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Abstract

Counting people is a growing field of interest for re-

searchers in recent years. In-vehicle passenger counting is

an interesting problem in this domain that has several appli-

cations including High Occupancy Vehicle (HOV) lanes. In

this paper, present a new in-vehicle thermal image dataset.

We propose a tiny convolutional model to count on-board

passengers and compare it to well known methods. We show

that our model surpasses state-of-the-art methods in clas-

sification and has comparable performance in detection.

Moreover, our model outperforms the state-of-the-art archi-

tectures in terms of speed, making it suitable for deployment

on embedded platforms. We present the results of multiple

deep learning models and thoroughly analyze them.

1. Introduction

High Occupancy Vehicle (HOV) traffic lanes are re-

served for vehicles with a certain number of passengers

(passenger number varies between states and countries).

HOV lanes are used to encourage carpooling and the use

of public transportation. Current methods used to enforce

HOV lanes include police officers being physically present

and visually monitoring the HOV lanes, and penalizing the

offenders. Alternatively, some states encourage commuters

to report HOV offending vehicles. It can hence be seen that

counting the number of passengers in cars at all times is an

important task in the process of enforcing HOV lanes.

Counting the number of humans present in a certain area

has several applications, especially in urban environments.

It can be used for congestion analysis at certain places (i.e.

popularity of certain products in a supermarket, visitors of

a sculpture in a museum, traffic through a certain entrance

of a mall) [3]. Counting the number of passengers is an

integral part of the enforcement of HOV lanes process. Au-

tomating the process of occupancy detection by installing

road-side cameras on HOV lanes has not been very suc-

cessfull. This is mainly due to significant changes in the

lighting and visibility conditions. In addition, an external

camera will not be able to reliably detect all passengers,

especially those in the back seats. A possible solution is

to use seat sensors that determine whether or not there is

a passenger sitting on a seat by measuring the weight ex-

erted on it. However, this approach is not feasible as there

is no way to differentiate between an actual passenger and

a heavy object placed on the seat. In addition, these sensors

are usually installed for the front seats only.

Installing regular cameras inside a vehicle to detect the

number of passengers at all times might be a feasible so-

lution. However, this method raises privacy concerns as

passengers will not be comfortable with cameras recording

their activities at all times [16]. In addition, it is challenging

for a visible camera to distinguish humans from the human-

like dummies that have been often used to cheat the system.

To address these problems, we propose the use of thermal

sensors installed in vehicles to reliably detect the number

of passengers using deep learning models without signifi-

cantly compromising their privacy. Thermal data conceals

most of the distinctive visual features, thereby ensuring the

anonymity of passenger identities. Further, the proposed

model is capable of running on edge-devices without the

need to transmit any recordings to the server side. Our

method could be used as part of a complete system where

cars are registered in a database by their plate number. An

embedded system would detect passengers using our model

and update the number of passengers in real-time with the

database accessible by authorities.

Deep learning models have dominated the field of com-

puter vision and image processing since the introduction

of AlexNet [12]. Deep models have been applied to

many fields ever since including classification [12][28][29],

recognition [19][25], detection [21][15], scene understand-

ing [26], and geometric analysis [17]. In this work, we de-

veloped a neural network solution for passenger counting

with thermal imaging, while taking into consideration its

potential application on embedded and low-powered plat-

forms. We also provide a comprehensive evaluation of most

prominent deep learning methods on our dataset.



The rest of this paper is organized as follows. Section 2

provides a literature review of related work. In section 3 we

give detailed information related to our dataset. In section

4 we explain details of our algorithms and deep neural net-

works tested. Section 5 presents our experimentation results

and we conclude this paper in section 6.

2. Literature Review

[20] detects people from aerial thermal images using a

particle filter based detector and traditional local features.

Authors show that heat signature of human body is unique

in these environments. However, problems arise when the

heat signature is close to the background temperature.

[18] provides a comprehensive study on pedestrian de-

tection using local features and conventional machine learn-

ing methods. They found that thermal imaging is a reliable

source of information, and it provides similar performance

in comparison to visual images. Both of these methods are

relying on the traditional features and learning methods that

are widely outperformed by novel deep learning models.

[5] uses infrared thermal images to classify objects.

They use a random forest with a depth of 2 and branching

factor of 2. At each node, a Convolutional Neural Network

(CNN) is trained to classify between four classes. Classifi-

cation accuracy is increased by fusing these methods. How-

ever, this comes at the cost of having multiple CNN models

and increasing the computational complexity of the model.

[11] proposed a multi-spectral region proposal network

based on Faster R-CNN [23] by fusing infrared and visual

images. They show that adding BDT Classifier [32] im-

proves the region proposal network performance even fur-

ther. In contrast, we rely on training the model solely on

thermal images to respect the privacy of the passengers.

[24] learns to synthesize an image into visual domain

from the thermal images. It learns the mapping through a

generative adversarial network [4] that includes local fidu-

cial regions to provide more discriminative features in re-

constructed images. Once the image is reconstructed, it is

matched against a dataset of known visual images for recog-

nition.

[6] proposes using models that are previously trained

on visual images and adapt them to the infrared domain.

To achieve this, models are fine-tuned using infrared im-

ages. It is shown that simple preprocessing infrared images

boosts the overall performance significantly. Under this

framework, inversion provides largest benefit among differ-

ent preprocessing methods. Similarly, we have noticed the

value of simple preprocessing techniques but with a differ-

ent goal. Instead of trying to fit thermal data to exhibit a

similar behavior as visual images, we extract a mask based

on average human body heat signature and use it to guide

the training of our model.

[13] uses deep convolutinoal models to detect roughly

estimated regions to count individual objects in the image.

Their method relies on three major stages. Feature extrac-

tion is performed using ResNet [7]. Neighborhood detec-

tion done by utilizing specialized loss function to encourage

single blob detections. And finally, a line splits and water-

shed splitting methods are used to divide large blobs. In

essence, this method is very relevant to our detection ap-

proach. In our approach, we use gaussian like density blobs

that cover the bounding box region. Later, the generated

blobs are post processed with a simple technique to gener-

ate bounding boxes. We are not using a specific loss for split

learning. However, the gaussian blobs provide the required

basics internally to encourage easily separable density map

generation. Further, unlike [13] our goal is to detect bound-

ing boxes. And finally, our system works on thermal images

rather than camera images.

We summarize the main contributions of this paper as

follows:

• We introduce a new, comprehensive, and annotated

thermal image dataset of in-car environments.

• We design a custom convolutional neural model that

is able to surpass the classification performance of

larger models, while keeping the model small enough

to be suitable for embedded applications. We adapt our

model to perform each of classification and detection

tasks.

• We retrain well known object detection methods on

this dataset and provide a comprehensive evaluation on

an embedded platform.

3. Dataset

Our dataset was captured with a FLIR One Pro thermal

imaging camera 1. The camera can detect temperatures be-

tween −20◦C and 400◦C with an accuracy of ±3◦C. The

raw recording is in 16−bit integer format. Dividing the raw

thermal reading by 100 results in the Kelvin scale equiva-

lent. The thermal image resolution is 640×480. Several

locations for positioning the camera inside a vehicle were

tested. The ideal location is found to be under the rear-view

mirror (figure 1), so that it completely covers the area inside

the vehicle with minimal obstruction especially to passen-

gers in the backseat. An Android mobile application was

developed using the FLIR One SDK to capture raw thermal

data.

In total 1284 images were captured with number of

passengers varying between 0 and 5. Different vehicle

types (SUV, Sedan, Hatchback) and passenger seating po-

sitions were adopted to provide a comprehensive dataset.

1www.flir.com



Figure 1. Thermal camera and its location for data capture.

#Passenger 0 1 2 3 4 5

#Images 65 314 402 276 253 3

Table 1. Data distribution. Number of images per passenger count

is shown in this table.

Figure 2. A sample of an annotated image.

Apart from changing cars and relocating passengers, air-

conditioning in vehicles is used to introduce further envi-

ronmental variations. Heating or cooling the vehicle inte-

rior causes a drastic shift in the distribution of the thermal

values. The distribution of image classes is shown in Table

1.

Thermal images are manually labeled for visible portions

of passenger head and torso. The torso region is usually

hidden behind the front seats. These annotations are stored

in a JSON file that is provided with the dataset. Figure 2

shows a sample annotated image from our dataset.

The clothing of the passengers is a major source of vari-

ation in thermal images. They cover the body heat, and

sometimes could reflect higher intensities depending on

their material. The head is mostly visible and is not cov-

ered; this provides a better opportunity for detecting pas-

Figure 3. Original image from dataset and its augmentations.

sengers. Therefore, the labels for the head are used in our

experiments. To count passengers positioned in the vehicle,

we simply count the number of detected heads.

The dataset and model definitions and source code

are available to download through the following link:

http://www.site.uottawa.ca/research/viva/projects/thermal-

passenger-detection/.

4. Proposed Method

In this section, the data augmentation strategy and de-

scription of tested neural models are provided. We break

down the proposed method in two settings and explain the

parameters for each.

4.1. Augmentation and Preprocessing

Deep learning methods are extremely data hungry. In

order to satisfy this requirement, we augment the dataset

by applying a combination of rotation and scaling transfor-

mations on the raw data. Images that are scaled down in

augmentation are padded with 0 valued pixels in order to

preserve the image dimensions for training. We follow the

same padding procedure used in the Tensorflow Object De-

tection API [9]. Sample results of this procedure is shown

in figure 3.

Scale. Each thermal image is rescaled with ratios of

[0.8, 1.0, 1.2, 1.4]. These ratios are chosen to achieve in-

variance against variations that might rise from changing

the size of the vehicle.

Rotation. Passengers in a car tilt or rotate their heads.

In order to achieve invariance against this, all ther-

mal images are transformed with rotation angles of

[−20,−10, 0, 10, 20].

In total, this process generates 20 augmented samples

from each thermal image. This way, the final data set size is

increased from 1284 to 25680 images which was found to

be sufficient for training and testing neural models.



Figure 4. Proposed core model used as the backbone in all the

learning tasks.

4.2. Core Model

We briefly introduce the neural networks and corre-

sponding parameters that have been used for benchmarking

on this dataset. Before processing images with these net-

works each image is resized to a smaller scale and ratios to

match dimensionality of 90k pixels per image.

The core of the proposed method is a four layerd con-

volutional model that is inspired by [12]. All the core con-

volutions are performed with 3×3 kernels and strides of 2,

except the third layer that has stride of 4, which drastically

reduces the size of the feature map. This quick reduction in

feature map size reduces the computational complexity of

the model. First convolution consists of 64 kernels, and the

number of kernels is doubled after every convolution. We

propose two tasks on top of our core model. One is clas-

sification (C4S-C), and the other is multi-task learning for

classification and bounding box detection with (C4S-CD).

The core model is shown in Figure 4.

Our model is designed with consideration of low compu-

tational requirements. This resulted in a small model that is

not only capable of fast inference, but also has a very short

training session compared to other models. Each training

session for our model takes on average around 15 minutes.

This provides us with the opportunity to perform a compre-

hensive space search for the hyper-parameters. In order to

limit the space search complexity and model size, we bound

the number of layers between 2 to 6, and the strides are set

to 1, 2, or 4.

4.3. Classification Task

We redefine the counting problem as a classification

problem and use the number of passengers as the class la-

bels for each image. An input image of size 352 × 256 is

passed to our proposed four layered convolutional nework

to extract the feature maps. At layer five, instead of flat-

tening the 22×16 feature map and using a fully connected

layer, we flatten the maps using a single branch factorized

convolution [30] with one 1×1, two 3×3, and two consecu-

tive groups of 1×3 row-wise and 3×1 column-wise convo-

lutions. This further improves the performance compared to

using a fully connected layer and reduces the model size by

20%. First convolution at this layer employs a 1× 1 kernel

with a stride of 1 followed by two 3×3 convolutions with a

stride of 2. Finally, row and column-wise convolutions are

applied. Drop-out [27] with a keep rate of 0.5 is applied on

extracted feature maps from the core convolutions prior to

passing them to the factorized convolution layer. The flat-

tened image is passed to fully connected layers of size 256
and output layer of 6 probabilities representing the class la-

bels. After calculating the features at each layer, Rectified

Linear Units (ReLU) and batch normalization [10] are used.

We have evaluated various loss functions including softmax

cross-entropy, online hard example mining (OHEM) [31]

with softmax cross-entropy, and focal loss functions [14].

We define the loss function by OHEM loss as it provides

a few percentage points better classification accuracy than

the regular softmax cross-entropy function. The concept of

OHEM relies on taking the top k softmax cross-entropy loss

from a batch of images. In other words, the hardest samples

to classify are used when calculating the total loss for back-

propagation. In our implementation, we set k to be half of

the batch size. Momentum optimizer with the initial learn-

ing rate of 0.01, momentum value of 0.9 and decay factor

of 0.1 after every 5000 steps is utilized as the optimizer for

this model.

4.4. Multi­Task Learning

To perform bounding box detection, we use a similar

method to [13]. Instead of using single pixel label, we use a

gaussian masking on coarser sized image to perform bound-

ing box detection. The output of the core convolutional lay-

ers at one side are fed into a classification model similar to

C4S-C, and on the other side is passed to deconvolutional

layers. We call this model C4S-CD. The deconvolutions

upsample the image by strides of 2. The first one has a fea-

ture map of size 512 and the last one produces the predicted

heatmap. To calculate the loss, we resize the input image to

the shape of 44 × 32 and create a mask that represents the

head of each detected passenger using an intensity gaussian

distribution with σ set at one fifth of the ground truth bound-

ing box size. L2 function is used to calculate the loss for the

predicted and target heatmaps.

Generating bounding boxes from the heatmap requires

further attention. Close objects have tendency to be merged

with each other. Using gaussian masking instead of the

binary masking in the learning process has addressed this

problem to some extent. The boundaries of the heads in

output heatmap contain smaller values compared to the cen-

ter. We employ a simple thresholding mechanism to further

split the connected regions of multiple targets. The thresh-

olding value is set to 40 in our tests to create the binary

masks. Once the regions are split, we use blob (binary large

object) detection from the OpenCV library [2] to detect the

connected regions in the binary heat map. Since our net-

work also outputs the number of passengers n in the vehi-



Figure 5. Stages of splitting the heatmap to connected regions and applying blob detection to get the enclosing bounding boxes.

cle, we sort the detected blobs by size and take the n biggest

blobs as the predicted head locations. This way we elimi-

nate noisy masked clouds from the data. Once we generate

a list of accepted blobs, enclosing bounding boxes are gen-

erated for them. The boxes are then rescaled to the original

image representing the locations of the detected heads. Fig-

ure 5 shows the various steps of generating bounding boxes

from the output heat maps. Since our passenger counts are

output by the classification branch of C4S-CD, we only re-

port the precision/recall value for the heatmap based detec-

tions.

5. Experiments

We employ n-fold cross-validation to remove any bias

towards dataset distribution from experiments. To perform

these experiments, four folds have been employed. In each

fold, the dataset is divided into two mutualy exclusive sets

of train and test. For training, we have used 90% of the raw

data and then augmented them with the methods proposed

in section 4.1.

The remaining 10% of images are used as test images.

We do not augment the test dataset. There are two reasons

behind this decision. The first is that testing augmentations

of the same image do not contribute much in reflecting the

accuracy of detection models. An image and its augmenta-

tions most likely have the same detection results. Augmen-

tation enriches the train set and makes it more robust, but it

does not add variety to the testing set. The second reason is

that we aim to get results on images that would reflect real

situations.

In classification, we compare our model to Mobilenet. In

the detection task, we use Single Shot Multi-box Detector

(SSD) [15] once on top of Mobilenet and once with Incep-

tion V2. We use the tensorflow object detection api [9] to

compare our model performance with pre-existing methods

in object detection using SSD. [9] shows that Inception V2

[30] achieves the best performance in terms of mean aver-

age precision (mAP) compared to other deep CNN methods

such as [7] when used as a backbone for SSD [15]. They

also show that Mobilenet [8] does not lag too much behind

Inception V2 in terms of mAP while having a lower pro-

cessing time. This is also confirmed in our tests. We have

opted to test with the SSD [15] framework for detection as

it is a fast detection model. SSD does the classification and

localization in one pass, making it an efficient solution.

SSD-Inception. Single Shot Multi-box Detector (SSD)

proposed by Liu et al. [15] is another network that uses a

single convolutional neural network for object detection. It

is composed of the VGG classification network truncated

before any classification layers and replaced by 6 convolu-

tional layers. The 6 final layers and respective anchor box

scales gradually decrease in size, allowing for the detection

of objects of different scales. Szegedy et al. [29] introduced

the inception model for classification. Instead of using one

kernel of fixed size for a convolution, the inception model

applies 3 filters of sizes 1×1, 3×3, and 5×5, in addition to

a max-pooling operation. Later, this has been updated by

factorization to provide faster computation [30]. Results of

these operations are concatenated to form the final output of

an inception layer. Since the inception model learns more

parameters, we have decided to test its performance as the

base layer for SSD.

SSD-MobileNet. Howard et al. [8] introduced Mo-

bilenets, that are ideal for mobile and embedded systems ap-

plications. Instead of standard convolutions, Mobilenets use

a combination of depthwise convolutions followed by 1×1
pointwise convolutions for optimization. Depthwise convo-

lutions apply a single filter to each input channel. Point-

wise convolutions are then used to combine the outputs of

the depthwise convolution. This architecture separates the

filtering and combining operations and drastically reduces

the model size and computational requirements, while not

significantly compromising the model accuracy. Mobilenet

is composed of 19 layers (depthwise then pointwise con-

volutions) and a fully connected layer fed into a softmax

layer for classification. While inception networks as base

for SSD generate more robust feature maps, this comes at

a heavy size and computational cost. Since our goal is to

have a model that is capable of running on limited power

and memory devices, a small model size and computational

efficiency are vital. We tested the use of Mobilenet trun-

cated before the classification layers as a base model for

SSD.

To compare these models against each other, accuracy,

speed, and precision-recall measures are used.

5.1. Counting Accuracy

In the task of counting the number of passengers in a car,

we define accuracy as the number of images for which the



head count is correctly computed given the test dataset. At

this point, the measure is agnostic of the passenger loca-

tions, and only the final count is valuable. Table 5.1 shows

the best accuracies.

C4S-C provides significantly better classification based

counting accuracy than Mobilenet in both cases. OHEM

loss introduces more weight on hard examples hence could

generalize better on the test set. For HOV lanes, it is of

utmost importance to detect if there are two or more pas-

sengers in the vehicle. To address this, we introduce binary

accuracy. Figure 6 presents the class confusion matrices for

various approaches. Through confusion matrix analysis, it

is concluded that the majority of misclassifications occure

between adjacent numbered classes. Therefore the binary

accuracy for all the models is usually larger than their exact

counting accuracy.

5.2. Precision­Recall

SSD-MobileNet and SSD-Inception are designed to lo-

calize the objects in an image. We perform the object detec-

tion test in order to compare the effectiveness of the models

in identifying the location of objects in the image. We can’t

solely rely on precision-recall or accuracy in order to iden-

tify the better performing method. We could have a method

with high accuracy, but with a lower precision due to the fact

that all the false positives happened in few images. Or in-

versely, we could have a higher precision or recall but lower

accuracy, due to the spread of false positives or false nega-

tives between multiple images.

Figure 7 shows precision vs recall curve for the meth-

ods with confidence thresholds ranging from [0.05, 0.9] and

intersection over union (IOU) threshold set to 0.5. Mo-

bilenet, which performs relatively poorly in classification,

performs better in object detection when used as base of

SSD. There are better classification models such as Incep-

tionResNet V2 [28] that perform poorly with SSD. How-

ever, they provide good results with other detectors such as

Faster RCNN [23]. This is due to the fact that they are tuned

to function effectively with their respective detectors. Sim-

ilarly, Mobilenet performs slightly worse and much slower

with Faster RCNN compared to SSD. Our model is suffer-

ing from this issue. Specially, the rapid reduction of the

feature map dimensions results in such features that limits

the capabilities of SSD.

To alleviate this problem we use the C4S-CD. The de-

convolution and blob detection modules add a negligible

overhead to the system. However, while it produces better

results than SSD, it still lags behind other methods.

5.3. Speed.

Finally, to decide on which method is more appropriate

for embedded platforms, we compare the execution perfor-

mance. All of the methods are implemented in Tensorflow

[1] and are benchmarked on a Nvidia Jetson TX-2 platform.

The Jetson is one of the fastest and most power-efficient

computing device developed for AI embedded systems ap-

plications. Although it does not compare to the computing

power of regular GPUs, it has a decent performance which

makes it a better fit for embedded systems. Since this solu-

tion would be used in vehicles, the final goal is to embed the

model on an edge device with much lower available power

than Jetson. However, Jetson would provide a better per-

spective over the performance of each of the models.

The proposed C4S-C outperforms all the others in this

case with a whopping 63 frames per second processing

speed on the Jetson GPU. Tables 3 and 4 show the speed

comparison of classification and detection methods respec-

tively.

The fast training and testing speed of our proposed net-

work allowed us to perform a comprehnsive network pa-

rameter tuning in order to choose the best fitting settings for

the task in hand. This is an obvious advantage of small and

fast models against large ones.

6. Conclusion

In this paper, we have introduced a new thermal image

dataset for counting number of passengers in vehicles. We

introduce a data augmentation model to increase the amount

of data and build models that are robust against variations

such as rotation and scale. We propose two models based on

one core architecture for classification and detection tasks.

The classification model outperforms the state of the art

with a comfortable margin with almost half the computa-

tional complexity. Further, we have compared the results

of various object detection models, and proposed a new

method based on blob detection to detect passengers. Our

proposed models are designed with the main consideration

to run on a low powered edge device. This results in having

a very small and fast model that is comparable in perfor-

mance to the state-of-the-art. One aspect that we have not

explored in this paper is techniques to prune and quantize

our models. This will further optimize our model to com-

fortably run on a low powered device.
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