 3.5 hours.

3.3. Evaluation criteria

To evaluate performance, we used a Receiver Operating

Characteristic (ROC) curve evaluated at all pixel locations

and also computed the area under the curve (AuC) [3, 29,

7]. For each network, a ROC curve was produced using its

own respective annotation type that it was trained with as



Figure 4. Hypothetical example of an output ROC curve and AuC

value.

the truth, and also a curve using polygons as the truth. An

example ROC curve is provided for reference in Figure 4.

The ROC curve shows the ratio of the false positive rate to

the true positive rate for a range of thresholds applied to the

network score, yielding a means of comparing performance

agnostic to a threshold value. A perfect ROC is a vertical

line at 0.0 false positive rate and a horizontal line at 1.0 true

positive rate, with an AuC of 1.

4. Results and discussions

This section presents and then explores our experimen-

tal results both quantitatively and qualitatively. All of our

results were obtained using our separate test subset of the

OIRDS dataset.

4.1. Quantitative evaluation

The right plot of Figure 5 shows ROC curves for each

network evaluated with the type of annotations they were

trained with (itself truth). E.g., bounding box network

was trained and evaluated using bounding box annotations,

while the point target network was trained and evaluated us-

ing point targets. All of the networks had an AuC value of

over 0.9. As expected, the polygon network significantly

outperformed both bounding box and point target networks

with an AuC of 0.95. Although bounding boxes are consid-

ered a higher fidelity annotation than point targets,the point

target network surprisingly outperformed the bounding box

network in this evaluation.

The left plot in Figure 5 compares the ROC curves ob-

tained when each network is evaluated using the polygon

labels. From this, it can be seen that both the bounding box

network and point target network exhibited significantly

better results against the polygon truth than against their

own truth labels. Although the polygon network still out-

performs both of the other networks, all three now have

similar performance, within .007 AuC. This indicates that

the networks are not learning to paint the shape of the train-

ing labels. Rather, each network learns to paint detections

that approximate the actual shape of the target object. This

effect can also be seen qualitatively in the next section.

4.2. Qualitative evaluation

Qualitative results were extracted by creating an image

out of the input masks and the output detections of the net-

work. This was done while testing with each image produc-

ing an output detection tensor to be turned into an image.

For visual clarity, the input and output masks were overlaid

with the input image and the output detection mask was

thresholded at 0.2 where any pixel of confidence over 0.2

was classified as a detection and made 1 (pure white) and

Figure 5. Output ROC curves and AuC values for each of the three networks with the polygon, bounding box, point target networks all

presented together. The left chart is when the networks are compared with polygons as ground truth and the right chart is when the network

is compared with the type of annotation it was trained on.



Figure 6. Example of each networks output detection. From left to right, the polygon network, bounding box network, and point target

network. Input Image courtesy of the U.S. Geological Survey.

Figure 7. Example of each networks output detection with an occluded target and a significant false positive detection. From left to right,

the polygon network, bounding box network, and point target network. Input Image courtesy of the U.S. Geological Survey.

any pixel of confidence lower than 0.2 was set to be zero

(pure black).

When analyzed qualitatively, the similarities between the

three networks, regardless of the type of data trained on, be-

come even more apparent. Figure 6 and 7 exhibit some ex-

amples of the outputs of these networks. When looking at

the network output masks alone, it is very difficult to discern

any clear differences between the three networks. In Figure

6, you can see all of the targets captured effectively by each

network. Interestingly, there is very little presence of “box-

iness” with the bounding box network detections and simi-

larly, no indication of circles in the point target network.

We observed a general increase in false positive detec-

tions for the bounding box and point target networks relative

to the polygon network. While all three networks showed

false positive detections at similar locations, the detection

area for these false positives was typically larger for the

bounding box and point target networks than for the poly-

gon network. An example is presented in Figure 7.



5. Conclusions

Based on our results, we conclude that comparing anno-

tation types should be an important step when assembling

a dataset for deep learning applications. A sample method-

ology was provided to perform these comparisons, which

may be expanded or adapted for other use cases. Our quan-

titative results show that all three of these networks do a

remarkably similar job on the detection task with the poly-

gon trained network exhibiting only marginally better per-

formance than the bounding box trained network and the

point target trained network. This evidence supports the

consideration of bounding boxes or centroids for annota-

tions instead of polygons for cost savings. The unexpected

result that the bounding boxes and point targets perform bet-

ter compared when evaluated with polygons than with their

own masks shows that the mislabeled pixels do not cause

the network to learn incorrect shapes of objects, but that the

system still generally learns to paint the objects correctly.

This indicates that annotation type may not be as important

as previously thought in some cases. It may be appropriate

to consider the difference between these annotation types

in terms of label noise, where some pixels in each bound-

ing box or point target annotation are incorrectly labeled.

This is consistent with previous work that demonstrates the

robustness of deep networks against noisy labels [20].

While we selected the polygons, bounding boxes, and

centroids as our annotation types of interest, the choice of

annotation type should be tailored to a particular applica-

tion. Similarly, network architecture and evaluation metrics

should be based on the application and type of data in use.

Our selection of the Overfeat [22] network architecture and

the area under the ROC curve metric may not be the best

options for all use cases.

Overall, we have shown a clear method for researchers

to evaluate their datasets, prior to paying for the annotation

of the entire dataset. This will allow researchers to poten-

tially save considerable amounts of money or alternatively

annotate significantly more data with the same amount of

money. For example, annotating 1M images with polygons

at $0.06/polygon would cost $60K vs. $0.01/centroid at a

cost of $10K. Figure 8 provides a graphical view of this

cost difference. This knowledge will empower researchers

and others to consider the annotation task as less daunting

and allow them to continue exploring new and exciting use

cases.

5.1. Future work

There are a number of ways that this research could be

expanded to provide more insight and better cost analysis

for annotation types. The question remains whether addi-

tional point or bounding box labels could provide the same

performance as polygons. To provide a more complete cost

benefit analysis we would like to extend this experiment us-

Figure 8. Estimated cost to annotate 1M Images using Polygons

Bounding Boxes and Target Centroids.

ing additional bounding box and point target data to see if

training with the additional data can fill the performance

gaps present with the polygon trained network. If so, a

definitive cost analysis could identify the lowest-cost anno-

tation type for a given detection performance. This might

support the potential for researchers to purchase more data

with their budgets instead of the polygon annotations.

Additionally, more diverse datasets with targets of other

shapes, as well as other annotation types should be ex-

plored. The OIRDS is a relatively small dataset, with the

potential to create bias in the investigation based on the lack

of diversity. A similar dataset of images taking obliquely

would be particularly interesting to explore. One specific

annotation type that would be interesting to evaluate is an

ellipse. Ellipses could provide more fidelity than point tar-

gets or bounding boxes while taking a similar amount of

time to annotate as a bounding box.

Network selection and tuning could be expanded upon

by selecting different networks and tuning them specifically

for the annotation type. Implementing networks designed

to be fully convolutional could produce improved results as

they are designed to produce pixel level output. Regulariza-

tion and kernel sizes are examples of parameters that could

potentially be tuned on the networks to help compensate for

the variations between the data types.

On the analysis level, more work can be done to provide

further quantitative analysis of the networks. The precision

recall curve, and its respective area under the curve, is ar-

guably better suited than ROC curves for evaluating detec-

tion of objects vs. pixels. Evaluating a more complete and

diverse set of metrics would provide a larger and less biased

picture of the strengths and weaknesses of different anno-

tation options, providing a better basis for decisions about

which annotation type to select for a given dataset.
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