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Abstract

The field of self-supervised monocular depth estimation

has seen huge advancements in recent years. Most methods

assume stereo data is available during training but usually

under-utilize it and only treat it as a reference signal. We

propose a novel self-supervised approach which uses both

left and right images equally during training, but can still

be used with a single input image at test time, for monoc-

ular depth estimation. Our Siamese network architecture

consists of two, twin networks, each learns to predict a dis-

parity map from a single image. At test time, however, only

one of these networks is used in order to infer depth. We

show state-of-the-art results on the standard KITTI Eigen

split benchmark as well as being the highest scoring self-

supervised method on the new KITTI single view bench-

mark. To demonstrate the ability of our method to gen-

eralize to new data sets, we further provide results on the

Make3D benchmark, which was not used during training.

1. Introduction

Single-view depth estimation is a fundamental prob-

lem in computer vision with numerous applications in au-

tonomous driving, robotics, computational photography,

scene understanding, and many others. Although single im-

age depth estimation is an ill-posed problem [9, 18], hu-

mans are remarkably capable of adapting to estimate depth

from a single view [22]. Of course, humans can use stereo

vision, but when restricted to monocular vision, we can still

estimate depth fairly accurately by exploiting motion par-

allax, familiarity with known objects and their sizes, and

perspectives cues.

There is a large body of work on monocular depth esti-

mation using classical computer vision methods [4, 8, 43,

45], including several recent approaches based on convolu-

tional neural networks (CNN) [9, 35]. These methods, how-
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ever, are supervised and require large quantities of ground

truth data. Obtaining ground truth depth data for realistic

scenes, especially in unconstrained viewing settings, is a

complicated task and typically involves special equipment

such as light detection and ranging (LIDAR) sensors.

Several methods recently tried to overcome this limita-

tion, by taking a self-supervised approach. These meth-

ods exploit intrinsic geometric properties of the problem to

train monocular systems [11, 15]. All these cases, assume

that both images are available during training, though only

one training image is used as input to the network; the sec-

ond image is only used as a reference. Godard et al. [15]

showed that predicting both the left and the right dispar-

ity maps vastly improves accuracy. While predicting the

left disparity using the left image is intuitive and straight-

forward, they also estimate the right disparity using the left

image. This process is prone to errors due to occlusions and

information missing from the left viewpoint. By compari-

son, we fully utilize both images when learning to estimate

disparity from a single image.

We propose a self-supervised approach similar to that of

Godard et al. [15]. Unlike them, however, we exploit the

symmetry of the disparity problem in order to obtain effec-

tive deep models. We observe that a key problem of existing

methods is that they try to train a single network to pre-

dict both left and right disparity maps using a single image.

This does not work well in practice since crucial informa-

tion available in the right image is often occluded from the

left viewpoint due to parallax (and vice versa). Instead, we

propose a simple yet effective alternative approach of flip-

ping the images around the vertical axis (vertical mirroring)

and using them for training. In this way, the network only

learns a left disparity map; right disparity maps are simply

obtained by mirroring the right image, estimating the dis-

parity, and then mirroring the result back to get the correct

right disparity.

Specifically, we use a deep Siamese [5] network that

learns to predict a disparity map both from the left image

and the flipped right image. By using a Siamese architec-



Figure 1. System overview. Our approach uses stereo data during training, but works on single image data during test time. Both images

are treated equally by mirroring the right image. We use Siamese [5] networks with weight sharing. This reduces computational cost and

allows us to run the system on single image during test time.

ture, we learn to predict each disparity map using its corre-

sponding image. By mirroring the right image, prediction

of both left and right disparity maps becomes equivalent.

We can therefore train both Siamese networks using shared

weights. These shared weights have the dual advantage of

reducing the computational cost of training and, as evident

by our results, resulting in improved networks. A high level

overview of our approach is illustrated in Fig. 1.

We evaluate our proposed system on the KITTI [13] and

Make3D [43] benchmarks and show that, remarkably, in

some cases our self-supervised approach outperforms even

supervised methods. Importantly, despite the simplicity of

our proposed approach and the improved results it offers,

we are unaware of previous reports of methods which ex-

ploit the symmetry of stereo training in the same manner as

we propose to do.

To summarize we provide the following contributions:

• A novel approach for self-supervised learning of depth

(disparity) estimation which trains on pairs of stereo

images simultaneously and symmetrically.

• We show how a network trained on stereo images can

naturally be used for monocular depth estimation at

test time.

• We report state-of-the-art, monocular disparity estima-

tion results which, in some cases, even outperform su-

pervised systems.

Our code and models are available online from the fol-

lowing URL: https://github.com/mtngld/lsim.

2. Related work

There is a long line of research on the problem of depth

estimation. Much of this work assumed image pairs [46]

or sequences [24] are available in order to infer depth. We

focus on the related but different task of monocular depth

estimation, where only a single image is used as input.

Example based methods. Example based methods use ref-

erence images with corresponding, per-pixel, ground truth

depth values as priors when estimating depth for a query

image. An early example is the Make3D model of Sax-

ena et al. [43], which transforms local image patches into

a feature vectors and then uses a linear model trained off-

line to assign depth for each query patch. These estimates

were then globally adjusted using a Gaussian Markov ran-

dom field (MRF). Hassner et al. [17, 18, 19] suggested an

on-the-fly example generation scheme which was used to

produce depth estimates using a global coordinate descent

method. Example based methods explicitly assume famil-

iarity with the object classes they are being applied to. Patch

based methods further have difficulties ensuring that their

solutions are globally consistent.

Scene assumption methods. Shape-from-X methods make

assumptions on the properties of the scene in order to in-

fer depth. Some use shading in order to estimate 3D shape

from a single image [3, 21, 49]. Vanishing points and other

perspective cues have also been used for monocular depth

estimation [8]. Ladicky et al. [31] suggested incorporating

object semantics into the model, thus requiring additional

labeled data. When objects belong to a single class, class

statistics are used, as in the 3D morphable models [4, 48].

Other scene assumptions include the use of texture [2]

and focus [40]. In the absence of stereo images, all these



methods use visual cues inspired by human perception.

Whenever these cues are absent from the scene, these ap-

proaches fail.

Supervised, deep, monocular methods. Several deep

learning–based methods were recently proposed for solv-

ing this problem. These methods formulated the problem

using a regression function from an input image to its cor-

responding depth map [9]. Xie et al. [52] used a neural

network to estimate a probabilistic disparity map, followed

by a selection layer. Liu et al. [34, 35] combined the neu-

ral net approach with a conditional random field (CRF) in

order to address the global nature of the problem. Roy et

al. [42] proposed neural regression forest (NRF), a random

forest method where at each tree node a shallow CNN is

used. Laina et al. [32] trained an end-to-end fully convo-

lutional network with residual connections and introduced

the reversed Huber loss for this task. More recently, Fu

et al. [10] suggested using ordinal regression to model this

problem.

Although deep supervised methods achieve accurate re-

sults, they require large amounts of image data with corre-

sponding ground truth depth maps. Collecting such datasets

at scale is very difficult and expensive.

Self-supervised, deep, monocular methods. Garg et

al. [11] were first to suggest a self-supervised method for

this problem, relying on the geometrical structure of the

scene. First, they estimate a disparity image for the left im-

age. This disparity map is then used to inverse warp the

right image and measure reconstruction loss (Fig. 2 (left)).

Our approach is related to the one recently described by

Godard et al. [15]. Whereas they apply similar reasoning for

data augmentation, we use a specially crafted Siamese net-

work to better utilize the training data. Please see Sec. 3.5

for a detailed discussion on the differences between their

approach and ours.

Our method is further related to the one proposed by

Kuznietsov et al. [30] who also use two networks. There are

some important differences between our work and theirs.

First, we use two networks with weight sharing, which re-

duces model size and allows applying the network at test

time in monocular settings. Second, they use depth infor-

mation as a semi-supervisory signal. We do not use any

depth information or any other labels. We report results that

nearly match theirs despite the fact that our method is com-

pletely self-supervised.

Some methods suggested incorporating both depth and

pose estimation [54, 57]. We focus solely on depth es-

timation and show our results to outperform the ones re-

ported by these recent methods. There is also a line of work

[29, 38, 53] where for using self-supervision for extracting

depth from monocular video, here we do not assume se-

quential data is at hand.

Siamese networks. Siamese networks were first suggested

by Bromley et al. [5] and have since been used for a wide

range of tasks, including metric learning [6] and recogni-

tion [27]. Some recently applied Siamese networks to depth

estimation [25, 37]. These methods were all supervised and

assume stereo vision during both training and testing.

3. Our approach

We use pairs of RGB rectified images for training and as-

sume the images were acquired in a controlled setup where

the baseline between the cameras is known. Later on, this

assumption will allow us to easily convert from disparities

to depth. We believe it is reasonable to assume availability

of rectified stereo pairs, even at scale, and there are several

datasets containing data of this type [7, 12, 39].

We aim to learn a mapping d̂l = f(Il), from an RGB

image to a depth map and similarly d̂r = f ′(Ir). Com-

pare to [15] in which the problem during training could be

formulated to (d̂l, d̂r) = f(Il).
The two functions, f() and f ′() cannot be the same: in-

ferring a left disparity map is a different problem than infer-

ring a right disparity map, if only because of the different

relative positions of the two images and hence the different

disparities that are assigned to their pixels. Clearly, we can

train two separate networks, one for each function, but that

would prevent weight sharing between the two networks or

allow us to exploit the inherent symmetry of the problem.

We propose an alternative method which utilizes both im-

ages in an equivalent manner.

3.1. Siamese architecture with mirroring

To make equivalent and symmetric use of available train-

ing data, we exploit the symmetry of the problem and note

that by mirroring (horizontal flipping) Ir we get a new im-

age m(Ir) which can be considered as being sampled from

the distribution of left images, that means we can apply our

f() function on such image, but now, in order to return to

right disparity another mirroring is required, to summarize

f ′(·) = m(f(m(·))). We hence change the architecture

used to train and infer depth to exploit the symmetry. These

changes are presented in Figure 2 as a detailed block dia-

gram of our method, compared to the designs of previous

approaches. As can be seen, both Garg et al. [11] and Go-

dard et al. [15] propose an architecture with a single input

used as input during training. Garg et al. are further lim-

ited by using the right image only as a supervisory signal.

We use a Siamese architecture which takes both images si-

multaneously as input during training, treating both views

equally. Our approach therefore not only saves memory, it

also shares information between the networks.

Specifically, both previous methods under-utilize the

right view [11, 15]: Neither feeds the right image as in-

put to the encoder-decoder architecture. The right image



Figure 2. Comparison of system architectures. Left: The method of Garg et al. [11] uses the right image only as a supervisory signal.

Center: The method of Godard et al. [15] favors the left image over the right image. Both methods use a single image as input during

training. Right: Our Siamese network trains on pairs of images, treating them both equally, by flipping the right image. Hence, our loss

combines errors from two separate predictions, equally treating both views and their predictions. At test time, only the area bounded by

the dashed line is used; the rest of the blocks are used only for training.

is only used as reference signal to the reconstructed image

Î
l(dr) = Î

r. Of course, data augmentation can be used to

flip both images and present each one, separately. In doing

so, however, the network cannot see regions occluded in one

view but visible in the other. We discuss these limitations in

detail, in Sec. 3.5.

Note that while Siamese networks require double the

training time, the actual net throughput is the same as that of

a single network trained separately on both images [11, 15],

because two training images are viewed and processed in

each step. Also note that because of weight sharing the

memory consumption is also unaffected.

3.2. Network architecture

We use a network architecture based on DispNet [41],

applying modifications similar to those described by Go-

dard et al. [15]. We use both ResNet [20] and VGG [47]

architecture variants. The network is composed of an

encoder-decoder pair with skip connections, allowing the

network to overcome data lost during down-sampling steps

while still using the advantages of a deep network.

The network produces multi-scale disparity maps:

d1view, ..., d
4
view for the four scales considered by our net-

work and view representing either l or r for the left/right

images of a stereo pair. Lower resolution disparity predic-

tions are concatenated with previous decoder layer output

and with the corresponding encoder output using the skip

connections. The concatenated results are then fed into the

next (higher) scale of the network [41]. In order to warp

each disparity map and image onto its counterpart, we use

a bilinear sampler as in [23] which allows for end-to-end

back-propagation and learning.

3.3. Loss function

We define a multi-scale loss, somewhat related to one

proposed by others [15]. The single scale loss is defined by:

Ls = αim(Ll
im+Lr

im)+αtv(L
l
tv+Lr

tv)+αlr(L
l
lr+Lr

lr).
(1)

The components of Eq. (1) are defined below. Note that

this loss averages prediction errors from both left and right

views. This should be compared with Garg et al. [11], who

consider single view predictions, and Godard et al. [15] who

average two predictions, but unlike us, their predictions are

not equivalent (See also Fig. 2).

The total loss is then a sum over the four scales:

L =

4∑

s=1

Ls. (2)

We tried using only the loss defined for the most detailed

(high resolution) scale but found that combining multiple

scales leads to better accuracy.



An additional modification of our loss, Eq. (2) compared

with previous work [15] is that we use a total variation com-

ponent, described below, instead of their disparity smooth-

ness term. We found this change to improve disparity re-

sults. We next detail the terms included in Eq. (1).

Image loss. Zhao et al. [56] compared multiple loss func-

tions for the task of image restoration and showed that

combining L1 loss with the structural similarity (SSIM)

loss [51] leads to better results. It was later shown by oth-

ers [15, 54] that this loss function is very suitable for the

task of depth estimation. We follow their steps and use this

as our loss function. Unlike previous work [15], however,

where only an average pooling version of SSIM is applied,

we use the original SSIM with a Gaussian kernel as we find

it to improve the localization of the metric.

Specifically, SSIM is defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (3)

where x, y are two equal sized windows in the two com-

pared images. Scalars µx, µy, σx, and σy are the mean and

variance of x and y respectively, and σxy is the covariance

of x, y. To summarize, the image loss is therefore measured

as follows:

Ll
im =

α

N

∑

i,j

1− SSIM(I lij , Î
l
ij)

2
+ (1− α)‖I lij − Î lij‖.

(4)

Left-right consistency loss. As demonstrated by oth-

ers [15], adding a constraint on the left-right consistency

of the estimated disparity images leads to improved results.

Because the task we are trying to solve is self-supervised,

it is reasonable to use any geometric property that can be

used as feedback to the model performance. To this end,

left-right consistency is introduced to the loss and defined

as follows:

Ll
lr =

1

N

∑

i,j

|dli,j − dr
i,j+dl

i,j

|. (5)

Total variation loss. In order to promote smoothness of the

estimated disparity maps we use a total variation loss that

serves as a regularization term

Ltv(d) =
∑

i,j

|di+1,j − di,j |+ |di,j+1 − di,j |. (6)

We have also tried weighting this loss with the gradients of

the original images, as suggested by others [15]. We found,

however, that this also emphasizes disparity gradients in un-

necessary places in objects like windows and walls. These

objects should have the same depth but have different dis-

parities in the weighted version.

3.4. Post­processing

Due to occlusions, the left side of the disparity map is

usually missing important data. To overcome this, we fol-

low a post-processing method based on the one suggested

by Godard et al. [15]. Given the image I , at test time,

we also infer the depth of the horizontally mirrored image,

m(I). The two disparity images are later blended together

using a weighting function.

3.5. Discussion: Comparison with Godard et al. [15]

It is instructional to consider the significance of the dif-

ferences in the design of our approach and the related work

of Godard et al. [15].

3.5.1 Similar loss, different components.

As mentioned in Sec. 3.3, the loss used by Godard et al.

averages predictions for two views, similarly to ours. How-

ever, unlike in our approach, their predictions are not equiv-

alent: both were produced from the left view, while the right

view is used only as a supervisory signal (see also Figure

2). We provide the model inputs from two views, simul-

taneously, treating them equally, thus the network is given

more data as input and each predicted disparity map is cre-

ated independently from it’s corresponding image.

Siamese Network 6= Data Augmentation. Instead of train-

ing a Siamese network, as proposed here, a single input net-

work can be trained on the left image, with the right im-

age used for supervision, and, separately, on the two im-

ages flipped and their roles switched [15]. This approach,

however, is different than the dual-input Siamese network

approach proposed here.

First, using both images allows the network to back-

propagate information from one branch into the other si-

multaneously. This information is unavailable when train-

ing with a single view. Second, including both left and right

images as input adds information which would otherwise be

unavailable due to occlusions and limited field-of-view.

Fig. 3, compares the right disparity map produced by Go-

dard et al. to ours. Their disparity is blurry and missing im-

portant details and contours. These errors can be intuitively

explained by their uncertainty of the right image. This un-

certainty creates an asymmetry between dl and dr. Notice

that in our prediction (bottom row) both left and right dis-

parities are fine grained. Put differently, the left-right con-

sistency of our loss relies on accurate predictions of both

left and right disparities. The network must therefore learn

to predict the right disparity map as accurately as possible

in order to minimize its loss.

Why does flipping work? Can we just reverse the direc-

tions of the disparities? It is possible to reverse the dispar-

ity directions, since: dl = xl−xr and dr = xr−xl = −dl,



Figure 3. Qualitative comparison of disparity maps. Top row

contains the input pair of images, the two rows below contains the

left and right disparity maps predicted by Godard et al. [15] and by

our method. As evident from the zoomed-in views, our results are

crisper, containing more high-gradient information. This is par-

ticularly evident in depth discontinuities, such as the edge of the

bushes. Also note the boundary effects, these are modeled differ-

ently for left and right disparities, hence the flipping is needed.

where xl and xr are two corresponding points in the left and

right image respectively.

This approach, however, does not take into account

boundary effects, as seen in Fig. 3. We expect the left (right)

disparity to include some boundary artifact in the left (right)

side, due to missing data. Another potential limitation of

this approach is that the information is distributed differ-

ently for the left and right images, Il 6∼ Ir, due to the dif-

ferent positions of the left and right cameras. We design

our network with bias towards left images, but by exploit-

ing the symmetry and flipping right images we can assume

the flipped distribution is the same Il ∼ m(Ir). This allows

us to avoid bias and use the same network for both images.

4. Results

We tested our approach on two standard benchmark for

monocular depth estimation: the KITTI Eigen split [13] and

the KITTI single image depth prediction challenge [50].

In addition, to show that our method generalizes well

to new data, we provide results on the Make3D bench-

mark [43, 44]. Importantly, Make3D has only 400 images

and so training is impossibly on this set, which has appear-

ance biases different from those of KITTI images. Our re-

sults were therefore obtained without training on Make3D

images. These results are reported next.

Implementation details. Similarly to previous work [15,

54], we first train our model on the high resolution

Cityscapes dataset [7] and later fine-tune for 30 epochs on

KITTI training images [13], in order to provide our net-

work with as much training data as possible while domain-

shifting to KITTI data.

For optimization we use Adam optimizer [26] with β1 =
0.9, β2 = 0.999 and ǫ = 10−8. We use a constant learning

rate of λ = 10−4. Our loss parameters of Eq. (2) are set as:

αim = 1.0, αlr = 1.0 and αtv = 0.001.

We use a batch size of eight for training. We also aug-

ment the data by applying on-the-fly color, gamma, and

brightness transformations. Training uses the TensorFlow

package [1] on a Titan X GPU. The average test time for

each image is 73ms. This includes processing both the im-

age and its mirrored version.

KITTI Eigen split. The KITTI dataset [13] contains

42, 382 rectified stereo pairs from 61 scenes. Most of the

images are 1, 242 × 375 pixels in size. For easy compari-

son with previous work, we use the metrics and proposed

train/test splits defined by others [9].

KITTI Eigen split contains 697 test images taken from

29 scenes. Additional 32 scenes are provided for training

and evaluation. Ground truth depth data is created by repro-

jecting 3D points acquired by the Velodyne laser onto the

left image. It should be noted that depth data is available

only for a sparse subset of the pixels; only 5% of the pix-

els include ground truth depth data. This ground truth data

also contains measurement noise due to sensor rotation and

movement of the carrying vehicle.

We use the same image crop defined by others [11], as

the same crop was used by all the baseline methods we com-

pared with. Predictions are rescaled using bilinear inter-

polation in order to match the original image size. While

this is the most common evaluation for the task, some con-

cerns were recently raised regarding this methodology [14].

We provide results for this protocol for completeness but

emphasize that a more appropriate evaluation may be the

KITTI single image prediction challenge [50], which we

have also tested and for which we offer results below.

Table 1 reports results on this data set. As can be seen,

our method achieves state-of-the-art accuracy in nearly all

accuracy measures, with the exception of RMSE and RMSE

log, where it trails the best results by a very narrow margin.

Importantly, these metrics are often considered less stable.

KITTI Single image depth benchmark. We also evaluate

our method using the recently released KITTI single image

depth prediction challenge [50]. This benchmark contains

500 RGB test images that are provided for evaluation but

the ground truth is only accessible to the dataset creators.

We do not use the ground truth depth maps provided with

the train/validation datasets. Our results are compared with

existing public results in Table 2, with qualitative examples

of our estimates provided in Fig. 5.

As this is a fairly new challenge published by the KITTI

team, there is a limited number of published results on this

benchmark, all of which were obtained by supervised meth-



Method Dataset Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Train set mean K 0.361 4.826 8.102 0.377 0.638 0.804 0.894

Eigen et al. [9] - Coarse K 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. [9] - Fine K 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [35] K 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Godard et al. [15] CS + K 0.114 0.898 4.935 0.206 0.861 0.949 0.976

Zhou et al. [57] CS + K 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Yin et al. [54] CS + K 0.153 1.328 5.737 0.232 0.802 0.934 0.972

Ours, VGG CS + K 0.121 0.9643 5.137 0.213 0.846 0.944 0.976

Ours, Resnet CS + K 0.113 0.898 5.048 0.208 0.853 0.948 0.976

Garg et al. cap 50m [9] K 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Yin et al. [54] cap 50m K 0.147 0.936 4.348 0.218 0.810 0.941 0.977

Godard et al. [15] cap 50m CS + K 0.108 0.657 3.729 0.194 0.873 0.954 0.979

Ours, VGG, cap 50m CS + K 0.1155 0.7152 3.922 0.201 0.859 0.951 0.979

Ours, Resnet, cap 50m CS + K 0.1069 0.6531 3.790 0.195 0.867 0.954 0.979

Table 1. Results for KITTI 2015 [13]. Our method achieves state-of-the-art accuracy on some of the metrics and comparable results on

others. Results in the top part of the table represent scenes of up to 80 meters; the bottom part of the table provides results of up to 50

meters. Our results follow post-processing, described in Sec. 3.4. Bold numbers are best.

Figure 4. Qualitative comparison on KITTI data. Comparing Godard et al. [15] (column b and zoomed-in version in column d) and our

method results (column c and zoomed-in version in column e). Our method improves depth estimation for small objects and overcomes

texture-less regions. For Godard et al. [15] we used a publicly available model [16]

.

ods. While our method does not always achieve the best

results it is the only one which is self-supervised. Still,

our method achieves comparable accuracy with those su-

pervised methods as well as outperforming the supervised

baselines provided for this benchmark. In addition, our

method is faster than any of these previous methods.

Make3D. In order to test the generalization of the proposed

method we also evaluate it on the Make3D [43, 44] dataset.

Similarly to [15] we use a model trained only on Cityscapes

data, as it is of higher resolution and contains similar scenes.

We also take a central crop of the images in order to match

Cityscapes aspect ratio.

The Make3D test set contains 134 pairs of single-

view RGB and depth images. As common for evaluating

Make3D [36], we use the C1 error measures listed below,

ignoring pixels where depth is larger than 70 meters:

• Squared relative error (Sq Rel): 1
T

∑T

i

(dgt

i
−d

p

i
)2

d
gt

i

• Absolute relative error (Abs Rel): 1
|T |

∑T

i

‖dgt

i
−d

p

i
‖

d
gt

i

• Root-mean squared error (RMSE):
√

1
|T |

∑T
i

(d
gt
i

− d
p
i
)2

• log10 error: 1
|T |

∑T

i log10(d
gt
i )− log10(d

p
i )

In all of the measures listed above, d
gt
i and d

p
i are the ground

truth depth data and the predicted depth data, respectively.

We report results in Table 3 with some qualitative results



Figure 5. Qualitative disparity results on the KITTI single im-

age depth prediction test set [50]. Left: RGB images. Right:

Disparity maps produced by our model. Note that ground truth

data is not available for these images.

Method Supervision? SILog sqRel absRel iRMSE Runtime

Baseline Full 18.19 7.32 14.24 18.50 0.2 s

Fu et al. [10] Full 11.77 2.23 8.78 12.98 0.5s

Kong et al. [28] Full 14.74 3.88 11.74 15.63 0.2s

Li et al. [33] Full 14.85 3.48 11.84 16.38 0.2s

Zhang et al. [55] Full 15.47 4.04 12.52 15.72 0.2 s

Ours Self 17.92 6.88 14.04 17.62 0.073s

Table 2. Results for KITTI single image depth prediction chal-

lenge. While the other methods are supervised our method is

self-supervised yet is able to achieve comparable results. In ad-

dition, our runtime is much faster than the other listed methods.

Results reported here are for the Resnet variant of our method,

trained on both Cityscapes and KITTI. We note that the challenge

also lists multiple unpublished methods; we report only published,

non-anonymous results.

Method Supervision? Sq Rel Abs Rel RMSE log10

Train set mean Full 15.517 0.893 11.542 0.223

Karsch et al. [24] Full 4.894 0.417 8.172 0.144

Liu et al. [36] Full 6.625 0.462 9.972 0.161

Laina et al. [32] Full 1.665 0.198 5.461 0.082

Kuznietsov et al. [30] Semi - 0.421 8.237 0.190

Godard et al. [15] Self 7.112 0.443 11.513 0.156

Our method (Resnet) Self 4.766 0.406 8.789 0.183

Table 3. Comparison on the Make3D dataset: Our method gen-

eralizes well to the unseen Make3D dataset. Visually, our results

are plausible and consistent. Please see figure 6 for examples.

Bold numbers are best scoring for supervised and self-supervised

methods respectively.

provided in Fig. 6. The strength of the proposed method is

shown in its ability to perform well even when applied to

a totally different domain and scene, where it outperforms

other self-supervised methods and achieves comparable re-

sults to some of the supervised methods.

Figure 6. Qualitative results on the Make3D dataset. (Left) Sin-

gle view images used as inputs. (Center) the provided ground truth

depth maps. (Right) our depth predictions as produced by a model

trained on the Cityscapes dataset. As can be seen, while the quanti-

tative results are not as good as supervised methods, the qualitative

results are visually plausible.

5. Conclusions

We propose a self-supervised method for monocular

depth estimation. Our method trains on stereo image pairs

but applied to to single images at test time. There is no

need to provide depth information during training or any

other supervisory data or labels: our system is fully self-

supervised. We achieve state-of-the-art results on challeng-

ing datasets by making better use of the stereo input. Our

key contribution is showing how left and right images can

be symmetrically handled by mirroring the right image. De-

spite the simplicity of this approach, we are unaware of pre-

vious reports of similar approaches.

In addition, we provide technical contributions, includ-

ing the use of a Siamese network with weight sharing for

this task. As a result, we cut model size in half, using only

one branch of the network at run time to process a single

view input. we further define a loss function which better

represents the novel design of our model.

An obvious extension of this approach is to test our

method in stereo rather than monocular settings: There

is nothing prohibiting our approach from being applied to

stereo pairs. This ability to process monocular and stereo

views is reminiscent of the human visual system which is

likewise capable of generalizing from stereo to monocular

settings and back. An additional direction for future work

will explore the use of video and pose estimation in our

suggested framework. Another technical matter that should

be tackled is integrating the post-processing step into the

network training architecture to achieve a better end-to-end

learning. Finally, compared to other similar systems, our

approach requires relatively small networks. This small size

makes it appropriate for deployment on mobile platforms.
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Signature verification using a” siamese” time delay neural

network. In Neural Inform. Process. Syst., pages 737–744,

1994.

[6] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.

In Proc. Conf. Comput. Vision Pattern Recognition, 2005.

[7] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

Cityscapes Dataset for Semantic Urban Scene Understand-

ing. In Proc. Conf. Comput. Vision Pattern Recognition,

2016.

[8] A. Criminisi, I. Reid, and A. Zisserman. Single view metrol-

ogy. Int. J. Comput. Vision, 40(2):123–148, 2000.

[9] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction

from a single image using a multi-scale deep network. In

Neural Inform. Process. Syst., pages 2366–2374, 2014.

[10] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao.

Deep ordinal regression network for monocular depth esti-

mation. In Proc. Conf. Comput. Vision Pattern Recognition,

pages 2002–2011, 2018.

[11] R. Garg, V. K. BG, G. Carneiro, and I. Reid. Unsupervised

CNN for single view depth estimation: Geometry to the res-

cue. In European Conf. Comput. Vision, pages 740–756,

2016.

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The KITTI dataset. Int. J. of Robotics Research,

32(11):1231–1237, 2013.

[13] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for Au-

tonomous Driving? The KITTI Vision Benchmark Suite. In

Proc. Conf. Comput. Vision Pattern Recognition, 2012.

[14] C. Godard, O. Mac Aodha, and G. Brostow. Digging into

self-supervised monocular depth estimation. arXiv preprint

arXiv:1806.01260, 2018.

[15] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised

monocular depth estimation with left-right consistency. In

Proc. Conf. Comput. Vision Pattern Recognition, 2017.

[16] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsu-

pervised monocular depth estimation with left-right con-

sistency. http://visual.cs.ucl.ac.uk/pubs/

monoDepth/models/city2eigen_resnet.zip,

2017.

[17] T. Hassner. Viewing real-world faces in 3D. In Proc. Int.

Conf. Comput. Vision, pages 3607–3614, 2013.

[18] T. Hassner and R. Basri. Example based 3d reconstruction

from single 2d images. In Proc. Conf. Comput. Vision Pat-

tern Recognition Workshops. IEEE, 2006.

[19] T. Hassner and R. Basri. Single view depth estimation from

examples. arXiv preprint arXiv:1304.3915, 2013.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proc. Conf. Comput. Vision Pattern

Recognition, pages 770–778, 2016.

[21] B. K. Horn. Shape from shading: A method for obtaining the

shape of a smooth opaque object from one view. Technical

report, Cambridge, MA, USA, 1970.

[22] I. Howard and B. Rogers. Perceiving in Depth, Volume 1:

Basic Mechanisms. Oxford University Press, USA, 2012.

[23] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial

transformer networks. In Neural Inform. Process. Syst.,

2015.

[24] K. Karsch, C. Liu, and S. B. Kang. Depth extraction from

video using non-parametric sampling. In European Conf.

Comput. Vision, 2012.

[25] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry,

R. Kennedy, A. Bachrach, and A. Bry. End-to-end learn-

ing of geometry and context for deep stereo regression. In

Proc. Int. Conf. Comput. Vision, 2017.

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[27] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural

networks for one-shot image recognition. In Int. Conf. Mach.

Learning, 2015.

[28] S. Kong and C. Fowlkes. Pixel-wise attentional gat-

ing for parsimonious pixel labeling. arXiv preprint

arXiv:1805.01556, 2018.

[29] A. C. Kumar and S. M. Bhandarkar. Depthnet: A recurrent

neural network architecture for monocular depth prediction.

In Proc. Conf. Comput. Vision Pattern Recognition, 2018.

[30] Y. Kuznietsov, J. Stückler, and B. Leibe. Semi-supervised

deep learning for monocular depth map prediction. In Proc.

Conf. Comput. Vision Pattern Recognition, pages 6647–

6655, 2017.

[31] L. Ladicky, J. Shi, and M. Pollefeys. Pulling things out of

perspective. In Proc. Conf. Comput. Vision Pattern Recogni-

tion, 2014.

[32] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and

N. Navab. Deeper depth prediction with fully convolutional

residual networks. In Int. Conf. on 3D Vision, pages 239–

248. IEEE, 2016.

[33] B. Li, Y. Dai, and M. He. Monocular depth estimation with

hierarchical fusion of dilated cnns and soft-weighted-sum in-

ference. arXiv preprint arXiv:1708.02287, 2017.

[34] F. Liu, C. Shen, and G. Lin. Deep convolutional neural

fields for depth estimation from a single image. In Proc.

Conf. Comput. Vision Pattern Recognition, pages 5162–

5170, 2015.

[35] F. Liu, C. Shen, G. Lin, and I. Reid. Learning depth from sin-

gle monocular images using deep convolutional neural fields.

Trans. Pattern Anal. Mach. Intell., 2016.



[36] M. Liu, M. Salzmann, and X. He. Discrete-continuous depth

estimation from a single image. In Proc. Conf. Comput. Vi-

sion Pattern Recognition, 2014.

[37] W. Luo, A. G. Schwing, and R. Urtasun. Efficient deep learn-

ing for stereo matching. In Proc. Conf. Comput. Vision Pat-

tern Recognition, 2016.

[38] R. Mahjourian, M. Wicke, and A. Angelova. Unsupervised

learning of depth and ego-motion from monocular video us-

ing 3d geometric constraints. In Proc. Conf. Comput. Vision

Pattern Recognition, 2018.

[39] M. Menze and A. Geiger. Object Scene Flow for Au-

tonomous Vehicles. In Proc. Conf. Comput. Vision Pattern

Recognition, 2015.

[40] S. K. Nayar and Y. Nakagawa. Shape from focus. Trans.

Pattern Anal. Mach. Intell., 16(8):824–831, 1994.
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