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Abstract

In this paper, unlike other in-the-wild facial expression

recognition (FER) studies which only focused on 2D infor-

mation, we present a fusion approach for 2D and 3D facial

data in FER. In particular, the 3D facial data are first recon-

structed from image datasets. The 3D information are then

extracted by deep learning technique that could exploit the

meaningful facial geometry details for expression. We fur-

ther demonstrate the potential of using 3D facial data by

taking the 2D projected images of 3D face as an additional

input for FER. These features are fused with that of 2D fea-

tures from a typical network. Following the experiment pro-

cedure in recent studies, the concatenated features are clas-

sified by linear support vector machines (SVMs). Compre-

hensive experiments are further conducted on integrating

facial features for expression prediction. The results show

that the proposed method achieves state-of-the-art recog-

nition performances on both RAF database and SFEW 2.0

database. This is the first time such a deep learning com-

bination of 3D and 2D facial modalities is presented in the

context of in-the-wild FER.

1. Introduction

Among communication channels, facial expression is

one of the most effective modality to convey human emo-

tions. Many studies have been conducted to address

the challenges in in-the-wild facial expression recognition

(FER) such as occlusion, large head poses or illumination

variations. Apart from what computing approach could be

chosen, most of the existing and analysis research primarily

rely on static or/and dynamic sequences data from various

facial expression databases. In the recent years, many static

and videos sequence databases have been sourced from

the Internet to form in-the-wild facial expression databases

[11, 14, 22, 26]. Being associated with released databases,

there are public challenges or competitions [10, 11, 14, 32]

that draw attention and make use of the community resource

to tackle the problems. However, these problems persist as

addressed in [21, 32].

Unlike its 2D counterpart, most of available 3D facial

expression databases [7, 28, 37, 38] were established by

capturing human actors’ faces using special devices such as

camera system and Kinect RGB-D in lab-controlled envi-

ronment. Although these essential setups usually offer high

quality 3D face surface geometry and surface texture, these

databases are restricted in terms of the diversity of the par-

ticipants in regards to gender and ethnic-racial ancestries

and the consistencies between in-the-wild and constrained

environment. In other words, such a lab-constructed dataset

will not only tend to have the similar 3D facial surface fea-

tures of the same actors throughout the dataset but also the

common pre-designed expressions behaviors (e.g., smile,

laughter, or cries) are often overlapped by the same actors.

In approaching aspect, 2D FER studies are well estab-

lished with both hand-crafted and deep learned features,

whose comprehensive survey on 2D FER is reported in [21].

3D FER using deep learning algorithm is still an untouched

field. Conventional methodologies have been widely em-

ployed for 3D FER such as depth-SIFT [4], normal-LBP

[18], and curvature-HOG [17]. Deep learning approaches

are left behind and only a few attempts to learn the 3D fa-

cial expression representation as referred in recent studies

[8, 20]. One of the major reasons for this downside could be

because available the 3D facial expression databases con-

tain only a small number of data samples. For example,

the well-known BU-3DFE database [38] and Bosphorus 3D

Face database [28] contain only 2,500 and 4,666 data sam-

ples, respectively. These numbers are far from enough for

deep-learning-based approach. Consequently, these afore-

mentioned constraints hinder achieving higher performance

on in-the-wild FER with 3D facial data.

This study presents a potential method which aimed to

tackle the above-described by combining 2D and 3D infor-

mation for in-the-wild FER. In particular, to exploit the 3D

facial information from in-the-wild image datasets, facil-

itated by recent advances in 3D face reconstruction [31],

the 3D facial expression was constructed from available 2D

facial expression datasets. The 3D facial data were then
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Figure 1. Pipeline of our approach. Each model was trained sepa-

rately and the extracted features are then concatenated and learned

by SVMs.

treated as point cloud on which the 3D geometry informa-

tion is obtained using the χ-Convolution (χ-Conv) opera-

tion [23]. Moreover, in order to demonstrate the benefits of

3D facial data, the 3D face frontalized and its 2D frontal

projected image used as additional input to recognize the

expression. These features were then fused with that of a 2D

FER typical network. The overview of proposed approach

is shown in Fig. 1. Our contributions are in three-fold as

follow:

- For the first time, a novel and competent deep learning

approach for fusion 2D and 3D modalities in in-the-wild

FER is proposed in Sec. 3.

- Comprehensive ablation experiments are further con-

ducted to show how to optimally learn the 2D and 3D facial

representation in a deep learning manner on RAF [22] and

SFEW 2.0 [11] dataset in Sec. 4.

- Despite of using standard approach, the proposed ap-

proach achieves state-of-the-art recognition accuracy on

RAF [22] and SFEW 2.0 [11] dataset compared with recent

studies in Sec. 4.2.

2. Related works

2.1. Facial expression recognition from 2D image
data

In the recent years, most of the advances in FER has been

studied based on static/dynamic 2D databases that contain

images or sequences of images and the term in-the-wild fa-

cial expression recognition has been mainly used to refer to

FER on 2D image data. The reason is that real-life large-

scale facial expression databases are constructed by sourc-

ing 2D images from the Internet [10, 11, 14, 26] and thus

more suitable for deep learning approaches which become

well known in recent years. Therefore, numerous deep fea-

ture learning approaches have been employed to effectively

improve the performance on image FER task. Using vari-

ous standard as well as modified network architectures is the

most popular approach [2, 12, 35]. These works often in-

cluded pre-training on similar and larger datasets to capture

the useful deep facial features. Model ensembling is another

straightforward and proved effective approach that has been

widely used in many challenges. For example, in the recent

EmotiW2018 challenge where the original dataset was rel-

atively small, high ranking teams [13, 24, 33] carried out

fine-tuning of their networks on FER-2013 [14], RAF [22],

and AffectNet [26] and fused the predicted score of mul-

tiple networks to attain the final score. Aside from above

common strategies of learning the deep feature via training,

there are research specifically focused on investigating the

deep feature systematically. While in [1], the authors uti-

lized the manifold networks along with covariance pooling

to capture the second-order statistics for feature extraction

in a deep learning fashion, in [39], the authors proposed LT-

Net to learn the truth label from noisy datasets, thus, could

employ multiple inconsistently labeled and large scale un-

labeled datasets for training procedure.

2.2. Facial expression recognition from 3D data

Since the most popular BU-3DFE databases [38] was

presented, many studies on 3D FER were proposed to

leverage the usefulness of 3D information. Conventional

methodologies were widely employed for 3D FER such

as depth-SIFT [4], normal-LBP [18], curvature-HOG [17].

Still, there are limited studies implementing the 3D data

with deep learning methods. Although few proposals

claimed to be implementing the 3D data with deep learning

methods, they were conducted based on the projected image

[20] or the 2D depth map of the 3D face data [15], or using

the 3D features extracted from traditional methods. Rea-

son being that the available 3D facial expression databases

contain only a small number of data samples but lack suf-

ficient deep learning algorithms for learning 3D data infor-

mation. Therefore, compared to its counterpart, 3D FER’s

achievements are relatively insignificant, which is evident

by the number of related studies, open-source-code reposi-

tories, and the attention of the community. While 2D FER

could be well-established by both hand-crafted [9, 41, 42]

and deep learned features [25, 27, 34, 36], 3D FER using

deep learning algorithm is still an untouched field.

These studies seek to enhance the performance by ana-

lyzing the deep feature of in-the-wild facial images or learn-

ing 3D facial information by tradition techniques. On the



other hand, our proposed approach takes the advantage of

3D reconstruction into account via deep learning method in

conjunction with existing 2D image FER method for in-the-

wild FER.

3. Proposed method

3.1. Constructing 3D facial expression data

This study benefits from Tran et al. [31] study for re-

constructing the 3D face from the original image dataset.

The reason is that their study could reconstruct the mid-

level features that are meaningful for expression recogni-

tion. They first modelled the foundation face shape in PCA

form:

s = s̄+ Sidαid +Eexpηexp, (1)

where s̄ is the mean 3D face shape, Sid ∈ R
3n×sp is the

orthonormal identity basis of sp principal face shape com-

ponents, sp = 99, and the αid ∈ R
sp is the subject-specific

shape weight. Similarly, the Eexp ∈ R
3n×ep is the or-

thonormal expression basis of ep principal expression com-

ponents, ep = 29, and the ηexp ∈ R
ep is the expression

coefficient which estimated from input face image I .

In the other hand, the bump map ∆(p) of mid-level de-

tail corresponds to pixel coordinate p in image I is com-

puted as follow:

∆(p) = θ(z′(p)− z(p)), (2)

The linear function θ encodes the different in depth of the

estimated depth z′ and the depth of foundation shape z at

pixel p to intensity range [0, 255]. Thus, given a bump map

∆ and foundation shape s, the estimated depth z′ could be

simply calculated as:

z′(p) = z(p) + θ−1(∆(p)), (3)

The training and combination of foundation shape and

mid-level features which heavily rely on 2D image facial

landmarks detection are further discussed in [31].

According to Eqs. 2 and 3, the accurate facial land-

marks are crucial for extracting the mid-level features that

are meaningful for expression recognition. For a better re-

sult, the state-of-the-art landmarks detection OpenFace 2.0

Toolkit [3] was used for detecting facial landmarks on 2D

image datasets. Note that, the reconstruction error some-

times occurs due to the faulty landmark detection or recon-

struction. In that case, ExpNet [6], which could reconstruct

3D face without the need of landmarks, was applied for that

specific sample data to obtain 3D face. However, the Ex-

pNet does not deliver a detailed geometry 3D face as [31].

Examples of 3D face reconstruction are illustrated in Fig. 2.

Figure 2. RAF examples of face reconstruction using [31], except

for last sample which generated by [6].

3.2. Facial expression models

Image models. We describe the learning procedure for

2D images which include the original benchmark datasets

and the projected image of frontalized 3D face, denoted as

2D model and projected model, respectively, in Fig. 1. Fol-

lowing the procedure in [1], the Inception-ResnetV1 [30]

was used to train the benchmark datasets from scratch as

well as fine-tuned on a model pre-trained on VGGFace2

[5] and AffectNet dataset [26]. The output of trained em-

bedding layer is treated as input for fitting Support Vector

Machines (SVMs). Note that, the Inception-ResnetV1 and

SVMs were trained separately.

3D model. In various studies, the 3D facial informa-

tion was only exploited using hand-crafted methods, and

yet never a deep learning one, the possible reasons is due

to the lacking of available learning approaches. Taking ad-

vantage from state-of-the-art point cloud learning algorithm
χ-Conv in PointCNN [23], this study was capable of learn-

ing the 3D facial features. The χ-Conv operation could be

mathematically described as:

χ− Conv(K, p,P ,F ) =

Conv(K,MLP (P − p)× [MLPδ(P − p),F ]), (4)

where K and F define the convolution kernels and feature

map while P and p correspond to the point in local coordi-

nate system and representative point in feature map. The lo-

cal points are “lifted” to be representative points by the mul-

tilayer perceptron MLP , it is then weighted and permuted

by the K × K χ-transform matrix to subsequently trans-

formed by the conventional convolution operation. These
χ-Conv layers are then stacked to create a deep network

making PointCNN capable of learning the spatial-local cor-

relation between points better without being affected by or-

dering. The 3D facial expression model is denoted as 3D

model in Fig. 1.

Feature extraction and fusion. After training, the fea-

tures were extracted from each model and concatenated as

input for training SVMs. While features from 2D models

are extracted from the last embedding layer, those of 3D

models are the output of last χ-Conv layer.



4. Experiments

4.1. Datasets and training

Image data. To compare the proposed approach for in-

the-wild facial expression against previous studies, we eval-

uate the models on the RAF [22] dataset contains 12271

and 3068 images for training and validation, respectively.

SFEW 2.0 [11], a static subset of videos of AFEW dataset

[10], contains 958 images for training and 438 for valida-

tion. Both of them were labeled with seven discrete expres-

sions (anger, disgust, fear, happiness, sadness, surprise, and

neutral).

Before training, face detection and alignment were per-

formed using Multi-task Cascade Convolutional Neural

Networks (MTCNN) [40] on original image datasets. The

2D model was trained with Adam optimizer [16], batch size

of 128 for 100 epochs. The training process also included

standard image augmented techniques as random flipping,

cropping and rotating.

3D data. After reconstructing the 3D face, the number

of vertex of reconstructed 3D face spans from 145k to 170k

and the result of reconstructing are frontalized and occlu-

sion free. However, the 3D data need to be down-sampled

and normalized for learning. Therefore, the preprocessing

for 3D facial data was performed as follow: 1) First, the

3D reconstructed facial data were trimmed to remove the

inessential parts, such as ears, remaining 20,000 points, em-

pirically. 2) They were then uniformly down-sampled, for

reserving the point distribution, to 4,096 points. 3) Finally,

the 3D facial data were normalized so that the coordinates

are all in the interval [-1, 1].

The 3D model was trained with learning rate 3e-2, de-

cay every 8000 steps, batch size of 32 for 100 epochs with

early stopping if, the validation loss has not decreased in

last 5 epochs. The hyper-parameters were set as shown in

Fig. 3. Each χ-Conv layers is formed as χ-Conv(K, D,

P, C), where K is the neighborhood size, D is the dilation

rate, P is the representative point number in the output, and

C is the output channel number. The DenseNet-like links

between layers were also used to fight vanishing gradient

problem along with drop out and rotation augmentation.

The 3D model also suffers from the imbalanced data prob-

lems thus we performed up-sampling for under-represented

classes by replicating its samples so that every class has the

same number of sample. Furthermore, in χ-Conv operation,

there are two ways to transform the local points to repre-

sentative points, namely farthest point sampling (fps) and

random down-sampling. While fps could uniformly reserve

the point distribution and thus retain the facial mid-level de-

tails, the random method could not. In this study, the ran-

dom down-sampling was used only in the comparison be-

tween sampling methods which described in next section.

In addition, for all 3D model experiments, we conducted

x-Conv(K=8, D=1, P=4096, C=16 × 3 )

x-Conv(K=12, D=2, P=512, C=32 × 3 )

x-Conv(K=12, D=2, P=384, C=32 × 3 )

x-Conv(K=12, D=4, P=384, C=64 × 3 )

x-Conv(K=16, D=4, P=128, C=64 × 3 )

x-Conv(K=16, D=5, P=128, C=128 × 3 )

FC(512) FC(512)FC(512)

FC(128) FC(128)FC(128)

FC(#label)

Loss

…

…

Figure 3. The set of hyper-parameters for each layer in 3D model

with DenseNet-like links.

average model feature ensembling with last 10 checkpoints

for experiments.

Note that, although the 3D reconstructed data also re-

serve the facial expression via principal expression compo-

nents Eexpηexp as stated in Eqs. 1, the inconsistencies be-

tween expression labels from original image datasets and

3D facial data still exist. For instance, the reconstructed 3D

face does not express the same expression as its correspond-

ing original image. This would produce noises in training

the 3D facial data. However, the objective of this study was

neither presenting 3D data reconstruction algorithm specif-

ically for facial expression nor constructing 3D facial ex-

pression database. Therefore, the experiments were carried

out with the expression labels for training 3D facial data

are automatically taken from the original 2D dataset with-

out carefully inspecting the consistency between expression

labels and 3D data.

4.2. Results and discussion

For the experiments that are presented later on in this

study, unless stated otherwise, the experiment results are

the result of fusion of three models (2D, 3D and projected

model) in which all images models were fine-tuned, the fps

method was used in χ-Conv operation, and joint features

were classified by SVMs.

Result analysis. Table 1 shows the total accuracy of

each models in the proposed method on RAF and SFEW 2.0

database. Compared to the projected model and 3D model,

the 2D model has better performances. One possible rea-

son lies in the different input of these model. While the

2D model is taken the original image as input, the projected

model and 3D model are learned from projected images and



Models RAF SFEW 2.0

2D model 85.1 55.3

3D model 65.2 39.7

Projected model 57.8 33.5

Fusion 2D and 3D model 86.7 56.4

Fusion three models 87.5 56.9

Table 1. Result of proposed method on RAF and SFEW 2.0

datasets.

Sampling methods RAF SFEW 2.0

Random sampling 62.5 38.2

Farthest point sampling 65.2 39.7

Table 2. Comparison between sampling methods.

3D geometry data, respectively, in which contain none fa-

cial texture (skin) information as illustrated in Fig. 2. How-

ever, the 3D model accuracies are still 7% and 5% higher

than projected model on both RAF and SFEW 2.0 dataset,

respectively. These results validate the benefit of using 3D

geometry information on FER. Furthermore, the combina-

tion of all three models contributes to improve the total ac-

curacies over those of 2D model on both RAF and SFEW

2.0. This proves the advantage of employing 3D facial data

on increasing the facial expression recognition result.

Comparison between sampling methods. As men-

tioned in Sec. 4.1, in χ-Conv operation, there are two

ways to transform the local points to representative points,

farthest point sampling (fps) and random down-sampling.

While fps could uniformly reserve the point distribution and

thus retain the facial mid-level details, the random method

could not. In this experiment, we compare the effectiveness

of these two down-sampling methods on in-the-wild FER.

As had been predicted, the performance that benefits from

fps method is higher than that of random method as shown

in Table 2.

Comparison between different classifiers. Experi-

ments on popular classifiers, such as softmax, linear SVMs,

naive bayes, random forest, k-nearest neighbor were con-

ducted for classifying the joint features. As reported in Ta-

ble 3, all the classifiers produce comparable results with lin-

ear SVMs performing the best. Therefore, linear SVMs is

generally the best classifier for classifying fused deep fea-

tures.

Comparison between fusion strategies. Table 4 re-

ports the results of two fusion strategies: feature-level and

score-level fusion. We can see that the feature-level fusion

achieved better results than score-level.

Comparison with recent state-of-the-art studies. Ta-

ble 5 presents the performances comparison between the

Classifiers RAF SFEW 2.0

Naive bayes 86.6 56.3

Random forest 86.4 56.7

K-nearest neighbor 85.9 56.5

Softmax 86.8 56

Linear SVMs 87.5 56.9

Table 3. Comparison between different classifiers.

Fusion strategies RAF SFEW 2.0

Score-level fusion 86.7 56.2

Feature-level fusion 87.5 56.9

Table 4. Comparison between fusion strategies.

Models RAF SFEW 2.0

LTNet [39] 86.7 58.2

Cov. Pooling [1] 87 58.1

Transfer learning [33] 80 55.8

DLP-CNN [22] 74.2 51

DSN [13] 84 -

Multimodal fusion [24] 83.8 -

[1]’s baseline 84.6 52.5

Fusion [1]’s baseline
85.8 53.7

and our 3D model

Proposed method 87.5 56.9

Table 5. Comparison between state-of-the-art studies on RAF and

SFEW 2.0 datasets.

best of proposed approach and state-of-the-art studies on

RAF [22] and SFEW 2.0 [11] databases. To keep a fair com-

parison, our training and testing procedure were conducted

by following the procedures in [1, 22] which use deep net-

work to extract features and classify features into expres-

sion labels by SVMs. Despite of using common fusion ap-

proach, the proposed fusion model achieved best recogni-

tion accuracy on RAF dataset, compared with the state-of-

the-art reports [1, 13, 24, 33, 39] which use complex algo-

rithms. In the case of SFEW 2.0, the proposed approach

obtained a competent result as well. It can be reasoned that

the SFEW 2.0 data has less than 1,500 data samples in total,

which is not enough for deep learning methods. Neverthe-

less, it might not be clear in case of RAF’s performances,

the proposed method outperform the transfer learning result

in [33] which transferred from VGG-face model fine-tuned

on FER-2013 [14] on SFEW 2.0 dataset.

Advantages of using 3D facial data. As shown in Table

1, on both datasets, the feature of 3D model and projected



models improve the fusion model performances. In addi-

tion, the accuracies of 3D models are better than those of

projected models. This, again, clearly confirms the bene-

fit of using 3D over 2D information for in-the-wild FER

in deep learning manner. It is also worth mentioning that

proposed 3D models were all trained from scratch. Given

the fact that this study is one of the very first report which

utilized 3D facial expression for in-the-wild FER dataset

using deep learning, there is none available model for fine-

tuning. Moreover, constructing an entire new 3D face ex-

pression dataset for fine-tuning also is not the scope of this

study which exploits the 3D geometry information in in-

the-wild FER context. Therefore, the results in Table 1 are

reasonable. In addition, to demonstrate that proposed ap-

proach could be employed in other works, the features of

the baseline model in [1] were fused with those of proposed

3D model, the results were shown in Table 5. Although

the missing of texture information channel has depressed

the capability of 3D data, it also suggests a great poten-

tial of achieving better recognition accuracy with 3D data

coupled with texture information. On the other hand, de-

spite of small contribution to the overall performance (less

than 1%), the using of projected model demonstrates the

promising of using 3D face on FER as it could be utilized

in many other ways. For instance, since the projected image

is frontalized, it would be easier for estimating the 2D and

3D facial landmarks and apply it for FER.

Drawbacks of using 3D facial data. One major down-

side of using 3D information in FER is that, currently, in-

the-wild 3D facial expression database is not available. Ex-

isting 3D databases are either contain a small number of

data samples or sampled in constrained laboratory environ-

ments. Therefore, the public databases are neither suitable

for deep learning techniques nor appropriate for in-the-wild

FER, which was the original purpose of this study. Alterna-

tively, the data preparation step required more efforts from

3D face reconstruction to error checking and preprocess-

ing. That is not to mention the inconsistency between re-

construction 3D faces and labels from the original bench-

marks. In fact, the data preparation is a time-consuming

task, which alone took two-third of total experiment time.

5. Conclusion and further works

This study explores the benefits of 3D facial modeling

for in-the-wild FER for the first time. Despite of using con-

ventional deep learning methods, the competent results jus-

tified the benefit of using 3D information for FER. It is also

suggested that the 3D facial expression features could be

harvested in many approaches and contributed to improve

facial expression recognition performance.

As indicated above, the limitation of in-the-wild 3D fa-

cial expression databases makes the data preparation phase

more complex than of that for 2D image datasets. There-

fore, we plan to construct an in-the-wild 3D facial expres-

sion database for the sake of academic purpose.

Acknowledgement

This research was supported by the Basic Science Re-

search Program through the National Research Foundation

of Korea (NRF) funded by the Ministry of Education (NRF-

2018R1D1A3B05049058 & NRF-2017R1A4A1015559).

The corresponding author is Guee-Sang Lee.

References

[1] D. Acharya, Z. Huang, D. P. Paudel, and L. V. Gool. Covari-

ance pooling for facial expression recognition. IEEE Proc.

Computer Vision and Pattern Recognition Workshops, pages

480–4807, 2018.

[2] S. Albanie and A. Vedaldi. Learning grimaces by watching

tv. In Proceedings of the British Machine Vision Conference

(BMVC), 2016.

[3] T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L.-P. Morency.

Openface 2.0: Facial behavior analysis toolkit. IEEE Int.

Conf. on Automatic Face and Gesture Recognition, pages

59–66, 2018.

[4] S. Berretti, A. D. Bimbo, P. Pala, B. B. Amor, and

M. Daoudi. A set of selected sift features for 3d facial ex-

pression recognition. Proc. Int. Conf. on Pattern Recogni-

tion, pages 4125–4128, 2010.

[5] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman.

Vggface2: A dataset for recognising faces across pose and

age. In 2018 13th IEEE International Conference on Auto-

matic Face & Gesture Recognition (FG 2018), pages 67–74.

IEEE, 2018.

[6] F.-J. Chang, A. T. Tran, T. Hassner, I. Masi, R. Nevatia, and

G. G. Medioni. Expnet: Landmark-free, deep, 3d facial ex-

pressions. IEEE Int. Conf. on Automatic Face and Gesture

Recognition, pages 122–129, 2018.

[7] S. Cheng, I. Kotsia, M. Pantic, and S. P. Zafeiriou. 4dfab: A

large scale 4d database for facial expression analysis and bio-

metric applications. IEEE Proc. Computer Vision and Pat-

tern Recognition, pages 5117–5126, 2018.

[8] C. A. Corneanu, M. O. Simón, J. F. Cohn, and S. E. Guer-

rero. Survey on rgb, 3d, thermal, and multimodal approaches

for facial expression recognition: History, trends, and affect-

related applications. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 38(8):1548–1568, 2016.

[9] M. Dahmane and J. Meunier. Emotion recognition using dy-

namic grid-based hog features. In Face and Gesture 2011,

pages 884–888. IEEE, 2011.

[10] A. Dhall, R. Goecke, J. Joshi, K. Sikka, and T. D. Gedeon.

Emotion recognition in the wild challenge 2014: Baseline,

data and protocol. In ICMI, 2014.

[11] A. Dhall, R. Goecke, S. Lucey, T. Gedeon, et al. Collect-

ing large, richly annotated facial-expression databases from

movies. IEEE Multimedia, 19(3):34–41, 2012.

[12] H. Ding, S. K. Zhou, and R. Chellappa. Facenet2expnet:

Regularizing a deep face recognition net for expression



recognition. In 2017 12th IEEE International Conference

on Automatic Face & Gesture Recognition (FG 2017), pages

118–126. IEEE, 2017.

[13] Y. Fan, J. C. Lam, and V. O. Li. Video-based emotion recog-

nition using deeply-supervised neural networks. In Proceed-

ings of the 2018 on International Conference on Multimodal

Interaction, pages 584–588. ACM, 2018.

[14] I. J. Goodfellow, D. Erhan, P. L. Carrier, A. C. Courville,

M. Mirza, B. Hamner, W. Cukierski, Y. Tang, D. Thaler,

D.-H. Lee, Y. Zhou, C. Ramaiah, F. Feng, R. Li, X. Wang,

D. Athanasakis, J. Shawe-Taylor, M. Milakov, J. Park, R. T.

Ionescu, M. Popescu, C. Grozea, J. Bergstra, J. Xie, L. Ro-

maszko, B. Xu, Z. Chuang, and Y. Bengio. Challenges in

representation learning: A report on three machine learning

contests. Neural Networks, 64:59–63, 2015.

[15] D. Kim, M. Hernandez, J. Choi, and G. Medioni. Deep 3d

face identification. In 2017 IEEE International Joint Confer-

ence on Biometrics (IJCB), pages 133–142. IEEE, 2017.

[16] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. ICLR, 2015.

[17] P. Lemaire, M. Ardabilian, L. Chen, and M. Daoudi. Fully

automatic 3d facial expression recognition using differential

mean curvature maps and histograms of oriented gradients.

IEEE Int. Conf. on Automatic Face and Gesture Recognition,

pages 1–7, 2013.

[18] H. Li, L. Chen, D. Huang, Y. Wang, and J.-M. Morvan. 3d

facial expression recognition via multiple kernel learning of

multi-scale local normal patterns. Proc. Int. Conf. on Pattern

Recognition, pages 2577–2580, 2012.

[19] H. Li, H. Ding, D. Huang, Y. Wang, X. Zhao, J.-M. Morvan,

and L. Chen. An efficient multimodal 2d+ 3d feature-based

approach to automatic facial expression recognition. Com-

puter Vision and Image Understanding, 140:83–92, 2015.

[20] H. Li, J. Sun, Z. Xu, and L. Chen. Multimodal 2d + 3d

facial expression recognition with deep fusion convolutional

neural network. IEEE Trans. on Multimedia, 19(12):2816–

2831, 2017.

[21] S. Li and W. Deng. Deep facial expression recognition: A

survey. CoRR, abs/1804.08348, 2018.

[22] S. Li, W. Deng, and J. Du. Reliable crowdsourcing and deep

locality-preserving learning for expression recognition in the

wild. In IEEE Proc. Computer Vision and Pattern Recogni-

tion, pages 2852–2861, 2017.

[23] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn:

Convolution on x-transformed points. In NeurIPS, 2018.

[24] C. Liu, T. Tang, K. Lv, and M. Wang. Multi-feature based

emotion recognition for video clips. In Proceedings of the

2018 on International Conference on Multimodal Interac-

tion, pages 630–634. ACM, 2018.

[25] P. Liu, S. Han, Z. Meng, and Y. Tong. Facial expression

recognition via a boosted deep belief network. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1805–1812, 2014.

[26] A. Mollahosseini, B. Hasani, and M. H. Mahoor. Affectnet:

A database for facial expression, valence, and arousal com-

puting in the wild. arXiv preprint arXiv:1708.03985, 2017.

[27] S. Rifai, Y. Bengio, A. Courville, P. Vincent, and M. Mirza.

Disentangling factors of variation for facial expression

recognition. In European Conference on Computer Vision,

pages 808–822. Springer, 2012.
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