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Abstract

Video-based prediction of human activity is usually per-

formed on one of two levels: either a model is trained to

anticipate high-level action labels or it is trained to predict

future trajectories either in skeletal joint space or in image

pixel space. This separation of classification and regression

tasks implies that models cannot make use of the mutual in-

formation between continuous and semantic observations.

However, if a model knew that an observed human wants to

drink from a nearby glass, the space of possible trajectories

would be highly constrained to reaching movements. Like-

wise, if a model had predicted a reaching trajectory, the in-

ference of future semantic labels would rank ”lifting” more

likely than ”walking”. In this work, we propose a semi-

supervised generative latent variable model that addresses

both of these levels by modeling continuous observations as

well as semantic labels. This fusion of signals allows the

model to solve several tasks, such as action detection and

anticipation as well as motion prediction and synthesis, si-

multaneously. We demonstrate this ability on the UTKinect-

Action3D dataset, which consists of noisy, partially labeled

multi-action sequences. The aim of this work is to encour-

age research within the field of human activity modeling

based on mixed categorical and continuous data.

1. Introduction

Prediction of future events plays a key role in human and

animal cognition. On the one hand, the brain constantly

predicts the sensory consequences produced by ones own

actions. On the other hand, it also attempts to infer the in-

tentions and to anticipate the actions of other agents in the

environment. Computer vision applications such as human-

robot interaction or autonomous vehicles can benefit from
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Figure 1: Among others, human activity modeling is con-

cerned with a) action classification, b) action prediction, c)

action detection, d) action anticipation, e) motion predic-

tion and f) motion synthesis. The black bars indicate when

the respective decision, e.g. classification, is made. Images

belong to the CAD - 120 dataset [7].

the implementation of similar predictive processes as they

allow for adaptive action execution and task planning.

Most approaches towards human activity modeling focus

on either discrete, semantic labels or on continuous trajec-

tory prediction. Label classification, prediction and detec-

tion (Figure 1a), b) and c)) are supposed to classify observed

trajectories either at the end of a sequence (classification),

as soon as possible (prediction) or at action onset (detec-

tion). Only action anticipation (Figure 1d)) is concerned

with inferring labels of future actions. Human motion pre-

diction and synthesis (Figure 1e) and 1f)) on the other hand

aim at modeling the future continuous motion trajectories

given past observations. Compared to prediction, motion

synthesis should anticipate different possible trajectories in-

stead of only the most likely one.

From a modeling perspective, these different types of

tasks and mixed categorical and continuous data should in-

fluence each other. A model that is able to anticipate a fu-

ture label should be better at detecting the actual onset of

the action. Likewise a model that carries information about

the ongoing action should be able to synthesize different

appropriate motion trajectories.



In this work, we present a generative, temporal latent

variable model that can capture the complex dependencies

of continuous features as well as discrete labels over time.

In detail, we propose a semi-supervised variational recur-

rent neural network (SVRNN), as described in Section 3.1,

which inherits the generative capacities of a variational au-

toencoder (VAE) [6, 9], extends these to temporal data [2]

and combines them with a discriminative model in a semi-

supervised fashion. The semi-supervised VAE [5] can han-

dle labeled and unlabeled data. This property allows us to

propagate label information over time even during testing

and therefore to generate possible future action and motion

sequences.

We demonstrate the ability of our model to represent

mixed categorical and continuous data in an anticipatory

fashion on the UTKinect-Action3D Dataset [10].

2. Background

Our approach builds on three basic ingredients which are

introduced below.

2.1. Variational autoencoders

Our model builds on VAEs, latent variable models that

are combined with an amortized version of variational infer-

ence (VI). Amortized VI employs neural networks to learn a

function from the data x to a distribution over the latent vari-

ables q(z|x) that approximates the posterior p(z|x). Like-

wise, they learn the likelihood distribution as a function of

the latent variables p(x|z). This mapping is depicted in Fig-

ure 2a). Instead of having to infer N local latent variables

for N observed data points, as common in VI, amortized

VI requires only the learning of neural network parame-

ters of the functions q(z|x) and p(x|z). We call q(z|x) the

recognition network and p(x|z) the generative network. To

sample from a VAE, we first draw a sample from the prior

z∼ p(z) which is then fed to the generative network to yield

x ∼ p(x|z)

2.2. Semi­supervised variational autoencoders

To incorporate label information when available, semi-

supervised VAEs (SVAE) [5] include a label y into the

generative process p(x|z,y) and the recognition network

q(z|x,y), as shown in Figure 2b). To handle unobserved

labels, an additional approximate distribution over labels

q(y|x) is learned which can be interpreted as a classifier.

When no label is available, the discrete label distribution

can be marginalized out, e.g. q(z|x) = ∑y q(z|x,y)q(y|x).

2.3. Recurrent variational autoencoders

VAEs can also be extended to temporal data, so called

variational recurrent neural networks (VRNN) [2]. Instead

of being stationary as in standard VAEs, the prior over the
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Figure 2: Model structure of the VAE a), its semi-

supervised version SVAE b), and the recurrent model

VRNN c). Random variables (circle) and states of RNN

hidden units (square) are either observed (gray), unobserved

(white) or partially observed (white-gray). The dotted ar-

rows indicate inference connections.

latent variables depends on past observations p(zt|ht−1),
which are encoded in the hidden state of an RNN ht−1. Sim-

ilarly, the approximate distribution q(zt|xt,ht−1) depends

on the history as can be seen in Figure 2c). The advantage

of this structure is that data sequences can be generated by

sampling from the temporal prior instead of an uninformed

prior, i.e. zt ∼ p(zt|ht−1).

3. Methodology

Equipped with the background knowledge, we will

now describe the structure of our proposed model, semi-

supervised variational recurrent neural networks (SVRNN),

and the inference procedure applied to train them.

3.1. SVRNN

In the SVRNN, the model is trained on a dataset with

temporal structure D = {DL,DU} consisting of the set L of

labeled time steps DL = {xt,yt}t∈L ∼ p̃(xt,yt) and the set

U of unlabeled observations DU = {xt}t∈U ∼ p̃(xt). p̃ de-

notes the empirical distribution. Further we assume that the

temporal process is governed by latent variables zt, whose

distribution p(zt|ht−1) depends on a deterministic function

of the history up to time t: ht−1 = f (x<t ,y<t ,z<t). The gen-

erative process is as follows

yt ∼ p(yt|ht−1), zt ∼ p(zt|yt,ht−1), xt ∼ p(xt|yt,zt,ht−1),

where p(yt|ht−1) and p(zt|yt,ht−1) are time-dependent pri-

ors, as shown in Figure 3a). To fit this model to the

dataset at hand, we need to estimate the posterior over

the unobserved variables p(yt|xt,ht−1) and p(zt|xt,yt,ht−1)
which is intractable. Therefore we resign to amortized VI

and approximate the posterior with a simpler distribution

q(yt,zt|xt,ht−1) = q(yt|xt,ht−1)q(zt|xt,yt,ht−1), as shown

in Figure 3b). To minimize the distance between the ap-

proximate and posterior distributions, we optimize the vari-

ational lower bound of the marginal likelihood L(p(D)).
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Figure 3: Information flow through SVRNN. a) Passing

samples from the prior through the generative network. b)

Information passing through the inference network. c) The

recurrent update. Node appearance follows Figure 2.

As the distribution over yt is only required when it is unob-

served, the bound decomposes as follows

L(p(D))≥ L
L +L

U +αT
L (1)

−L
L = ∑

t∈L

Eq(zt|xt,yt,ht−1)[log(p(xt|yt,zt,ht−1))] (2)

−KL(q(zt|xt,yt,ht−1)||p(zt|yt,ht−1))+ log(p(yt))

T
L =−∑

t∈L

Ep̃(yt,xt)log(p(yt|ht−1)q(yt|xt,ht−1)) (3)

−L
U = ∑

t∈U

Eq(yt,zt|xt,ht−1)

[
log(p(xt|yt,zt,ht−1))] (4)

−KL(q(zt|xt,yt,ht−1)||p(zt|yt,ht−1))

−KL(q(yt|xt,ht−1)||p(yt|ht−1)).

L
L and L

U are the lower bounds for labeled and unlabeled

data points respectively, while T
L is an additional term that

encourages p(yt|ht−1) and q(yt|xt,ht−1) to follow the data

distribution over yt. This lower bound is optimized jointly.

We assume the latent variables zt to be i.i.d. Gaussian dis-

tributed. The categorical distribution over yt is determined

by parameters π = {πi}i=1:Nclass
). To model such discrete

distributions, we apply the Gumbel trick [4, 8]. The history

ht−1 is modeled with the last of three Long short-term mem-

ory (LSTM) units. For more details, we refer the reader to

the background work discussed in Section 2.

3.2. Predict, detect, anticipate and generate

To solve the different tasks, we make use of the different

components of our model in the following way.

Predict and detect actions: To classify or detect at time

t, we choose the largest of the weights π
qy = {π

qy

i }i=1:Nclass

of the categorical distribution q(yt|xt,ht−1). Prediction and

detection are performed at all time steps.

Anticipate actions: To anticipate a label after time t ′, we

make use of the prior, which does not depend on the cur-

rent observation xt. Thus, for time t ′ + 1, we choose the

largest of the weights π
py = {π

py

i }i=1:Nclass
of the categori-

cal distributions p(yt|ht−1). To anticipate several steps into

the future, we need to generate both future observations and

future labels as described below.

Predict and generate motion: To sample an observation

sequence {xt,yt}t>t ′ after time t ′, we propagate the sam-

pled observations and generate with help of the approximate

distribution yt ∼ q(yt|xt,ht−1), zt ∼ q(zt|xt,yt,ht−1), xt ∼
p(xt|yt,zt,ht−1) for each t. This method is used to predict

a sequence, by averaging over several samples of the distri-

butions.

4. Experiments

In this section, we describe both experimental design and

results. For details about model architectures and the train-

ing procdure we refer the reader to [1]. We apply our model

to the UTKinect-Action3D Dataset (UTK) [10], which con-

sists of 10 subjects each recorded twice performing 10 ac-

tions in a row. The sequences are recorded with a Kinect

device (30 fps) and the extracted skeletons consist of 20

joints. Due to high inter-subject, intra-class and view-point

variations, this dataset is challenging. The actions in each

recording do not immediately follow each other but are dis-

rupted by long periods of unlabeled frames. As our model

is semi-supervised, these unobserved data labels can be in-

corporated naturally and do not require the introduction of

e.g. an additional unknown label class. We train our model

on five subjects and test on the remaining five subjects.

4.1. Action classification, detection and prediction

In this section, we focus on the capabilities of our mod-

els to detect and predict semantic labels. As far as we are

aware, only one comparable work, based on class templates

[3], has attempted to detect actions on the UTK dataset. We

assume action a to be detected if the majority of observa-

tions within the ground truth time interval are inferred to

belong to action a.

In Table 1, we see that the model is able to detect

actions with only a short or no delay. This is apparent

when we measure the F1 score for partially observed ac-

tion sequences, namely when the model has observed 25

%, 50 %, 75 % or 100 % of the current. We present

results for action detection in context of the previous ac-

tions, i.e., on the unsegmented sequence (unseg), and for

Table 1: F1 score for action prediction with history (with

H) and without history (without H) on the UTK dataset.

Observed 25 % 50 % 75 % 100 %

CT [3] - - - 81.8

SVRNN (unseg) 61.0 78.0 84.0 89.0

SVRNN (seg) 29.0 48.0 67.0 74.0



Figure 4: The detected and ground truth actions of a single

test recording from the UTK dataset over time. We only

display the labeled frames of the test sequence.

action prediction based only on the current action segment

(seg). On average, this corresponds to having observed 8,

16, 25 or 33 frames of the ongoing action. As listed in

Table 1, the F1 score increases continuously the more of

the action has been observed. At 75 % the SVRNN out-

performs the results reported in [3] which are based on

100 % of the action interval. When segmented, the per-

formance is lower as our model has not been trained to

predict actions without history. Further, we visualize the

detected and ground truth action sequence of one unseg-

mented test sample in Figure 4 and in form of a video in here

https://www.youtube.com/watch?v=XfgztgOhuCk. In this

test sequence, the action carry is partially confused with

walking which might be caused by the lack of meta-data

such as that the subject is holding an object.

4.2. Action anticipation and motion prediction

In the previous section, we focused on early action detec-

tion based on an observed data stream. Here we present the

ability of the model to anticipate both future semantic ac-

tions and motion trajectories. As described in Section 3.2,

we feed an observed continuous data sequence to the model

up to time t ′ and let the model infer labels and joint posi-

tions for a certain number of future frames. In Figure 5 we

visualize the action transition from sitting to standing up.

The green labels and skeletons are inferred by the model,

which is able to anticipate the upcoming semantic action

and to generate a matching movement.

5. Conclusion

We presented a principled probabilistic approach to fuse

mixed categorical and continuous data for predictive human

activity modeling. Our model can be used to anticipate hu-

man behavior in real-time based on noisy observation, such

as e.g. skeletal Kinect recordings. For a more in-depth dis-

cussion and additional experiments, we would like to point

the reader to [1].

Figure 5: The ground truth actions and trajectories (top)

and the inferred labels and trajectories (bottom). From time

0 ms and onward, the model propagates its own predictions

and does not receive any ground truth data anymore.
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