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Andreas Bär1 Fabian Hüger2 Peter Schlicht2 Tim Fingscheidt1

{andreas.baer, t.fingscheidt}@tu-bs.de

{fabian.hueger, peter.schlicht}@volkswagen.de

1Technische Universität Braunschweig 2Volkswagen Group Research

Abstract

The trend towards autonomous systems in today’s tech-

nology comes with the need for environment perception.

Deep neural networks (DNNs) constantly showed state-of-

the-art performance over the last few years in visual ma-

chine perception, e.g., semantic segmentation. While DNNs

work fine on uncorrupted data, recently introduced adver-

sarial examples (AEs) led to misclassification with high

confidence. This lack of robustness against such adversar-

ial attacks questions the use of DNNs in safety-critical au-

tonomous systems, e.g., autonomous driving vehicles. In

this work, we address the mentioned problem with the use

of a redundant teacher-student framework, consisting of a

static teacher network (T), a static student network (S), and

a constantly adapting student network (A). By using this

triplet in combination with a novel inverse feature match-

ing (IFM) loss, we show that a significant robustness in-

crease of student DNNs against adversarial attacks is achie-

veable, while maintaining semantic segmentation quality at

a reasonably high level. With our approach, we manage to

increase the mean intersection over union (mean IoU) ra-

tio between static student adversarial examples and clean

images from about 35 % to about 80 % on the Cityscapes

dataset. Moreover, our proposed method can be integrated

into any DNN-based perception mechanism to increase the

(online) robustness in an adversarial environment, created

from static model knowledge.

1. Introduction

Deep neural networks (DNNs) tend to be the state-of-

the-art solution for several vision-related tasks, e.g., image

recognition [18, 20, 36, 40], object detection [31], instance

segmentation [16], and semantic segmentation [9, 10, 13,

21, 47, 48, 49]. Semantic segmentation, as a special form

of perception, deals with pixel-wise classification of an in-

put image. State-of-the-art architectures for semantic seg-

mentation are primarily based on fully convolutional net-

works (FCNs) pioneered by Long et al. [28]. New solutions

even consider the use of meta-learning for DNN architec-

tures in semantic segmentation [7]. Nevertheless, most of

these architectural concepts sacrify efficiency for better per-

formance. Recent work in semantic segmentation also fo-

cuses on efficiency in terms of algorithm memory usage [6]

or model size in general [29, 34, 43, 46], resulting in faster

inference speed while preserving performance.

Another way of balancing efficiency and performance is

the use of teacher-student learning, often also referred to

as model compression [2, 5]. The knowledge of a teacher

network or an ensemble of teacher networks is compressed

into a single student network. The authors of [26] look

at teacher-student learning from a more practical point of

view. A large-size and already trained teacher network is

used to provide soft labels for unlabeled data. These soft la-

bels are then used as soft targets to train a small-size student

network with less parameters. The result is a more efficient,

but still good performing student network compared to the

teacher network. Observations by Hinton et al. [19] led to

the conclusion, that a further relaxing of the teacher soft la-

bels leads to even better learning of the student. Motivated

by the observations of [19] and [26] new ideas arised, where

different intermediate feature representations of the teacher

are included into the training process [33, 42, 45], helping

the student in extracting more knowledge.

While DNNs typically find local solutions for a certain

task, they show lack of robustness in their learned transfor-

mation against certain input patterns, denoted as adversar-

ial examples (AEs) [37]. These adversarial attack strategies

applied on simple classification tasks [15, 25] are transfer-

able to more complex tasks, such as semantic segmentation

[1, 14, 30, 39]. Especially for safety-critical systems, e.g.,

autonomous driving, it is necessary to explore ways of in-

creasing the robustness of DNNs against such attacks, even

if a potential attacker has (full) knowledge about the under-



lying DNN architecture or parameters.

In this work, we propose the use of a teacher-student

framework for semantic segmentation in a redundant fash-

ion, where a network triplet of a static teacher, a static

student and an adaptive student is used to increase the ro-

bustness against adversarial attacks, generated from static

model knowledge. We argue that such robustness is crucial

for subsequent majority vote or any of the well-known pos-

terior fusion methods. Our proposed redundant system can

be integrated into any DNN-based perception mechanism

and used online, guarenteeing robustness to a certain level

in an adversarial environment, created from static model

knowledge.

First, we introduce our proposed system and discuss

an important property of the adaptive student. Secondly,

we show an intuitive but unorthodox way of training the

adaptive student to be more robust than its static counter-

part by introducing an inverse feature matching (IFM) loss.

Lastly, we test our proposed teacher-student framework on

the Cityscapes dataset to show the effectiveness of the pro-

posed idea. To the best of our knowledge this is the first

time, where a redundant teacher-student framework is con-

sidered to increase robustness.

2. Related works

In the following section we introduce related works in

three specific fields of research: semantic segmentation,

teacher-student learning and robustness of DNNs.

Semantic segmentation. Semantic segmentation can be

understood as a dense prediction task and focuses on the

pixel-wise classification of an input image. State-of-the-

art architectures are primarily based on fully convolutional

neural networks (FCNs) [35]. Further extension of this idea

were done by aggregating more context using dilated con-

volutions [8, 44], recurrent neural networks (RNNs) in spa-

tial direction [49], as well as forms of spatial pyramid pool-

ing [9, 10, 17, 47], a better information flow through skip-

connections [3, 10, 41], state-of-the-art feature extractors as

backbones [9, 10, 41, 47], post-processing with conditional

random fields (CRFs) [8, 9, 23, 38], and multi-scale infer-

ence [9, 10, 47].

Some recently proposed architectures especially aim at

computational efficiency of DNNs [6, 29, 32, 34, 43, 46].

Fractional residual units introduced in [32] and depthwise

separable convolution [11] combined with inverted residual

units introduced in [34] are proposed for parameter reduc-

tion of a DNN. Another approach is using in-place activated

batch normalization to reduce the memory consumption in

the backpropagation algorithm [6]. Other works focus on

efficient architectural design [43, 46]. Yu et al. [43] present

a slim neural network in combination with an attention re-

finement module and a feature fusion module, while in [46]

the use of a cascaded neural network fed with multi-scale

inputs is proposed.

In this work, we use an efficient DNN [32] in combina-

tion with a non-efficient DNN [4, 27], and employ these two

DNNs for teacher-student learning.

Teacher-student learning. Supervised learning can be

time-consuming regarding the training of DNNs as well

as creating labeled data by hand. The idea of teacher-

student learning emerged from the thought of compressing

the knowledge of an ensemble of DNNs into a single DNN

[5]. Instead of performing time-consuming labeling, the au-

thors of [26] proposed to use a trained network (teacher net-

work) and use its soft output on unlabeled data as targets

for a small-size network (student nework). Pioneer work

by Hinton et al. [19] showed that the additional information

incapsulated in soft outputs of a teacher DNN helps during

training of a student DNN. Encouraged by this observation,

further work focused on including more teacher information

within the training process [33, 42, 45]. In [33] a stage-wise

teacher-student learning is proposed, where in a first step

an intermediate feature representation of the teacher net-

work is learned by the student network before training with

the actual soft outputs from the teacher network. Building

upon the idea of intermediate feature representation, Yim et

al. [42] propose to learn the flow of solution procedure as a

form of inter-layer feature representation, while Zagoruyko

and Komodakis [45] propose to learn attention maps as a

form of intra-layer feature representation.

In this work, we also use an intra-layer feature represen-

tation combined with Li’s approach [26] to formulate losses

for a robust teacher-student learning using unlabeled data.

Robustness. The term adversarial example (AE) was

first introduced in [37] showing the vulnerability of DNNs

to small changes of their input. To generate AEs more effi-

ciently, the fast gradient sign method (FGSM) was proposed

by Goodfellow et al. [15]. Stronger gradient-based AEs can

be generated by iteratively using FGSM with the least likely

class as a target [24, 25]. These simple adversarial attacks

are designed for image classification, but can easily be ex-

tended to dense prediction tasks, such as semantic segmen-

tation [1, 14, 30, 39].

In this work, we assume the attacker has full knowledge

about the model, including its inputs as well as its outputs.

Therefore, similiar to [1], we choose the proposed adversar-

ial attacks in [24, 25], where gradient-based AEs targeting

the least likely class are generated to fool our semantic seg-

mentation DNNs.

3. Method

In this section we describe our network topology as well

as the proposed method to improve the robustness of the

system. First, however, we introduce some mathematical

notation.

We define x ∈ G
H×W×C as an image of a dataset X



with G = {0 ≤ z ≤ 255 | z ∈ N} being the set of gray

values, image height H , image width W , and number of

color channels C. The image x is fed into a neural network

F(x, θ) having the network parameters θ. The neural net-

work F(x, θ) consists of several layers m ∈ M, each hav-

ing feature representations fm(x) ∈ R
Hm×Wm×Cm with

the height Hm, width Wm and number of feature maps Cm.

The input x is transformed to class scores

y(x) = F(x, θ) ∈ I
H×W×|S|, (1)

with S being the set of classes and I = [0, 1]. Each element

in y(x) can be understood as a posterior probability yi,s(x)
for the class s ∈ S at the pixel position i ∈ I of the input

image x.

In the following section we further extend the described

mathematical notation. To keep it simple, we use different

subscripts h ∈ H = {T, S,A} for each model in our sys-

tem. Whenever we omit the subscript, we refer to general

cases applying for more than one specific network in our

system.

3.1. Teacher network (T)

The choice for the teacher network FT underlies no con-

straints, except having state-of-the-art performance. There-

fore, we simply adopt the architecture and training for

semantic segmentation in [4, 27] using a labeled dataset

Xlabeled, with each image x ∈ Xlabeled being downscaled

by 2 following [32]. After training the teacher, we freeze

the network parameters θT to get a static teacher network

with yT(x) = FT(x, θT) being the output of the teacher

and yTi,s(x) being posteriors for each class s ∈ S at each

pixel position i ∈ I.

3.2. Student network (S)

In contrast to the teacher network, the student network

FS should be memory-efficient or have at least low infer-

ence latency. Additional to that, it is reasonable to assume

that a significantly different network architecture compared

to the teacher network architecture strengthens the robust-

ness against teacher network’s AEs. We define the follow-

ing attributes for the student network:

• Different architecture: FS 6= FT

• Less parameters: |θS| ≪ |θT|

• Low inference latency

Considering the stated attributes, we pick the network ar-

chitecture in [32] for our student network FS. We slightly

changed the training procedure described in [32] and train

the student network FS on the same labeled dataset Xlabeled

as the teacher network FT. After training the student, we

also freeze the network parameters θS to get a static student

x
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Figure 1: Illustration of the teacher-student framework.

The teacher network FT and student network FS are kept

static with FT, producing soft targets yT on unlabeled data

x ∈ Xunlabeled and FS constraining the feature representa-

tions fAm with the help of the inverse feature matching (IFM)

loss to train the adaptive student network FA.

network with yS(x) = FS(x, θS) being the output of the

student with posteriors ySi,s(x) for each class s ∈ S at each

pixel position i ∈ I.

3.3. Adaptive student network (A)

We want to keep the teacher-student learning as simple

as possible. Therefore, we follow some aspects of [26]

and some of [45] to extract knowledge from the teacher

network, using a completely disjoint unlabeled dataset

Xunlabeled, meaning

Xunlabeled ∩ Xlabeled = ∅. (2)

We use this unlabeled dataset to simulate an online training

of the adaptive student network. Training more than one

epoch can be seen as a quasi-online training, where each

image is seen multiple times.

Similar to the static networks, we define θA as the adap-

tive student’s network parameters, yA(x) = FA(x, θA) as

the output of the adaptive student network and yAi,s(x) as

the posterior for the class s ∈ S at the pixel position i ∈ I.

Instead of training from scratch, we initialize our adaptive

student network FA with our trained static student network

FS, so that θA,t=0 = θS applies for the initialization step

t = 0. After initialization, we let the adaptive student net-

work tune its parameters by minimizing the following cross

entropy (CE) loss

JCE = −
∑

i∈I

∑

s∈S

yTi,s(x) · log yAi,s(x), (3)

In addition to the CE loss, we define a feature matching

(FM) loss, where we compare the feature representations of



each layer m ∈ M between the static student network S and

the adaptive student network A. We assume that the vulner-

ability of the static student network S is only given within

a subspace of its network parameters, i.e., feature represen-

tation. So, if we move the adaptive student network’s pa-

rameters θA away from this subspace, we should get better

robustness against static student nework’s AEs.

With this assumption, we define the FM loss as the p-

th power of the p-normed distance between the adaptive

student feature representations fAm(x, θA) and static student

feature representations fSm(x, θS) of the layer m ∈ M. Fur-

thermore, we divide the FM loss by the spatial resolution

Hm, Wm and number of feature maps Cm of the layer

m ∈ M, before computing the average over all layers

m ∈ M. With this we ensure that each feature represen-

tation is equally important. In sum, we get the following

complete FM loss

JFM =
1

|M|

∑

m∈M

||fAm(x)− fSm(x)||pp
Hm ×Wm × Cm

. (4)

Now we define an inverse feature matching (IFM) loss by

JIFM =
1

(JFM + β)γ
, (5)

which ensures that a high similiarity in the feature repre-

sentations is penalized. We add up the FM loss by β ∈ R
+,

to define an upper bound for JIFM and exponentiate the de-

nominator of the IFM loss (5) by γ to control its susceptibil-

ity to changes in the FM loss (4). Finally, we weight the CE

loss and IFM loss, leading to our complete teacher-student

(TS) loss

JTS = (1− α) · JCE + α · JIFM. (6)

In our experiments we use α ∈ [0, 1) in (6), and β = 1 as

well as γ ∈ {0.5, 1, 2} in (5). The interaction between the

static teacher network, the static student network, and the

adaptive student network, as well as the roles of the losses

in (3), (4), (5), and (6) is illustrated in Fig. 1. The weight

updates of the adaptive student network are supported by

the static teacher network’s output yT, while it is ensured

by the IFM loss that θA is not too similar to θS.

3.4. Redundant T­S­A strategies

Redundancy is a common defense strategy for system

failures in safety-critical systems. We consider the percep-

tion mechanism of an autonomous driving vehicle as such

a safety-critical system and thus neural networks under at-

tack to potentially lead to severe system failure. In order

to conquer this problem, we propose the use of an ensem-

ble of three significantly independent neural networks: a

static teacher network FT, a static student network FS, and

an adaptive student network FA, henceforth dubbed T-S-A

setting.

Our proposed T-S-A setting has two important proper-

ties. First, while the teacher network FT and the student

network FS are static and therefore vulnerable to gradient-

based adversarial attacks, the adaptive student network FA

is meant to be constantly adapted using the teacher-student

learning mechanism in Section 3.3. For an attacker this can

be seen as a moving target scenario, in which the adaptive

student network moves away from the vulnerable feature

space of the static student network FS, while simultanously

learning from the static teacher network FT. In our ex-

periments, we show that this moving target property helps

to increase the robustness in adversarial environments cre-

ated from static model knowledge. Secondly, our proposed

T-S-A setting comes with the fact of having three signifi-

cantly independent neural networks. This offers the oppur-

tunity to use schemes of majority decision or posterior fu-

sion. Moreover, the T-S-A setting can be integrated within

any perception mechanism, e.g., perception mechanism of

an autonomous driving vehicle, and used online.

In this work, we focus more on experiments showing the

ability of the adaptive student network to perform well in an

adversarial environment, created from static model knowl-

edge. Therefore, we leave the question of schemes for ma-

jority decision or posterior fusion open for future work.

3.5. Adversarial attack design

During inference neither the attacker nor the actual sys-

tem has knowledge about the ground truth. Therefore, the

attacker will generate adversarial examples (AE) on the

base of the system output. We also assume the attacker to

have full knowledge of the static networks, in our case the

static teacher network FT and the static student network FS.

In contrast to that, the dynamic behaviour of the adaptive

student network FA makes it nearly impossible to perform

gradient-based attacks. We choose the least likely method

described in [24] to generate AEs. We have

l(i) = arg min
s∈S

yi,s(x), (7)

with the least likely class l(i) ∈ S at the pixel position i for

an input image x. This leads to the following adversarial

cross entropy loss

JAE(x, θ) = −
∑

i∈I

log yi,l(i)(x). (8)

with yi,l(i)(x) being the probability for the least likely class

l(i) at the pixel position i. Using the loss in (8) we can

iteratively generate an adversarial example xadv
τ by

xadv
0 = x,

xadv
τ+1 = xadv

τ + r

= xadv
τ − λ sign(∇xJAE(x

adv
τ , θ)),

(9)



with the adversarial perturbation r, the step index τ , the step

size λ, the initialization point xadv
0 = x, and the gradients

∇xJAE(x
adv
τ , θ) with respect to the input image x. Follow-

ing [24], we also bound the infinity norm of an adversarial

example by

||r||∞ ≤ ǫ, (10)

where ǫ is the upper bound of the adversarial perturbation’s

infinity norm ||r||∞. We then compute the adversarial ex-

amples over min(ǫ + 4, 1.25ǫ) iterations. Considering the

above constraints and assumptions for the attacker, we gen-

erate sets of teacher adversarial examples (T-AEs) X adv
T and

student adversarial examples (S-AEs) X adv
S with the help

of (7), (8), (9) and (10), choosing the step size λ = 1 and

ǫ ∈ {1, 10} to obtain both a weak and a strong attack.

4. Experimental Results

In the following section we introduce the dataset as well

as our experimental results, each followed by a discussion

about the oberservations.

4.1. Datasets

Our experiments are done on Cityscapes [12], a dataset

with images of inner-city traffic scenes and correspond-

ing semantic segmentation labels. For our labeled dataset

Xlabeled we pick the official finely-annotated Cityscapes

training set containing 2950 image pairs. For our unlabeled

dataset Xunlabeled we take the official coarsely-annotated

Cityscapes training set containing 19998 image pairs, and

remove the coarse annotations during training.

We report our results on the clean and adversarial per-

tubated Cityscapes validation set using the (mean) intersec-

tion over union (IoU)

IoU =
TP

TP + FP + FN
, (11)

with the number of true positives TP, false positives FP and

false negatives FN in pixels. To compare the robustness of

different settings, we follow [1] and use the ratio between

the mean IoU on adversarial pertubated images and clean

images (mean IoU ratio).

Due to the Cityscapes test set upload restrictions, we

split the official validation set into two sets—a mini vali-

dation set (Lindau, 59 images) and a mini test set (Frank-

furt and Münster, 441 images). The adversarial pertubated

validation sets were generated by applying the adversarial

attack from Section 3.5 on the static teacher network and

static student network. We refer to the sets as mini valida-

tion T-AE and S-AE as well as mini test T-AE and S-AE.

4.2. Vulnerability of teacher and student

As a first experiment, we want to investigate the vulnera-

bility of the static teacher network (T) and static student net-

work (S). For this we train both networks following [4, 27]

Table 1: Mean IoU ratio on our Cityscapes mini validation

set (see Section 4.1) with different settings of adversarial

examples (AEs). T-AE and S-AE refer to adversarial exam-

ples created with the least likely method in Section 3.5 on

the static teacher network FT and static student network FS

with ǫ = {1, 10}. Results are reported for the static teacher

network (T), the static student network (S), and the adaptive

student network (A) trained without IFM loss. Mean IoU

ratios larger than 70 % are printed in bold.

no AE T-AE S-AE

F ǫ = 0 ǫ = 1 ǫ = 10 ǫ = 1 ǫ = 10

T 100.0 % 37.98 % 23.78 % 99.31 % 70.39 %

S 100.0 % 97.24 % 90.05 % 25.60 % 01.56 %

A 100.0 % 95.80 % 84.83 % 39.77 % 03.23 %

and [32] as described in Sections 3.1 and 3.2 using the offi-

cial Cityscapes finely-annotated training set Xlabeled.

We couldn’t exactly reproduce the results reported

in [32] with our reimplementation using TensorFlow.

Therefore, we changed the training procedure of the stu-

dent network and describe the key differences to [32] in the

following. We use the Adam optimizer in standard configu-

ration [22], combined with a polynomial learning rate decay

as in [47] and the initial learning rate η0 = 10−4, and train

the student network for 75,000 iterations with a minibatch

size of B = 6 resulting in roughly 150 training epochs. As

decribed in Section 4.1, we evaluate our results on the cre-

ated Cityscapes mini validation set.

We achieve a mean IoU performance of 75.43 % with

the static teacher network and 66.06 % with the static stu-

dent network on our Cityscapes mini validation set. To

compare the vulnerability of these two networks, we use

the mean IoU ratio composed of the mean IoU on AEs and

the mean IoU on clean images as described in Section 4.1

(see Tab. 1). As expected, we observe both the teacher and

the student network to be vulnerable against their respective

AEs, the student network even being more vulnerable than

the teacher network. In addition, both networks are quite

robust against the counterpart’s AEs.

Our observation emphasizes the importance of having

another supporting network. By just including an additional

static DNN, we cannot assure robustness towards its own

AEs by looking at the observations in Tab. 1. Accordingly,

we choose a continuously adapted DNN, which changes its

parameters in a dynamic fashion.

4.3. Robustness through T­S­A training

For our T-S-A setting we train the adaptive student net-

work as described in Section 3.3 using the Adam optimizer

in standard configuration [22] with a constant learning rate

of η = 10−5 and minibatch size of B = 3 for 66,667 itera-
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Figure 2: Curves showing the effects of different settings

for α on the clean image mean IoU (2a: Performance) as

well as mean IoU ratio between S-AEs (ǫ = 1) and clean

images (2b: Robustness), while keeping p = 1, β = 0.5
and γ = 1 using the FA-model trained with the IFM loss.

A reasonable trade-off between robustness and perfomance

is marked as Fbest
A .

tions, resulting in roughly 10 training epochs on the official

Cityscapes coarsely-annotated training set (no annotations

used). We consider this as a quasi-online training setting.

Performance without IFM loss. As a first experiment,

we train our adaptive student network without using the

IFM loss by setting α = 0 in (6). With this configura-

tion we achieve a mean IoU performance of 67.16 % on our

Cityscapes mini validation set. We reward the performance

gain of 1.10 % absolute to the fact that the adaptive student

network sees more data than the static student network.

Next, we analyze the robustness of the adaptive student

network without the IFM loss towards T-AEs and S-AEs us-

ing the mean IoU ratio (see bottom row in Tab. 1). While

the mean IoU ratio between T-AEs and clean images only

marginally decreased, the mean IoU ratio between S-AEs

and clean images increased with some significance. Even

without the IFM loss, the adaptive student network already

deviates a bit from the static student network. To further

relax the connection between these two networks, we in-

clude our new IFM loss in (5) in the next experiments with

different values for p, α, β and γ.

Effect of α-adjustment. As a second experiment, we

modify α ∈ [0, 1) in (6), while keeping p = 1 in (4) and

β = 0.5 as well as γ = 1 in (5). We purposely do not

experiment with α = 1, because this would dislocate the

CE loss from training, leading to destruction of the adaptive

student network’s classification capability. The effects on

the clean image mean IoU, and the mean IoU ratio between

S-AEs (ǫ = 1) and clean images are shown in Fig. 2.

By adjusting α we observe an interesting antisymmetric

behaviour between the performance (mean IoU) and the ro-

bustness (mean IoU ratio) of the adaptive student network.

Setting 0 ≤ α ≤ 0.6 increases the robustness, while only

(a) Performance (b) Robustness

Figure 3: Curves showing the effects of different settings

for γ on the clean image mean IoU (2a: Performance) as

well as mean IoU ratio between S-AEs (ǫ = 1) and clean

images (2b: Robustness), while keeping p = 1, β = 0.5
and α = 0.6 using the FA-model trained with the IFM

loss.

moderately decreasing the performance. Nevertheless, set-

ting α above 0.6 yields to significant performance losses.

With this observation, we set α = 0.6 for our next experi-

ments giving the best trade-off between performance preser-

vation (mean IoU of 54.10 %) and robustness gain (mean

IoU ratio of 84.95 %).

Next, we take the model Fbest
A giving the described trade-

off and train its network parameters for another 10 epochs

as described in the beginning of Section 4.2, except that we

further reduce the initial learning rate to η0 = 10−6, and

remove the IFM loss from training. Our motivation is to

optimize our robust adaptive student network Fbest
A towards

a better mean IoU on clean images in its current parameter

subspace. With this setting we obtain an increased mean

IoU of 59.96 % on clean images. At the same time, the

mean IoU ratio decreases down to 74.77 %. The decrease

in the mean IoU ratio can be explained by the double pe-

nalization through the increase in the mean IoU on clean

images from 54.10 % (model Fbest
A ) to 59.96 %, as well as

marginal decrease in the mean IoU on S-AEs from 45.96 %

(model Fbest
A ) to 44.83 %.

This small experiment shows that a further finetuning re-

sults in a significantly better mean IoU on clean images,

while keeping the mean IoU on S-AEs nearly constant.

Nevertheless, for the following experiments we dispense

with the finetuning step and analyze the effects of chang-

ing p and γ on our trade-off operation point model Fbest
A .

Effect of p-adjustment. Next, we experiment with

p = 2 in (4), while fixing α = 0.6 in (6), and β = 0.5
as well as γ = 1 in (5). This results in a mean IoU perfor-

mance of 63.73 % and mean IoU ratio of 47.45 %. Setting

p > 1 trades off performance (+9.63% absolute) for ro-

bustness (−37.50% absolute). We explain this observation

as follows: The susceptibility strongly depends on the ex-



Table 2: Mean IoU ratio on the Cityscapes mini test set

(see Section 4.1) with different settings of adversarial ex-

amples (AEs). T-AE and S-AE refer to adversarial exam-

ples created with the least likely method in Section 3.5 on

the static teacher network FT and static student network FS

with ǫ = {1, 10}. Results are reported for the static teacher

network (T), the static student network (S), the adaptive stu-

dent network (A) trained without the IFM loss, and the

adaptive student network (A) trained with the IFM loss.

Mean IoU ratios larger than 70 % are printed in bold.

no AE T-AE S-AE

F IFM ǫ = 0 ǫ = 1 ǫ = 10 ǫ = 1 ǫ = 10

T no 100.0 % 35.74 % 22.85 % 99.05 % 71.03 %

S no 100.0 % 97.03 % 90.49 % 23.97 % 01.29 %

A no 100.0 % 96.08 % 85.71 % 35.14 % 02.50 %

A yes 100.0 % 96.57 % 86.49 % 80.51 % 20.75 %

ponent of feature representation differences controlled by

the p-norm (see (4)). A larger p value focuses more on

singularities in the feature representation differences than

a smaller one. This leads to changes of only a small amount

of adaptive student network parameters keeping θA still in a

vulnerable subspace. This explanation is underlined by the

fact, that if we omit the p-exponent in (4) and let p → ∞,

we would get the supremum norm in the numerator

lim
p→∞

||fAm − fSm||p = max(fAm − fSm), (12)

and therefore only focus on the maximal feature representa-

tion differences between the adaptive student network and

the static student network in all layers.

Effect of γ-adjustment. Now, we pick the best config-

uration for p = 1 in Fig. 2 (Fbest
A , star marker) and analyze

the effect of using different values for γ = {0.5, 1, 2}. The

results are shown in Fig. 3.

As expected, adjusting γ affects the susceptibility of the

overall loss JTS to changes in the IFM loss during training.

Through our definitions in (4) and (5), we can argue that

the overall loss JTS has a chained suscpeptibility—an inner

susceptibility, controlled by p in (4), and an outer suscepti-

bility, controlled by γ in (5).

In contrast to the effect of p-adjustment, setting γ > 1
leads to a lower susceptibility of the overall loss JTS and

therefore helps the adaptive student network parameters to

deviate from the static student network ones. Conversely,

setting γ < 1 leads to a higher susceptibility of the overall

loss JTS and therefore keeps the feature representations of

the adaptive student network in some vicinity to the feature

representations of the static student network.

Final results. Finally, we combine all observations into

one final adaptive student network training and report on

our Cityscapes mini test set. We choose p = 1, α = 0.6,

β = 0.5 and γ = 1 and compare our results in Tab. 2.

First of all, we obtain 75.77 % mean IoU with the static

teacher network, 64.55 % mean IoU with the static student

network, 66.82 % with the adaptive student network ex-

cluding the IFM loss during training, and 53.01 % mean

IoU with the adaptive student network including the IFM

loss during training. If we compare the mean IoU and the

mean IoU ratios of the first three models in Tab. 2 with

the mean IoU and the mean IoU ratios in Tab. 1, we only

find marginal differences. Nevertheless, when we look at

our proposed teacher-student framework (see bottom row

in Tab. 2), we see astonishing results: The adaptive student

network trained with IFM loss shows both increased ro-

bustness against the teacher adversarial examples (T-AEs),

but most importantly, an impressive 80.51 % mean IoU ra-

tio for moderate student adversarial examples (S-AEs) (no

IFM loss: 35.14 %), and also a significant improvement for

strong S-AEs.

The enormous increase in robustness by introducing the

IFM loss to the training of the adaptive student emphasizes

again its effectiveness against adversarial attacks, generated

from static model knowledge. With this constellation of

having a triplet of DNNs, one could use forms of major-

ity vote or posterior fusion to benefit from the fact of hav-

ing two independent static networks, and one dynamic and

therefore hard-to-attack network. We leave the details of

decision fusion open for future work.

5. Conclusion

In this paper we report on the vulnerability of deep neural

networks (DNNs) for semantic segmentation towards ad-

versarial examples (AEs). In order to conquer this prob-

lem, we propose the use of teacher-student learning in com-

bination with an inverse feature matching (IFM) loss in a

DNN triplet setting, consisting of static and adaptive DNNs.

Through several experiments, we confirm that our proposed

IFM loss has significant effects towards the robustness of

adaptive student DNNs in an adversarial environment, cre-

ated from static model knowledge. Our method increases

the mean intersection over union (mean IoU) ratio between

static student adversarial examples and clean images from

about 35 % to about 80 % on the Cityscapes dataset. We

come to the conclusion that our proposed IFM loss has

great potential to strengthen the robustness of student DNNs

against their respective adversarial examples, and thereby

provide possibilities for a robust output fusion of the pro-

posed DNN triplet.
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Canada, Dec. 2014. 1

[3] P. Bilinski and V. Prisacariu. Dense Decoder Shortcut Con-

nections for Single-Pass Semantic Segmentation. In Proc.

of CVPR, pages 6596–6605, Salt Lake City, UT, USA, June

2018. 2

[4] J.-A. Bolte, A. Bär, D. Lipinski, and T. Fingscheidt. Towards

Corner Case Detection for Autonomous Driving. arXiv,

(1902.09184), Feb. 2019. 2, 3, 5
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