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Abstract

Hyperspectral data provides rich information about a

scene in terms of spectral details since it encapsulates mea-

surements/observations from a wide large range of spec-

trum. To this end, it has been used in different problems

mostly related to identification and detection processes.

However, the main limitation arises for the accessibility of

data. More precisely, there is no sufficient amount of hyper-

spectral data available compared to visible range data for

trainable models. In this paper, we tackle an inverse prob-

lem to estimate the relative lidar depth from hyperspectral

data. To solve its limitation, we integrate semantic infor-

mation existed in data with supervised labels to decrease

the possibility of parameter overfitting. Moreover, details of

the output responses are enhanced with Laplacian pyramids

and attention layers in which the model makes predictions

from each subsequent scale instead of a single shot predic-

tion from the top of the model. In our experiments, we use

the 2018 IEEE GRSS Data Fusion Challenge dataset. From

the experimental results, we prove that use of hyperspec-

tral data instead of visible range data improves the perfor-

mance. Moreover, we show that results are significantly im-

proved if a sparse set of depth measurements is used along

with hyperspectral data. Lastly, the integration of seman-

tic information to the solution yields more stable and better

results compared to the baselines.

1. Introduction

The solution of an inverse problem aims to obtain un-

known information from a limited set of observations. For

instance, to recover high-resolution (HR) image from its

low-resolution (LR) versions or to transform data to a differ-

ent domain, content and neighborhood embedding of data

can be prominent clues that should be exploited in the solu-

tions with advanced models [13, 31, 32]. For this purpose,

performance highly depends on the distinctive power of ob-

servations and models.

The underlying idea behind these problems relies on the

assumption of manifold learning that ultimately retrieves

target output data by learning input counterparts to rep-

resent the overall manifold space with example-pairs (i.e.

training data) [13, 1, 7, 23]. For this reason, manifold space

should be modeled precisely for high performance. In the

recent years, deep learning models (i.e. fully convolution

neural networks) obtain state-of-the-art performance due to

their large body of learnable parameters and higher-order

non-linearity captured by network models [22, 11]. Hence,

the solutions in the literature are frequently based on the

variants of this phenomena.

For remote sensing domain, similar applications that we

mentioned can be found [10, 4]. In particular, sensors used

for this domain can provide richer information about a scene

(i.e. hyperspectral/multispectral data). However, the main

drawback is that the accessibility to these sensor data is ei-

ther limited or quite expensive. Moreover, their dimension-

ality and sensitivity to noise aggravates to obtain a stable

solution from data [3, 14, 19]. Therefore, models should be

robust to these cases and take these limitations into consid-

eration in the learning step especially for inverse problems.

In the scope of the paper, depth estimation refers to de-

termine the relative distance from sensors. In the literature,

this can be achieved by using either binocular [2] or monoc-

ular [8, 24, 9] clues exhibited from data. Texture (i.e. con-

tent), lighting and shading are some of features that can be

leveraged in course of obtaining relative depth information.

Indeed, complex sensor outputs can be more robust to ex-

tract these features from data.

In this paper, we tackle an inverse problem (i.e. do-

main transformation) that aims to estimate lidar depth data

from a single shot hyperspectral image. As recalled, con-

tent information and neighborhood embedding are essen-

tial and need to be learned automatically from data for high
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performance. For this purpose, we exploit fully convolu-

tion neural networks (FCN) by presenting several contribu-

tions/improvements to the architecture as well as parameter

optimization. More precisely, use of semantic information

of hyperspectral data (i.e. grass, trees, buildings etc.) by

training an auxiliary NN model (i.e. has shared parameters

with the model of the main task) ultimately improves the

results. Note that this step intuitively corresponds to ex-

traction of high-level semantic information from data and

this will be called as content of data for the rest of the pa-

per. By this way, the proposed solution has a similar notion

with manifold learning since manifold space is transformed

by exploiting both building atoms of hyperspectral data (i.e.

endmembers and categories [19]) and objective of domain

transformation. To this end, this reduces the dependency

to a large number of data (i.e. parameter overfitting) and

improves the robustness to weakness of data (i.e. dimen-

sionality and weakness to noise) that will be summarized in

the following sections.

To ease the understandability, contribu-

tions/improvements in the paper are presented as follows:

• We prove that use of hyperspectral data can be more

reliable for inverse problems, since it allows us to cap-

ture richer observations (i.e. texture, lighting and shad-

ing etc.) about a scene compared to RGB sensors.

• Besides its rich information, dimensionality and acces-

sibility are main factors which adversely affect the sta-

bility of learning. For this purpose, semantic informa-

tion of hyperspectral data is accounted with an auxil-

iary NN model. To this end, high-level latent repre-

sentations are estimated from hyperspectral data and

encapsulated in the FCN model which is dedicated to

solve the inverse problem for an optimum transforma-

tion from hyperspectral data to lidar depth data.

• We present several improvements to the structure of

NN model as well as its optimization step. As ex-

plained [16], estimated object boundaries with FCN

are generally smooth (i.e. even if skip-connections

re used [20]) and lower evaluation performance can

be observed due to these characteristics of FCN mod-

els. As a remedy, we output lidar depth predictions

at different scales and compute one final prediction at

the top of the network by fusing the responses from

each subsequent scale. Ultimately, the error is prop-

agated from different scales instead of only top-layer

of the network. Moreover, attention layers are em-

ployed to increase the selectivity of parameters and

the global context information [29]. Lastly, parame-

ters are regularized with a L1 penalty which encour-

ages responses to be zero practically that correspond

to the background parts of data (i.e. depth will be zero

for furthest objects). To this end, generalization ca-

pacity for responses (i.e. distribution of responses) is

eventually improved.

• In the experiments, we show that by providing a sparse

set of lidar samples from the scene, depth predictions

can be significantly improved. This shows that the pro-

posed model can be also used as a refinement/auxiliary

technique in case of lacking depth samples.

The related literature and solutions are summarized in

Section 2. Section 3 presents the details of the proposed

method with the optimization procedure. Lastly, experi-

mental results and final remarks are explained.

2. Related Work

There is a large body of works that aim to achieve an

optimum solution for various inverse problems in the liter-

ature. Indeed, the literature for remote sensing domain is

relatively narrow compared to visible range domain. There-

fore, instead of focusing only one domain, we will survey

the studies mainly related to our problem/solution from both

domains.

Manifold Learning: As indicated, the definition of inverse

problem covers a wide range of studies from super resolu-

tion to domain transformation [13, 1, 7, 31, 10, 4]. Even

if their formulations are different, a similar notion is ex-

ploited to handle the problems. More precisely, [13, 31]

summarizes that learning-based methods are built on the as-

sumption of manifold learning where optimum solutions ul-

timately correspond to retrieve common pattern transforma-

tions from input-output example pair space in the training

data. Note that more input-output example pairs eventually

tend to learn more reliable manifold space [13].

Similarly, the number of parameters in the model and pa-

rameter convergence are two critical factors since filtering

operations (i.e., matrix multiplications [6, 22, 19]) are intu-

itively equal to affine transformations that form the mani-

fold space based on these example pairs. For this purpose,

FCNs draw lot of interests in the recent years due to their

large parameter sizes and non-linearity features.

Advantage of Supervised Learning: For an unsuper-

vised setup, holes/irregularity can be observed in the learn-

ing step which can generate unstable results as explained

in [18, 28]. The main reason is that Euclidean distance (i.e.

L2 norm) does not reflect the semantic similarities between

example pairs. Moreover, [25] observes that to fill these

holes/irregularities, dataset size need to be high since the

distributions of example pairs become denser and this closes

the semantic similarities in feature space.

To solve the issue, use of supervised information (i.e. la-

bels related to common patterns of data) is the most straight-

forward solution. By this way, the dependency to large scale



Figure 1. The flow of the proposed method. Each distinct color denotes different components of the model as summarized. Each filter size

is set to 3× 3× 64 and stride is equal to 2 for each convolution in the encoder module.

data is mitigated [18, 22] and more reliable manifold space

can be estimated.

Depth Estimation From A Single Shot Image: For depth

estimation, the phenomena of over-segmentation (i.e. super

pixels) is utilized to maintain the cardinality of data espe-

cially for their spatial information. By this way, 3D loca-

tion and orientation of local planes are estimated from data

containing RGB-laser scans pairs [21]. Moreover, Markov

Random Field (MRF) is combined to refine the predictions.

Similarly, [15] uses FCN model to learn the parameters in

this transformation. However, [9] explains that predictions

of these models are generally weak by which global context

of input does not preserved in the learnable models.

The most similar works to our method in the literature

are based on the assumption that a single shot depth estima-

tion and semantic segmentations are tied to the property of

perspective geometry [12, 27, 30]. Hence, these two infor-

mation can be used together to obtain more straightforward

solutions and it reduces to the number of possible solutions.

Note that this assumption is only studied for visible range

data.

Lastly, [17, 5] show that depth estimation can be further

improved by using a sparse set of depth information with

RGB data from a scene.

3. Proposed Method

Formally, an inverse problem transforms input data X to

target output data Y by optimizing a function f(.) where

the relation corresponded to Y ≈ f(X) is achieved with a

minimum error. Note that this function makes predictions

by exploiting pre-given observations from input-output data

examples.

For the estimation of lidar depth data (i.e. Y ∈ IRN×M)

from hyperspectral data (i.e. X ∈ IRN×M×D) (Here, N , M

and D denote the spatial dimensions and spectral channels

for hyperspectral data respectively.), semantic content and

neighborhood reasoning are two distinct clues that can be

used to optimize the parameters of the function f(.).

For this purpose, the objective of the proposed method

is to extract content of data and neighborhood relations as

much as possible from data with an end-to-end learning

manner. To this end, we compute semantic information

and neighborhood relations with two FCN models that intu-

itively have a shared parameter set. Therefore, both seman-

tic information and neighborhood reasoning are maintained

in the solution. The flow of the model is illustrated in Fig-

ure 1.

We divide this section into two parts. First, we will men-

tion the FCN architecture and our contributions to improve

the performance. Second, the idea behind use of content

of hyperspectral data will be explained. Moreover, we will

formulate the loss function that is used to optimize the pa-

rameters of the models.

3.1. Hyper2Lidar Network

The proposed network architecture (i.e. Hyper2Lidar)

aims to transform hyperspectral data to lidar depth data.

For this purpose, we use FCN architecture which takes hy-

perspectral data and predicts lidar data. It formulates the

solution with two modules as encoder and decoder (details

will be provided). In course of this transformation, trainable

parameters are optimized by minimizing the error between

ground truth and prediction:

L = ||Y − Ŷ||2 (1)

L is the reconstruction loss function by using L2 norm (i.e.

Euclidean distance).

Ideally, a FCN architecture used for domain transforma-

tion consists of two modules as encoder e(.) and decoder

d(.) (i.e. f(.) ≈ d(e(.))). Encoder part computes latent

features related to neighbourhood embedding and content

of data based on hidden responses. On the other hand, de-

coder network fuses these features in order to reconstruct

output data with high accuracy. To this end, parameters

learn the transformation from given example-pairs.



However, current state-of-the-art architectures have ap-

parent weakness in which object boundaries of the re-

sponses can be smooth. Either by revisiting the architec-

ture [20] or by adding an additional loss function [16], this

weakness is studied in the literature.

In the proposed solution, a full sized hyperspectral image

is similarly given as an input and high-level features related

to texture, lighting, shadows etc. are extracted in the en-

coder part. To boost the visual quality of decoder part, we

reconstruct output predictions at each subsequent layer by

computing a reconstruction error as follows:

Lreg =

K
∑

k=1

αk||Yk − Ŷk||2 + β|ŶK | (2)

Note that along with L2 norm that minimizes the recon-

struction loss between ground truth and prediction at each

subsequent layer (K = 2), L1 penalty is utilized to regular-

ize the loss function to enforce the predictions to be zero.

β is set to 0.01 throughout the paper. Moreover, α1 and α2

are equal to 0.25 and 1.0 respectively that are proportional

to spatial resolutions of the prediction outputs.

Moreover, in conventional FCN architectures, convolu-

tion kernel, batch normalization and parametric ReLU are

used at lth layer [11]. Although we follow this conventional

way, an attention gate is added to their end. By this way,

the outputs of the activation function are rescaled based on

the spatial attention of pixel channels. Note that this step

has a similar notion to the global content of responses as

highlighted in [9] and selectivity of filters are increased by

regularizing the responses before the convolution operation

similar to batch normalization:

ol = ol ⊙ ψl(ol) (3)

Here ψl(.) denotes the attention gate that is composed of

convolution kernels (i.e. with activations) and it computes

attention scores for individual input channels according to

spatial mean of input data. These scores are also rescaled

with tanh activation function. Moreover, ⊙ denotes the

element-wise multiplication operator. Note that we tested

the variants of attention gate in the experiments [26] yet no

significant change is observed.

3.2. Content of Hyperspectral Data

Hyperspectral imaging is a technique to collect measure-

ments about a scene. These measurements ultimately cor-

respond to responses of a sensor array operating in differ-

ent electromagnetic spectrum. To this end, rich information

about a scene can be obtained.

However, there are several theoretical and practical lim-

itations for hyperspectral data. One of which is that its op-

erational cost is expensive, thus accessibility of data is con-

strained. Moreover, sensitivity to noise, spectral variability

and high-correlation between channels are some of other

obstacles that should be handled [19]. Lastly, for an unsu-

pervised setup (e.g. inverse problem), high-dimensionality

and lack of data lead to holes/irregularity in the learning

step of manifold space which can generate unstable results.

For all these reasons, direct use of hyperspectral data for

inverse problem ultimately underestimates the solution.

Hence, we opt to integrate content of hyperspectral data

with high-level representations and the objective of the in-

verse problem. Benefits of the method can be explained in

twofold. First, supervised data is used to reduce the dimen-

sionality by highlighting structural predictions about data

(i.e. the idea behind hyperspectral unmixing). Therefore,

manifold space can encapsulate semantic information about

data at the end. Second, inter-obstacles of data are also mit-

igated since the network learns to cluster manifold space by

accounting different obstacle such as different noise-levels

and illumination conditions (i.e. spectral variability) with

supervised labels.

Similar to Hyper2Lidar network, a different FCN model

g(.) is utilized to extract content patterns related to data.

For this purpose, we use pixel-level semantic annotations

Z ∈ IRN×M×20 that are already available in the dataset

along with hyperspectral and lidar data (Note that 20 se-

mantic categories are available in the dataset). To this end,

this model solves a pixel-level classification problem that

is formulated as Z = g(X). To optimize the parameters,

softmax cross-entropy is utilized:

Lcls = −Zlog(Ẑ) (4)

Indeed, to capture high-level semantic information also

in Hyper2Lidar network, encoder parts e(.) of both models

have a shared parameter set. By this way, content of data

that is highlighted in the classification problem can be taken

into account in course of transformation of hyperspectral

data to lidar data.

3.3. Parameter Learning

For the decoder part of each model (i.e. either classifica-

tion or reconstruction model), corresponding loss functions

can be directly used to optimize the parameter sets. How-

ever, since a shared parameter set is used for the encoder

part for both models, two loss functions are accounted as

follows:

L = Lreg + 0.01Lcls (5)

Note that classification loss is weighted with a lower coeffi-

cient due to the fact that loss of the inverse problem should

be higher related to the objective of this work. Adam solver

is utilized by exploiting a stochastic mini-batch scheme.

Mini-batch size is set to 16 and spatial resolution is fixed

to 64 × 64 in the training step. Lastly, we set the learning



Figure 2. Qualitative results on 2018 IEEE GRSS Dataset for hyperspectral data and semantic information. RGB data, ground truth depth

data and estimated depth data are illustrated in each columns.

rate and the number of training iterations to 0.001 and 10K
respectively.

4. Experiments

In this section, we will explain the experimental results

conducted to show the performance of our contributions.

First, we will mention the details of the dataset that we used

in the experiments. Later, impacts of expansions will be

discussed in detail.

4.1. 2018 IEEE GRSS Data Fusion Challenge
Dataset

Dataset used in our experiments is initially proposed for

2018 IEEE GRSS Data Fusion Challenge1. It is composed

of registered hyperspectral, lidar and RGB data with 20 land

cover classes.

In particular, hyperspectral data covers a 380-1050 nm

spectral range with 48 bands and 1-m ground resolution.

Ground resolutions of lidar data and RGB data are 50-cm

and 2-cm respectively. Their spatial resolutions are rescaled

as in hyperspectral data throughout the experiments. Also,

1http://www.grss-ieee.org/community/technical-committees/data-

fusion/2018-ieee-grss-data-fusion-contest/

lidar data is normalized to [0, 1] and all predictions are com-

puted based on these assumptions.

The overall dataset is splitted into 14 pieces where each

piece contains a 512×512 image to ease the operation of the

dataset. To exploit symmetries and rotations in convolution

kernels, data is also augmented in different rotations (i.e. in

4 main directions).

Moreover, performance is evaluated with Root Mean

Square Error (RMSE) metric to compare prediction with

ground truth annotation:

RMSE(Y, Ŷ) =
1

L

√

‖Y − Ŷ‖2
2
. (6)

Lastly, tests are repeated 20 times. Therefore, mean and

standard deviation are reported in the paper.

4.2. Impact of Hyperspectral Data

To understand the impact of RGB and Hyperspectral

data for lidar depth estimation, we first evaluate the model

trained by each data type. After that, the impact of semantic

information is also reported.

In Table 1, lidar depth predictions are reported for three

different data models (i.e. Hyper-Smnt indicates hyperspec-

tral with semantic data). Moreover, the impact of Laplacian



Figure 3. Qualitative results on 2018 IEEE GRSS Dataset for hyperspectral data and sparse depth data. Sparse depth data, ground truth

depth data and estimated depth data are illustrated in each columns. The proposed method refines and improves the quality of predictions

drastically.

Table 1. RMSE performance to evaluate the impact of hyperspec-

tral data with semantic content. Note that RMSE performance is

normalized with ×10
−2

RGB Hyper Hyper-Smnt

Att-Lap w/o 1.46 ± 0.27 1.38 ± 0.15 1.34 ± 0.13

Att-Lap 1.41 ± 0.26 1.35 ± 0.16 1.29 ± 0.11

and attention function is also computed. From the experi-

mental results, hyperspectral data yields better performance

compared to RGB data for lidar depth estimation. The rea-

son is that hyperspectral data encapsulates more meaningful

clues about the scenes as explained throughout the paper.

Moreover, performance variations significantly reduce for

hyperspectral data.

For the impact of semantic data, RMSE performance is

improved compared to both RGB and hyperspectral data.

As explained, accessibility of hyperspectral data, dimen-

sionality and noise-prone characteristics are some of the

major factors that ultimately affect performance. By incor-

porating semantic information, these limitations are miti-

gated. Some of the visual results are illustrated in Figure 2.

Table 2. RMSE performance to evaluate the impact of sparse depth

data for RGB and Hyperspectral data. Note that RMSE perfor-

mance is normalized with ×10
−2

Data(%) RGB Hyper

0.1 0.31 ± 0.18 0.30 ± 0.11

0.07 0.38 ± 0.21 0.33 ± 0.15

0.05 0.57 ± 0.38 0.46 ± 0.19

0.01 1.21 ± 0.34 1.11 ± 0.21

4.3. Impact of Sparse Depth Data

For this experiment, the objective is to evaluate the im-

pact of sparse depth data provided along with input data.

This assumption is meaningful since there can be more than

one possible solution for inverse problems and sparse sam-

ples can inherently reduce the ambiguity in the solution. To

this end, the proposed methods takes sparse depth data and

RGB/Hyperspectral data as inputs and estimates depth pre-

dictions.

From the experimental results reported in Table 2, sparse

depth data drastically improves depth estimation perfor-

mance as expected. More precisely, use of 0.05% sparse



depth samples reduces RMSE from 1.29 to 0.46. The main

reason is that sparse depth data gives clues about the scene

and the proposed method refines its predictions by exploit-

ing these insights. To this end, more confident solutions

can be attained. In Figure 3, the ground truth and predic-

tion depth data are illustrated respectively. On the contrary

to the baseline models, depth prediction for stadium (sec-

ond column) is significantly enhanced under the guidance

of sparse data.

Moreover, we repeat this experiment for both RGB and

hyperspectral data. Similarly, due to the rich insights col-

lected from scenes, the combination of sparse depth and hy-

perspectral data yields higher performance while boosting

confidences for the predictions.

5. Conclusion

In this paper, we tackle an inverse problem to estimate

lidar depth from hyperspectral data. For this purpose, we

present several contributions and observations about the

problem throughout the paper. More precisely, use of hy-

perspectral data instead of RGB data ultimately improves

performance by which it provides richer information about

scenes which is meaningful due to texture, lighting and

shading clues. Moreover, semantic content of data is im-

posed to the inverse problem by exploiting label annotations

(i.e. endmembers) with an auxiliary NN model. By this

way, limitations of data are mitigated as explained in detail.

Lastly, prediction results are enhanced by providing sparse

depth data along with input data and optimum performance

saturates quickly. This shows that the proposed model can

be used as a refinement step as well.
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