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Abstract

We propose an efficient approach for robust reconstruc-

tion of indoor scenes by taking advantage of the geometric

relation between consecutive Manhattan keyframes and lo-

cal pose refinement to improve the accuracy and fidelity of

the reconstructed models. At the core of our framework,

we have a Local Manhattan Frame Growing system, which

finds the principal directions of the scene and aligns point

clouds with the dominant plane, and a Local Pose Opti-

mization, which refines the pose estimation for a specific

range of frames. During the reconstruction process, we use

Manhattan keyframes for a planar pre-alignment to pro-

vide a robust initialization for the final surface registration.

All Manhattan keyframes are integrated using a frame-to-

model scheme to create local models based on the refined

camera poses. The final dense model is reconstructed by

adopting a geometric registration between local segments

and integrating them into a global frame. The experimental

results show the effectiveness of our approach to reduce the

cumulative registration error and overall geometric drift.

1. Introduction

Generating high-fidelity dense 3D models of indoor

scenes from RGB-D streams has become one of the most

challenging research topics in the robotics and computer vi-

sion communities. In general, researchers in the robotics

community deploy Simultaneous Localization and Map-

ping (SLAM) framework for sparse 3D mapping using vi-

sual and depth information, and their ambition is ultimately

to minimize the trajectory error [14, 23, 24, 17, 26] with

less concern about the pertinent details and the quality of

the generated 3D models. In contrast, the main intention

of the researchers in the computer vision community is

dense modeling and enhancing the quality and fidelity of

the reconstructed models [22, 29, 19, 4]. One of the fore-

most approaches for volumetric reconstruction, which plays

a significant role in the evolution of volumetric modeling

is KinectFusion [20]. This approach demonstrated a real-

Figure 1. (a) A depth sequence with a Manhattan frame (MF), (b)

Local Manhattan Frame Growing (LMFG) via planar alignment,

(c) The local reconstruction without using MF, and (d) The local

construction result via LMFG.

time dense mapping and tracking system for volumetric re-

construction of small scenes. Many methods, both online

[22, 23, 8, 17, 7] or offline [4, 29, 30], have been devel-

oped for 3D scene reconstruction by promoting the main

concepts exposed by KinectFusion. Kinfu Large Scale [15],

voxel hashing [19], and scalable surface reconstruction [2]

use depth sequences to generate 3D models. Contrastingly,

many methods involve both RGB and depth information to

enhance the robustness of reconstructed models, including

DVO SLAM [17], RGB-D mapping [14], fragment registra-

tion [4], and online indoor reconstruction system [22].

In this paper, we develop an online framework for 3D

indoor scene reconstruction by incorporating only depth in-

formation to expedite the reconstruction process. We en-

hance surface registration by utilizing the geometric simi-

larity cross keyframes by a Local Manhattan frame growing

(LMFG) strategy that involves local pose optimization, as

shown in Fig. 1). The proposed LMFG approach integrates

all local segments into a unified global model and creates

a consistent volumetric model. This pipeline reduces the

cumulative registration error effectively and reconstructs

a drift-free high-quality dense model without using visual

features and explicit loop closure detection, which is also

comparable with offline reconstruction methods.



Figure 2. Overview of our framework

2. Related Work

The geometric drift in extended scale scene reconstruc-

tions is not entirely avoidable due to the accumulation of

the registration error between frames and pose estimation

inaccuracy. In large scale environments with complex tra-

jectories, this odometry deflection is likely prone to error.

Most of previous works on 3D mapping and dense model-

ing require a global consistent alignment between all frames

and an accurate pose estimation, which is acquirable by a

global pose graph optimization, to create drift-free 3D re-

constructions. The prevalent solution to the pose optimiza-

tion problem is using visual feature matching in conjunction

with pose graph optimization [18] to refine the pose estima-

tions and handle loop closures, and/or bundle adjustment

[21] to minimize the reprojection error. The online methods

usually work in near real-time, but they cannot provide an

impressive performance in terms of quality and precision.

On the other hand, the offline reconstruction methods pro-

duce more realistic dense models with superb quality and

accuracy, but they may need more computational time for

offline processing to access all input frames and to optimize

across the entire pose trajectory, which makes them to be

practically unusable for the real-time applications.

At the heart of our framework, we use a local Manhattan

frame growing system alongside a local pose optimization

method to generate dense 3D reconstructions. The Manhat-

tan world (MW) assumption [6] has been used in many 3D

scene reconstruction applications [27, 25, 28]. Our algo-

rithm is different from [27, 25], where the Manhattan world

assumption is used to create a non-volumetric model using

both depth and color data and from [28], where a Manhattan

frame (MF) estimation method is adopted to find all Man-

hattan keyframes to generate a volumetric model and needs

a pose optimization method to refine pose estimation er-

rors. Our method is also different from Kintinuous [24],

DVO SLAM [17], SUN3D SfM [26], and RGB-D map-

ping [14], which involve visual odometry and use frame-

to-frame tracking and matching system in their pipelines.

3. Proposed Method

We first review the MF-based volumetric reconstruction.

Then we propose the new LMFM strategy, which is used to

initialize planar alignment across keyframes. Afterwards,

we present a local pose optimization method and a frame-

to-model registration scheme to generate local fused mod-

els, followed by a geometric registration to integrate all seg-

ments into a global dense reconstruction.

3.1. Overview

The pipeline of the overall system is shown in Fig. 2.

The key idea is benefiting from the geometric information

of the scene to enhance registration accuracy by using lo-

cal Manhattan frame growing and local odometry optimiza-

tion. To drive more reliable surface registration between

depth frames, we have proposed a local optimization for

surface geometry, which is used to create regional fused

models. After the normal computation, we utilize a surface

normal adjustment to refine the surface orientation, which

produces a highly persistent distribution of the point nor-

mals and facilitates the process of Manhattan frame estima-

tion. The next step is local Manhattan frame growing by ex-

panding the first estimated Manhattan frame along the dom-

inant plane valid in the current scene. This extending strat-

egy is faster than regular MF estimation method used by

[28] for volumetric reconstruction and helps to use the local

geometry in the reconstruction process. Instead of creating

pose graph for whole scene and using a global pose opti-

mization, we optimize the local odometry for each region,

which reduces the overall geometric drift error. The esti-

mated Manhattan keyframes by LMFG are used for the pla-

nar pre-alignments, which provide a reliable initialization

for the final surface registration. The last step is integrat-

ing all local models into a global volumetric representation

according to the refined camera trajectory using a frame-to-

model scheme. We present all major steps in detail below.



3.2. Local Manhattan Frame Growing

The geometric depiction of indoor scenes using MW as-

sumption has different employments in vision application

like 3D modeling, semantic segmentation, and scene under-

standing. This assumption states that all objects in a scene

are aligned with one of three orthogonal directions. Deter-

mining the MF of the scene based on this assumption sim-

plifies the representation of the objects and planes and pro-

vides the accurate and reliable geometric properties, which

can be used in the reconstruction process. The Manhattan

frame estimation methods can be classified into two groups.

The methods in the first group are RGB-based, which rely

on extracting lines, edges, and orthogonal vanishing points

from RGB images [9, 5]. The approaches that belong to the

second group are RGB-D-based, which use the 3D perspec-

tive information like surface normals computed from point

clouds or depth frames [10, 16].

In our work, we proposed a local Manhattan frame grow-

ing framework based on the MF estimation method released

by [10] to extend the first estimated MF along each domi-

nant surface plane in the scene. The main idea is to find

the best 3D rotation matrix to transform original normals

and align them with at least one of the main coordinate

directions in the scene. In an ideal Manhattan scene with

Manhattan elements, which are mostly aligned to the prin-

cipal directions, the estimation of MF is not very challeng-

ing. However, due to noise, depth discontinuities, and er-

ror in depth measurement or normals computation, finding

an ideal MF can be an arduous process. In our pipeline,

we proposed a surface normal adjustment to flip the normal

vectors towards the sensor center, which results in a more

consistent normal distribution and facilitates the MF esti-

mation process.

The main intention of our proposed local Manhattan

frame growing system is to find the MF of a scene and ex-

tend it to the next frames along a most visible surface plane

with the same idea of converting normal vectors into the

sparsest set of directions as follows:

LMFG = min
R,X

1

2
||(Xi−1 − (R(Ni)−Xi))||

2

F + λ||Xi||1,1 ,

(1)

where Ni ∈ IR3×m is the matrix of the original surface

normals, R ∈ SO(3) is the rotation matrix to rotate the

surface normals to be aligned to principal directions, Xi is

the matrix of the rotated normal vectors after applying R

to the set of surface normal vectors, and Xi−1 is a sparse

matrix of the previous rotated normals. The second term

in the objective function is used as a regularizer, which is

the sum of the ℓ1 norms of the columns in Xi matrix and

helps to avoid the overfitting problem and to achieve the

higher sparseness. ||X||p,q shows the ℓp,q matrix norm of

X , and λ is the trade-off for sparsity. We estimate the MF

of the first frame and find a desirable rotation matrix R to

apply to the original surface normals N and aligned them

with dominant coordinate. This calculated rotation matrix

will be used as an initial guess for the normals of the next

coming frame Ni and transform them to update a new ro-

tated normals Xi, which should be continuance of Xi−1,

where the camera translation is along the dominant direc-

tion. We track the dominant plane and continue updating R

andXi in an iterative manner to find the best rotation matrix

and minimize the distance between the rotated surface nor-

mals of the incoming frame and the rotated normals of the

current Manhattan frame. The local minimum of this non-

convex optimization is attainable via alternating optimiza-

tion, where the solution for variables R and Xi is updated,

while the other one is kept fixed.

3.3. Local Pose Optimization

The importance of the pose graph optimization and map

correction for minimizing the overall odometry drift in large

scale scene reconstruction has been recognized in many

SLAM systems and dense modeling approaches. Perform-

ing a global pose optimization for all frames clearly in-

creases the computational cost, since a full pose graph has to

be optimized and loop closure constraints should be tracked

incessantly. In this work, we therefore employ a local

pose graph optimization, which provides more local accu-

racy and consistency to optimize the keyframe poses. The

frame-to-model tracking system returns locally more accu-

rate pose estimates than frame-to-frame trackers. The lo-

cal pose graph is created for Manhattan key-frames and for

each new incoming key-frame, a new node will be added

to the graph and a new relative transformation will be com-

puted. These relative transformations between Manhattan

key-frames provide odometric constraints. We incremen-

tally optimize the pose estimations through minimizing the

following general cost function [12, 18]:

E(x) =

∑

i,j

eTijΩijeij , (2)

where eij is a function that computes the difference between

the real measurement and the expected measurement of the

pose and Ωij represents uncertainty, which is the inverse

square root of the covariance matrix of the measurement.

The error function is defined as:

eij(x) = f(xi, xj) =

[

RTi (pj − pi)− p̂ij

ψj − ψi − ψ̂ij

]

, (3)

where xi = [pTi , ψi]
T shows the camera poses, pi ∈ IR2

and ψi ∈ [−π, π) are the position and orientation of the

ith pose respectively, and Ri denotes the rotation matrix of

ψi. The relative position and orientation measurements are

computed by RTi (pj − pi) and (ψj − ψi). The maximum

likelihood can be obtained by minimizing the residual errors



as follows:

(p∗, ψ∗) = argmin
p,ψ

∑

i,j

||RTi (pj − pi)− p̂ij ||
2

+||ψj − ψi − ψ̂ij ||
2,

(4)

By solving the cost function, the pose drift will be corrected

by minimizing the error between the real observation and

the predicted observation of the poses. In our implemen-

tation, we employ Ceres Solver [1] for optimizing the

local camera trajectories and to minimize sequential con-

straints between Manhattan key-frames. In addition, we

have constructed a whole-scene pose graph and optimized it

globally to use with MF reconstruction method [28] (MFR

with PGO) in order to generate dense models of the same

indoor scenes.

3.4. Local Manhattan Frame based Integration

The final reconstructed models by both visual odome-

try approaches with a frame-to-frame tracking and matching

system, and dense modeling reconstruction methods with a

frame-to-model tracking and registration system are inher-

ently prone to accumulate the drift error. In our work, we

use a frame-to-model scheme for local scene reconstruction

using Manhattan keyframes relying on the local geometry

of the scene. This geometric odometry helps for estimat-

ing the local camera trajectory and recognizing the dom-

inant plane in the scene by monitoring the frames trans-

lations. Using Manhattan keyframes provides reliable ge-

ometric constraints to reduce the overall registration error

and generate a more accurate model with minimal drift.

We assign pose IDs to all Manhattan keyframes and use

these indices to retrieve the refined pose estimations from

the local pose optimization step. These refined poses will

be used in the following sequential registration. We ini-

tially use a geometric registration to effectively align domi-

nant planes in two successive keyframes fki and fkj . For the

Manhattan frame based plane-to-plane alignment, the met-

ric distance between the point sets on two planar surfaces is

minimized by solving:

Tij = argmin
Tij

∑

i,j

||Tij(p
k
i )− pkj ||

2, (5)

where Pi and Pj are dominant planes located in two Man-

hattan keyframes fki and fkj , pki ∈ Pi and pkj ∈ Pj are two

set of points on the dominant planes, and Tij is the trans-

formation matrix that minimizes the distance between two

planes. This planar alignment reduces the computational

complexity, provides a reliable and robust initialization for

the surface registration, and expedites the reconstruction

process. After obtaining the definitive pose estimations

for key-frames, we perform a frame-to-model registration

scheme similar to [20] to integrate Manhattan keyframes

to the TSDF (Truncated Signed Distance Function) model.

The TSDF model is represented in GPU as an array of vox-

els. Suppose p is the location of each voxel that contains

two values, the signed distance TSDF value υ(p) and the

voxel weight w(p). To integrate the ith incoming Manhat-

tan keyframe to the reconstructed model, the value of the

voxel is updated by a weighted running average as follows:

υi(p) =
υi−1(p)wi−1(p) + υi(p)wi(p)

wi−1(p) + wi(p)
, (6)

and

wi(p) = min(wi−1(p) + wi(p), wmax), (7)

where wi(p) is the weighting of the TSDF to the uncer-

tainty of surface measurement. In our implementation,

we set wi(p) = 1, eventuating in a simple average, and

wmax = 128. The local 3D models are reconstructed for all

regions using the refined pose estimations retrieved from

optimized camera trajectories while a dominant plane is

trackable. All key-frames are added to the reconstructed

model and the regional segment is created until a signifi-

cant translation occurs in the camera motion, then the sys-

tem starts creating a new local model by tracking the new

dominant plane and estimating Manhattan frames using lo-

cal Manhattan frame growing system.

3.5. Final Model Reconstruction

The core of our pipeline is an efficient local Manhattan

frame growing system which operates in unison with a local

pose optimization algorithm to create local fused segments.

In the last stage of this pipeline, we use a geometric regis-

tration to integrate these local segments into a global frame-

work to reconstruct the final consistent dense model. We

check two consecutive local segments to find overlapping

sections and run an iterative point-to-plane surface registra-

tion [3] on each point located on these sections to align the

set of points in the first model and corresponding points in

the second one. The desired registration should minimize

the squared metric distance between each source point and

the tangent plane to the surface at its corresponding desti-

nation point defined below:

TA = argmin
TA

∑

i

||(TA(p
′

i)− q′i) ·Ni||
2 , (8)

where p′i = (p′ix, p
′

iy, p
′

iz, 1)
T is a point on the surface of

the first local model, q′i = (q′ix, q
′

iy, q
′

iz, 1)
T is the corre-

sponding point on the surface of the second local model,

Ni = (Nix, Niy, Niz, 0)
T is the unit normal vector at desti-

nation point q′i, and TA is the transformation matrix to align

two point sets. After performing this iterative registration,

the neighbor segments will be perfectly aligned and the final

3D dense model will be reconstructed.



4. Experimental Results

We evaluated our proposed approach, Local Manhattan

Frame Growing (LMFG), on the augmented ICL-NUIM

dataset provided by [4]. The original dataset was released

by [13] for benchmarking RGB-D visual odometry evalua-

tion, 3D reconstruction and SLAM systems. This dataset in-

cludes the synthetic models of two different indoor scenes,

a living room and an office.

Our method is used to generate four dense 3D mod-

els from depth streams of the augmented ICL-NUIM

dataset and is evaluated against Kintinuous [24], DVO

SLAM [17], SUN3D SfM [26], Manhattan frame (MF)

reconstruction [28], and offline robust reconstruction [4]

methods. We have also implemented a reduced ver-

sion of our proposed approach by combining the MF re-

construction method [28] with a global pose graph op-

timization (MFR with PGO) to generate dense mod-

els by integrating the Manhattan key-frames obtained

from the MF estimation framework into a volumet-

ric 3D model using globally refined pose estimations.

To evaluate the surface reconstruction accuracy, we have

used the CloudCompare [11] tool to compute the mean

distance of our generated models to the ground-truth sur-

faces. To provide evaluation for the living room scene, we

have used the ground-truth surface provided by [13], and for

the evaluation of the office scene, we have used the dense

point-based surface model provided by [4].

4.1. Quantitative Comparison

For the quantitative comparison, we have computed the

mean distance of the generated models by LMFG, MFR

with PGO, and MF reconstruction methods to the ground-

truth and compared the errors with the values released by

[4] for Kintinuous, DVO SLAM, SUN3D SfM, and offline

robust reconstruction systems, as shown in Table 1. It is ev-

ident that, LMFG approach outperforms Kintinuous, DVO

SLAM, SUN3D SfM, and MF reconstruction frameworks.

This comparison confirms that our approach reduces the av-

erage mean distance by factors of 3.2 relative to Kintinu-

ous, 2.4 relative to DVO SLAM, 2 relative to SUN3D SfM,

2.4 relative to MF Reconstruction, and 1.4 relative to MFR

with PGO. We have also compared our performance with

offline robust reconstruction approach [4]. The dense mod-

els created by our framework are comparable with this of-

fline pipeline, both quantitatively and qualitatively.

4.2. Qualitative Comparison

The reconstructed models, shown in Fig. 4 show the ro-

bustness of our approach for volumetric reconstruction us-

ing depth streams and local Manhattan frame growing sys-

tem. Our proposed approach relies on the local geometric

structure of the scene for surface reconstruction. This pow-

erful and precise characteristic helps to preserve the geom-

etry and reconstruct aligned dominant planes of the scene

like walls and floor with a high accuracy and precision and

to mend holes, gapes, and discontinuities, which are con-

spicuous in the generated models by other approaches, as

shown in Fig. 3.

Figure 3. The reconstructions (office 1) generated by offline ro-

bust reconstruction (Left) and our approach (Right). Our method

preserves the local geometric structure of the planar surfaces.

5. Conclusion

We presented an efficient approach that provides a reli-

able registration between depth frames to generate robust

3D dense reconstructions of indoor environments. We take

advantage of the local Manhattan frame growing system and

local pose optimization to reduce the accumulation of the

registration error and to increase the fidelity and accuracy

of the final reconstructions. The Manhattan frames are ex-

tended along the main dominant axis in the scene according

to the first identified MF until a significant translation hap-

pens in the camera trajectory. These key Manhattan frames

are used for a planar pre-alignment, which provide a reli-

able initialization to facilitate the surface registration. At

the same time, the estimated poses for a local region are op-

timized incrementally and used to create a local model of

the scene which is restricted to the dominant plane. Finally,

the whole-scene reconstructed model is created by integrat-

ing all local models into a global framework.

The experimental results on the augmented ICL-NUIM

dataset demonstrate the advantage of our proposed ap-

proach to reduce the cumulative registration error and over-

all geometric drift. Compared with Kintinuous, DVO

SLAM, SUN3D SfM, and MF reconstruction, our method

is more accurate and reliable for dense modeling and it has

a remarkable agility in comparison to the offline robust con-

struction method while providing the same level of quality.
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Table 1. Mean distance of reconstructed models to the ground-truth surface (in meters). All methods are online and the offline Robust

Reconstruction results, which has the best performance are shown as a reference.

Dataset
Kintinuous

[24]

DVO

SLAM [17]

SUN3D

SfM [26]

MF

Reconstruction

[28]

MFR with

PGO

Proposed

LMFG

Offline Robust

Reconstruction

[4]

Living Room1 0.22 0.21 0.09 0.11 0.07 0.06 0.04

Living Room2 0.14 0.06 0.07 0.09 0.07 0.07 0.07

Office1 0.13 0.11 0.13 0.12 0.04 0.03 0.03

Office2 0.13 0.10 0.09 0.17 0.06 0.05 0.04

Average 0.16 0.12 0.10 0.12 0.07 0.05 0.05

Figure 4. Reconstructed models of Living Room 1 (above) and Office 1 (below), by Kintinuous [24], DVO SLAM [17], SUN3D SfM

[26], Offline Robust Reconstruction without and with an optional refinement [4], Manhattan Frame (MF) Reconstruction (without pose

optimization) [28], Manhattan Frame Reconstruction (MFR) with global pose optimization, and Local Manhattan Frame Growing (LMFG).
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