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Abstract

Tabular data is the most commonly used form of data in

industry according to a Kaggle ML and DS Survey. Gradi-

ent Boosting Trees, Support Vector Machine, Random For-

est, and Logistic Regression are typically used for classi-

fication tasks on tabular data. DNN models using cate-

gorical embeddings are also applied in this task, but all

attempts thus far have used one-dimensional embeddings.

The recent work of Super Characters method using two-

dimensional word embeddings achieved state-of-the-art re-

sults in text classification tasks, showcasing the promise

of this new approach. In this paper, we propose the Su-

perTML method, which borrows the idea of Super Char-

acters method and two-dimensional embeddings to address

the problem of classification on tabular data. For each in-

put of tabular data, the features are first projected into two-

dimensional embeddings like an image, and then this im-

age is fed into fine-tuned two-dimensional CNN models for

classification. The proposed SuperTML method handles the

categorical data and missing values in tabular data auto-

matically, without any need to pre-process into numerical

values. Comparisons of model performance are conducted

on one of the largest and most active competitions on the

Kaggle platform, as well as on the top three most popu-

lar data sets in the UCI Machine Learning Repository. Ex-

perimental results have shown that the proposed SuperTML

method have achieved state-of-the-art results on both large

and small datasets.

1. Introduction

In data science, data is categorized into structured data

and unstructured data. Structured data is also known as tab-

ular data, and the terms will be used interchangeably. An-

thony Goldbloom, the founder and CEO of Kaggle observed

that winning techniques have been divided by whether the

data was structured or unstructured [37]. Currently, DNN

models are widely applied for usage on unstructured data

such as image, speech, and text. According to Anthony,

“When the data is unstructured, its definitely CNNs and

RNNs that are carrying the day” [37]. The successful

CNN model in the ImageNet competition [29] has outper-

formed human for image classification task by ResNet [16]

since 2015. And the following efforts of PolyNet [39], SE-

net [17], and NASNet [40] keep breaking the records. Cur-

rent state of the art on ImageNet given by PNASNe [22]

achieves 82.9% Top1 accuracy.

On the other side of the spectrum, machine learning

models such as Support Vector Machine (SVM), Gradient

Boosting Trees (GBT), Random Forest, and Logistic Re-

gression, have been used to process structured data. Ac-

cording to a recent survey of 14,000 data scientists by Kag-

gle (2017), a subdivision of structured data known as re-

lational data is reported as the most popular type of data

in industry, with at least 65% working daily with relational

data. Regarding structured data competitions, Anthony says

that currently XGBoost is winning practically every compe-

tition in the structured data category [13]. XGBoost [5] is

one popular package implementing the Gradient Boosting

method. Other implementations include lightgbm [19], and

catboost [27].

Recent research has tried using one-dimensional embed-

ding and implementing RNNs or one-dimensional CNNs to

address the TML (Tabular data Machine Learning) tasks,

or tasks that deal with structured data processing [21, 35],

and also categorical embedding for tabular data with cate-

gorical features [15, 7]. One-dimensional embeddings such

as word2vec [23], GLoVe [25], fastText [18], ELMO [26],

BERT [9], and Open AI GPT [28] are widely used in

NLP tasks, and as such data scientists have tried to adapt

them to TML tasks. These one-dimensional embeddings

project each token into a vector containing numerical val-

ues. For example, a word2vec embedding [23] could be a

one-dimensional vector that acts like a 300 by 1 array.

However, this reliance upon one-dimensional embed-

dings may soon come to change. Recent NLP research
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Figure 1: An example of converting training data from tabular into images with two-dimensional embeddings of the features

in the tabular data. Therefore, the problem of machine learning for tabular data is converted into an image classification

problem. The later problem can use pretrained two-dimensional CNN models on ImageNet for finetuning, for example,

ResNet, SE-net and PolyNet. The tabular data given in this example has n samples, with each sample having four feature

columns, and one label column. For example, assume the tabular data is to predict whether tomorrow’s weather is “Sunny”

or “Rainy”. The four features F1, F2, F3, and F4 are respectively “color of the sky”, “Fahrenheit temperature”, “humidity

percentage”, and “wind speed in miles per hour”. Sample 1 has class label L1=“Sunny”, with four features values given by

v1,1 = “blue”, v1,2 = 55, v1,3 = “missing”, and v1,4 = 17. The two-dimensional embedding of Sample 1 will result in an

image of “Sunny 0001.jpg” in the image folder. The four feature values are embedded into the image on different locations of

the image. For example, v1,1 is a categorical value of color “blue”, so the top left of the image will have exactly the alphabets

of “blue” written on it. For another example, v1,2 is a numerical value of “23”, so the top right of the image will have exactly

the digits of “23” written on it. For yet another example, v1,3 should be a numerical value but it is missing in this example,

so the bottom left of the image will have exactly the alphabets of “missing” written on it. Other ways of writing the tabular

features into image are also possible. For example, “blue” can be written in short as a single letter “b” if it is distinctive to

other possible values in its feature column. The image names will be parsed into different classes for image classification.

For example, L1 = L2 = “Sunny”, and L3 = Ln =“Rainy”. These will be used as class labels for training in the second step of

SuperTML method.

has shown that the two-dimensional embedding of the Su-

per Characters method [33] is capable of achieving state-

of-the-art results on large dataset benchmarks. The Super

Characters method is a two-step method that was initially

designed for text classification problems. In the first step,

the characters of the input text are drawn onto a blank im-

age, so that an image of the text is generated with each

of its characters embedded as the pixel values in the two-

dimmensional space, i.e. a matrix. The resulting image is

called a Super Characters image. In the second step, Super

Characters images are fed into two-dimensional CNN mod-

els for classification. The two-dimensional CNN models are

trained by fine-tuning from pretrained models on large im-

age dataset, e.g. ImageNet. This process is also known as

Transfer Learning [30, 10, 38, 24].

In this paper, we propose the SuperTML method, which

borrows the concept of the Super Characters method to ad-

dress TML problems. For each input, tabular features are

first projected onto a two-dimensional embedding and fed

into fine-tuned two-dimensional CNN models for classifi-

cation. The proposed SuperTML method handles the cat-

egorical type and missing values in tabular data automat-

ically, without need for explicit conversion into numerical

type values.

Experimental results show that this proposed SuperTML

method performs well on both large and small datasets. In

one instance of the Higgs Boson Machine Learning Chal-

lenge dataset, which is “one of the largest and most active

competitions on the Kaggle platform” [6], a single model

that applied SuperTML manages to analyze 250,000 train-

ing instances and 550,000 testing instances and obtain an

AMS score of 3.979, a state-of-the-art result that beat the

previous best of 3.806 [2]. When using the top three popular

databases (ranked by number of times accessed since 2007)



from UCI Machine Learning Repository (includes the Iris

dataset (150 data instances), Adult dataset (48,482 data in-

stances), and Wine dataset (178 data instances)), the Su-

perTML method still achieved state-of-the-art results for all

datasets despite this variation in dataset size.

2. The Proposed SuperTML Method

The SuperTML method is motivated by the analogy be-

tween TML problems and text classification tasks. For any

sample given in tabular form, if its features are treated like

stringified tokens of data, then each sample can be repre-

sented as a concatenation of tokenized features. By apply-

ing this paradigm of a tabular sample, the existing CNN

models used in Super Characters method could be extended

to be applicable to TML problems.

As mentioned in the introduction, the combination of

two-dimensional embedding (a core competency of the Su-

per Characters methodology) and pre-trained CNN mod-

els has achieved state-of-the-art results on text classifica-

tion tasks. However, unlike the text classification problems

studied in [33], tabular data has features in separate dimen-

sions. Hence, generated images of tabular data should re-

serve some gap between features in different dimensions in

order to guarantee that features will not overlap in the gen-

erated image.

SuperTML is composed of two steps, the first of which

is two-dimensional embedding. This step projects features

in the tabular data onto the generated images, which will be

called the SuperTML images in this paper. The conversion

of tabular training data to SuperTML image is illustrated

in Figure 1, where a collection of samples containing four

tabular features is being sorted.

The second step is using pretrained CNN models to fine-

tune on the generated SuperTML images.

Figure 1 only shows the generation of SuperTML im-

ages for the training data. It should be noted that for in-

ference, each instance of testing data goes through the same

pre-processing to generate a SuperTML image (all of which

use the same configuration of two-dimensional embedding)

before getting fed into the CNN classification model.

Considering that features may have different importance

for the classification task, it would be prudent to allocate

larger spaces for important features and increase the font

size of the corresponding feature values. This method,

known as SuperTML VF, is described in Algorithm 1.

To make the SuperTML more autonomous and remove

the dependency on feature importance calculation done in

Algorithm 1, the SuperTML EF method is introduced in Al-

gorithm 2. It allocates the same size to every feature, and

thus tabular data can be directly embedded into SuperTML

images without the need for calculating feature importance.

This algorithm shows even better results than 1, which will

be described more in depth later in the experimental section.

Algorithm 1 SuperTML VF: SuperTML method with Vari-

ant Font size for embedding.

Input: Tabular data training set

Parameter: Image size of the generated SuperTML images

Output: Finetuned CNN model

1: Calculate the feature importance in the given tabular

data provided by other machine learning methods.

2: Design the location and font size of each feature in or-

der to occupy the image size as much as possible. Make

sure no overlapping among features.

3: for each sample in the tabular data do

4: for each feature of the sample do

5: Draw feature in the designated location and font

size.

6: end for

7: end for

8: Finetune the pretrained CNN model on ImageNet with

the generated SuperTML images.

9: return the trained CNN model on the tabular data

Algorithm 2 SuperTML EF: SuperTML method with

Equal Font size for embedding.

Input: Tabular data training set

Parameter: Image size of the generated SuperTML images

Output: Finetuned CNN model

1: for each sample in the tabular data do

2: for each feature of the sample do

3: Draw the feature in the same font size without

overlapping, such that the total features of the

sample will occupy the image size as much as pos-

sible.

4: end for

5: end for

6: Finetune the pretrained CNN model on ImageNet with

the generated SuperTML images.

7: return the trained CNN model on the tabular data

3. Experiments

In the experiments described below, we used the top

three most popular datasets from the UCI Machine Learning

Repository [11] and one well-known dataset from the Kag-

gle platform. These four datasets cover a variety of TML

tasks.

As of the date this paper is written, the Iris dataset [12]

is ranked by the UCI Machine Learning Repository as the

most popular dataset with 2.41+ million hits, followed by

the Adult dataset [20] (also known as Census Salary dataset)



with 1.40+ million hits and the Wine dataset [14] with 1.07+

million hits . Table 1 shows the statistics of these three

datasets. The data types of the features covers a variety of

integer, categorical, real, and missing values.

The Kaggle dataset of Higgs Boson Machine Learning

Challenge is also used in the experiments. It “attracted an

unprecedented number of participants over a short period

of time (May 12, 2014 to Sept 15, 2014)” [2]. “There were

in total 1,785 teams participating in the competition, one

of the largest and most active ones on the platform website

www.kaggle.com” [6].

For the second step in the SuperTML method, the Im-

ageNet pretrained CNN models were used in the exper-

iments. However, a limited amount of pretrained mod-

els are publicly available for different size of input. For

example, the SE-net published pretrained model only ac-

cepts 224x224 input size using Caffe framework; while

the PolyNet published model only processes inputs with

size 331x331. In order to mitigate the accuracy difference

brought on by usage of different frameworks, NASnet and

PNASnet are not used because their Caffe models are not

publicly available.

For all the three datasets from the UCI Machine Learn-

ing Repository, SuperTML images of size 224x224 are gen-

erated. The pre-trained SE-net-154 model was fine-tuned

on these three datasets. We also implemented XGBoost

and fine-tuned the hyper-parameters on each of the three

datasets. For Higgs Boson dataset, SuperTML both images

of sizes 224x224 and 331x331 were generated for com-

parison of different pretrained models of SE-net-154 and

PolyNet. These two pretrained models have similar per-

formance when working on on ImageNet (81.32% forSE-

net-154, and 81.29% for PolyNet) but different input sizes

(224x224 for SE-net-154, and 331x331 for PolyNet).

3.1. Experiments on the Iris dataset

“This is perhaps the best known database to be found in

the pattern recognition literature” [12]. The Iris dataset is

widely used in machine learning courses and tutorials. It

contains a total of 150 data samples, each of which repre-

sents a different subspecies of the Iris genus of flowers (e.g.

Iris Setosa, Iris Versicolor, and Iris Virginica). Each sample

has a set of four attributes and four corresponding feature

values, indicating the measurements of sepal length, sepal

width, petal length, and petal width as measured in centime-

ters.

When implementing SuperTML to this dataset, we came

across a multitude of challenges. First, the Iris dataset is

very small, with only 150 samples. If we split the training

and testing 80:20, it means only there are only 120 training

samples and only 40 testing samples for each class. Deep

learning models are data hungry, and the CNN models in

computer visions are especially well-known for requiring

(a) SuperTML EF image

example for Iris data.

Each feature is given

equal importance in this

example.

(b) SuperTML VF image

example for Wine data.

Features are given dif-

ferent sizes according to

their importance.

Figure 2: Examples of generated SuperTML image for Iris

and Wine dataset.

large amounts of labeled images. For example, the Ima-

geNet dataset has over one million images spread relatively

equally over one thousand classes. By fine-tuning on this

small dataset, there is a high tendency of overfitting. Fur-

thermore, for this Iris dataset, the data types are all real

numbers. For methods such as Logistic Regressions, GBT,

SVM, and Random Forests, the numerical feature inputs are

directly applied to the linear or non-linear models to classify

the subspecies. The CNN models used in the SuperTML

method must first learn the shapes of these numerical values

and then apply nonlinear functions on the extracted image

features to classify the Iris subspecies. Just to recognize the

shapes of the digits requires quite a lot of data, as shown in

MNIST dataset [8].

Figure 2a shows an example of a generated SuperTML

image, created using Iris data. Different from existing meth-

ods that first convert every feature value into numerical

type, as typically done for preprocessing when using XG-

boost, SVM and etc., the idea of converting tabular fea-

tures of any data type into string type may seem to increase

the difficulty for training model and inference. However,

this proposed counter-intuitive method of SuperTML out-

performs existing methods as shown in the experimental re-

sults. The experimental results of using SE-net-154 shown

in Table 2 is based on an 80:20 split of the 150 samples.

It shows that the proposed SuperTML method achieves the

same accuracy as XGBoost on this small dataset.

3.2. Experiments on the Wine dataset

The Wine dataset shares a few similarities to the Iris

dataset, so we conducted this experiment immediately af-

ter the Iris experiment. This dataset has the similar task of

classifying the input samples into one of the three classes

and comprises of only 178 samples, making it also a small

dataset. The input features are measurements on alcohol,

hue, ash, and etc.. In addition, there is no given split of



Dataset Classes #Attributes Train Test Total Data Types Missing

Iris 3 4 NA NA 150 Real No

Wine 3 13 NA NA 178 Integer& Real No

Adult 2 14 32,561 16,281 48,842 Integer & Categorical Yes

Table 1: Datasets statistics used in this paper from UCI Machine Learning Repository. The “Missing” in the table indicates

whether there are missing values in the data set. The “NA” in the table denotes that there is no given split for the training and

testing dataset.

Accuracy Iris(%) Wine(%) Adult(%)

xgboost 93.33 96.88 87.32

GB [4] – – 86.20

SuperTML 93.33 97.30 87.64

Table 2: Model accuracy comparison on the tabular data from UCI Machine Learning Repository. The splits on Iris and Wine

data is 80%:20% as described in the experimental setup.

training and testing datasets in this Wine dataset, another

similarity between it and the Iris dataset. The number of at-

tributes is 13, which is more than 4 times of that of the Iris

dataset. In this set, the features data types includes not just

real numbers, but also integers. These differences make the

classification on Wine data with SuperTML method even

harder than in the Iris dataset for the SuperTML image be-

cause of the increased number of features and variation in

space due to different data types.

For this dataset, we use SuperTML VF, which gives fea-

tures different sizes on the SupterTML image according to

their importance score. The feature importance score is ob-

tained using the XGBoost package [5]. One example of

a SuperTML image created using data from this dataset is

shown in Figure 2b. The importance score shows that the

feature of color intensity is the most important, so we al-

locate font size of 48 to it in the 224x224 image (can be

seen in the top right corner). The following features of im-

portance are flavanoids and proline, which were allocated

space on the left and given font size 48. This pattern of

importance and font size is applied to all features, all the

way down to the least important features of proanthocyanins

and nonflavanoid phenols, which were placed in the bottom

right corner and given a font size of 8. The results in Table 2

shows that the SuperTML method obtained a slightly better

accuracy than XGBoost on this dataset.

3.3. Experiments on the Adult dataset

The task of this Adult dataset is to predict whether a per-

sons income is larger or smaller than 50,000 dollars per year

based on a collection of surveyed data. Each sample of data

(each person) has 14 attributes, including age, gender, edu-

cation, and etc.. These attributes are stored using a combi-

nation of integer, real numbers, and categorical data. It has

32,561 training samples and 16,281 testing samples. Com-

pared with the other two datasets from the UCI Machine

Learning Repository, this relatively large dataset is in fa-

vor of deep learning models that implement the SuperTML

method.

For categorical features that are represented by strings,

the Squared English Word (SEW) method [32] is used. The

benefits of using the English word in this format is two-

folded. Firstly, the Super Characters method has shown

state-of-the-art performance when processing Asian lan-

guages, which has their characters written in the form of

glyphs enclosed in a squared space. Building of Super

Characters, SEW converts each English word into a square

comprised of its characters and guarantees that each word

will be written in a unique way. Secondly, writing the fea-

tures expressed by English strings in this format guaran-

tees that each feature occupies the same position without

any change caused by the length of the feature string. One

example of a generated SuperTML image is given in Fig-

ure 3. Table 2 shows the results on Adult dataset. On

this dataset, Biau and et. a.l. [4] proposed an Accelerated

Gradient Boosting (AGB) model and compared the perfor-

mance with an original Gradient Boosting (GB) model us-

ing a series of fine-tuned hyper-parameters. The best ac-

curacy is given by the GB model when the shrinkage pa-

rameter is set at 0.1. We also tried implementing XGBoost

on thisdataset and preprocessed the categorical data by us-

ing integer encoding (using the Python pandas library with

astype(‘category’)).The XGBoosts best result was 87.32%

accuracy after fine-tuning the number of trees at 48. We can

see that on this dataset, the SuperTML method still has a

higher accuracy than the fine-tuned XGBoost model, out-

performing it by 0.32% points of accuracy.



Figure 3: SuperTML image example from Adult dataset.

This sample has yearly salary larger than 50k with its fea-

tures given different sizes in the SuperTML image accord-

ing to their importance given by third party softwares. This

sample has age = 59, capital gain = 0, capital loss = 0, hours

per week = 40, fnlweight = 372020, education number =

13, occupation = ”?” (missing value as given in the data, it

can also be replaced by ”MissinngValue” in the SuperTML

image), marital status = ”Married-civ-spouse”, relationship

= ”Husband”, workclass = ”?” (missing value), education =

”Bachelors”, sex = ”Male”, race = ”White”, native country

= ”United-States”.

3.4. Experiments on the Higgs Boson Machine
Learning Challenge dataset

The Higgs Boson Machine Learning Challenge involved

a binary classification task to classify quantum events as

signal or background. It was hosted by Kaggle, and though

the contest is over, the challenge data is available on open-

data [2]. It has 25,000 training samples, and 55,000 test-

ing samples. Each example has 30 features, each of which

is stored as a real number value. In this challenge, AMS

score [1] is used as the performance metric.

The reason why we selected this dataset is two-fold.

First, it is a well-known dataset and successful models such

as XGBoost and Regularized Greedy Forest have been used

in this dataset. Second, the performance metric used in this

dataset is AMS score instead of accuracy. It is useful to

test the performance of SuperTML method using a differ-

ent metric and compare its results to other leading options.

The SuperTML images of size 224x224 are generated

for fine-tuning the SE-net models, and the images of size

331x331 are generated for fine-tuning the PolyNet mod-

els. Figure 4a shows an example of example of a back-

ground event, which is generated into an SuperTML image

of 224x224 through a SuperTML EF method. Figure 4b

shows an example of a signal event, generated through a

SuperTML VF method, which also in an 224x224 image.

The 331x331 SuperTML images are similar to 224x224 im-

ages except that each features font size and allocated space

(a) SuperTML image ex-

ample for Higgs Boson

data. Each feature is

given equal importance

in this example.

(b) SuperTML image ex-

ample for Higgs Boson

data. Features are given

different sizes according

to their importance.

Figure 4: Examples of generated SuperTML image for

Higgs Boson dataset.

Methods AMS

DNN by Gabor Meli 3.806

RGF and meta ensemble 3.789

Ensemble of neural networks 3.787

XGBoost 3.761

SuperTML EF(224x224) 3.979

SuperTML VF (224x224) 3.838

SuperTML EF (331x331) 3.934

SuperTML VF (331x331) 3.812

Table 3: Comparison of AMS score on Higgs Boson dataset

for different methods. The first four rows are top rankers in

the leaderboard in the Higgs Boson Challenge.

is increased.

As pointed out by [5], the AMS is an unstable measure,

and AMS was not chosen as a direct objective for XGBoost

implementation in this challenge. For simplicity, cross-

entropy loss is still used in this dataset as an objective to

minimize. Table 3 shows the comparison of different algo-

rithms. The DNN method and neural networks used in the

first and third rows are using the numerical values of the fea-

tures as input to the models, which is different from the Su-

perTML method of using two-dimensional embeddings. It

shows that SuperTML EF method gives the best AMS score

of 3.979. The PolyNet models trained with larger size of

331x331 does not help improve the AMS score. In addition,

the SuperTML EF gives better results than SuperTME VF

results for both 224x224 and 331x331 image sizes, which

indicates SuperTML method can work well without the cal-

culation of the importance scores.

3.5. Error Analysis

The experiment using the SuperTML method on the Iris

dataset with 80:20 split for training and testing had 2 in-



(a) The test SuperTML

image of a virginica

sample.

(b) One example from

training set with label

“versicolor”.

(c) First example from

training set with label

“virginica”.

(d) Second example

from training set with

label “virginica”.

(e) Third example from

training set with label

“virginica”.

(f) Fourth example

from training set with

label “virginica”.

Figure 5: Error analysis on an Iris-viginica input wrongly

predicted as Iris-versicolor. These six samples have the

common integer for each of the four feature values, nam-

ingly 6, 2, 5, and 1. But these samples may have different

decimal values. Figure 5c-Figure 5f are the only four train-

ing samples with the integer portion of the feature values

same as Figure 5a. But one “versicolor” sample from train-

ing set as shown in Figure 5b not only has the same integer

part as Figure 5a, but also has more similar shapes of dec-

imal part for each of the four feature values to Figure 5a

than the other four samples. The CNN models that learn the

classification model based on the shape of the feature val-

ues written on the image have high tendency to classify the

example in Figure 5a as the same category of Figure 5b.

correct predictions. We will be taking one of the wrongly

predicted sample in the testing dataset for error analysis. Its

ground truth label is Iris-virginica, but was incorrectly clas-

sified as Iris-versicolor. Its four features are 6.0, 2.2, 5.0,

and 1.5 respectively, as shown in Figure 5a. All the training

samples with common integer portion for each of the four

feature values, namely 6, 2, 5, and 1 are taken into compar-

ison in Figure 5b-Figure 5f. However, these samples may

have different decimal values. It shows that this SuperTML

image of this virginica example in Figure 5a looks more like

the versicolor sample in Figure Figure 5b than the other vir-

ginica samples in Figure 5c-Figure 5f, when the shape of

numbers in decimal portion is compared. Hence, the testing

sample of virginica in Figure 5a is more likely to be classi-

fied as versicolor, which is the label for Figure 5b.

The features in this Iris dataset are all numerical values

without missing numbers. During model training, these Su-

perTML images of numerical features are fed into the two-

dimensional CNN model which classifies images based on

the pixel values and the relationship between pixels. At in-

ference time, the model classifies the samples based on the

appearance of the features in real-valued numbers. How-

ever, the numerical values have some hidden relationship

behind the shape of the digits, such as 6.01 and 5.999. They

both approximate to the number 6.00 even though their

shape is not alike. This is hard for the CNN model to learn.

4. Conclusion and Future Work

The proposed SuperTML method borrows the idea from

Super Characters and two-dimensional embedding and fine-

tunes the pre-trained CNN models on unstructured data for

transfer learning the structured data in the tabular form.

Experimental results shows that the proposed SuperTML

method has achieved state-of-the-art results on both large

and small tabular dataset. As low power domain specific

CNN accelerators [34] become available in the market, the

SuperTML method can realize its huge potential for practi-

cal applications in the real world. For example, for IoT (In-

ternet of Things) applications in smart homes, current ma-

chine learning solutions implemented at the edge level are

still using Logistic Regression models. These regression

models are computationally inexpensive but are expected

to be much less accurate when compared to large models

like CNN. Using these low-power CNN accelerators with

the SuperTML method, it will become possible to provide

low-power and high accuracy models at the edge devices.

The future work is projected to go in four directions. First,

given the success of Super Characters method [33, 31] in

text classification, categorical type of data, and also missing

value calculations, the SuperTML method should be able

to be directly supplement or even replace the current mod-

els in that field. Unlike numerical features, the categorical

feature has all the information written in the text. Second,

compared with not only the Gradient Boosting method, but

also the one-dimensional embedding based RNN and CNN

methods, SuperTML could become the new state-of-the-

art in computing and solving TML tasks. Third, the Su-

perTML method could be enlarged to provide support for



more powerful CNNs such as NASNet, PNASnet, and the

others. Fourth, by modifying and improving the model ar-

chitectures, variant feature importance calculations could be

improved in order to find a more accurate way to implement

attention [3, 36] scheme.
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