
Leveraging Semantic Embeddings for Safety-Critical Applications

Thomas Brunner1,2 Frederik Diehl1,2 Michael Truong Le1,2 Alois Knoll2

1 fortiss GmbH 2 Technical University of Munich

{brunner,diehl,truongle}@fortiss.org knoll@in.tum.de

Abstract

Semantic Embeddings are a popular way to represent

knowledge in the field of zero-shot learning. We observe

their interpretability and discuss their potential utility in a

safety-critical context. Concretely, we propose to use them

to add introspection and error detection capabilities to neu-

ral network classifiers. First, we show how to create embed-

dings from symbolic domain knowledge. We discuss how

to use them for interpreting mispredictions and propose a

simple error detection scheme. We then introduce the con-

cept of semantic distance: a real-valued score that mea-

sures confidence in the semantic space. We evaluate this

score on a traffic sign classifier and find that it achieves

near state-of-the-art performance, while being significantly

faster to compute than other confidence scores. Our ap-

proach requires no changes to the original network and is

thus applicable to any task for which domain knowledge is

available.

1. Introduction

Despite their remarkable performance, deep neural net-

works often produce errors (i.e. mispredictions) that seem

illogical to a human observer. Why was a traffic sign mis-

classified? Why was a pedestrian not detected? What was

the internal state of the network at the time, and what infor-

mation was contained?

Naturally, these questions are of great interest when de-

veloping safety-critical applications. Consider the field of

automated driving: In an industry that depends not only on

safety, but also on its perception by customers, there is a

need for systems that can explain their decisions, and do so

in a way that looks rational to humans.

But this is currently not the case. In large neural net-

works, knowledge is typically so entangled that it cannot be

easily interpreted [2]. Even worse, when a mistake is made,

predictors often report high confidence scores (e.g. through

softmax activations), when in reality they should report sig-

nificant uncertainty [5].

So what is the missing link? Humans are often equipped

Figure 1. Semantic embedding for a traffic sign classifier. Features

are projected to a representation which is directly derived from

domain knowledge about the classification task.

with additional domain knowledge that captures the seman-

tics of the task at hand. This allows them to judge whether a

result seems plausible and to discard it otherwise. It would

be desirable to have systems with neural networks do the

same: capture semantics of the current situation, use this

knowledge to perform sanity checks and finally report the

confidence they have in their own decisions.

To achieve this goal, we draw inspiration from the field

of zero-shot learning. There, a variety of methods exists for

constructing so-called semantic embeddings [9], which en-

code semantic information into vector spaces and can easily

be applied to neural network features.

In zero-shot learning, these projections are used to rec-

ognize images of previously unseen classes, based on their

semantic attributes. Here, we propose to leverage the same

representations in a safety context, and thereby gain inter-

pretability and error detection capabilities.

Our contribution is as follows:

• We discuss how to form semantic embeddings from

domain knowledge and how to use them to perform

sanity checks on neural network predictions.

• We generalize this notion to a real-valued semantic

confidence score, which can be used like an uncertainty

estimate.

• In a proof of concept, we show that this simple score

achieves state-of-the-art performance on a selective

classification task, while at the same time being sig-

nificantly faster than established methods.

2. Related work

2.1. Leveraging symbolic knowledge

The idea of combining expert domain knowledge with

machine learning techniques has a long history. In the

1990s, much work went into the formulation of so-called

hybrid learning methods which tried to directly inject sym-

bolic knowledge into machine learning models [13], or to

extract rules from them [4].

However, most of these techniques are impractical to use

with the neural networks of today, which are very large and

trained with great amounts of data. For example, a sym-

bolic initialization as proposed in [13] would certainly be

overwritten by the lengthy training procedure. Similarly,

symbolic rule extraction from neural networks [4] is compu-

tationally prohibitive for large networks, and the extracted

knowledge is hardly interpretable by humans. Hence, those

techniques are difficult to apply to the networks of today.

2.2. Semantic embeddings

More recently, another way to leverage domain knowl-

edge has emerged in the field of zero-shot learning: se-

mantic embeddings. In their simplest form, they can be de-

scribed as feature spaces where each dimension encodes a

high-level semantic property [9].

The zero-shot learning task consists of recognizing ex-

amples of previously unseen classes, and many techniques

exist to create suitable embeddings for it. Perhaps the sim-

plest is Direct Attribute Prediction (DAP) [7], where a clas-

sifier learns to identify semantic attributes that are defined in

a symbolic knowledge base. The class can then be inferred

by reasoning over these attributes.

There are more sophisticated forms of embeddings, and

most work in this field has moved away from predefined

symbols and towards learning representations in a semi-

supervised manner [14]. However, while this improves per-

formance on the zero-shot learning task, it also destroys

two major aspects that we are interested in: symbolic inter-

pretability and the ability to import those symbols directly

from an existing knowledge base. For this reason, we focus

on the most basic technique, which is DAP [7].

In Zero-shot learning, semantic embeddings are used for

improved generalization capabilities. But is that the only

possible application? It seems obvious that such an em-

bedding space – especially in the form of human-readable

attributes – could be of tremendous use for interpretability,

safety and security. This is precisely our aim: to have a

feature space that is human-readable, and to use it to detect

classifications that are implausible, or plainly wrong.

2.3. Measuring confidence

Typically, implausible predictions are detected by calcu-

lating a confidence score that increases with the likelihood

of a correct classification, and vice versa. By applying a

threshold, predictions with low confidence can then be dis-

carded. Here, we describe established methods to calculate

such a score before introducing our own in Section 3.

Softmax: Perhaps the simplest way to measure confi-

dence in a neural network classifier is to use the raw softmax

output [3]. While this method has been shown to produce

rather inaccurate confidence scores [1, 5], it still remains in

widespread use to this day.

Monte-Carlo Dropout (MCD) [5]: One of the most

promising approaches is Monte-Carlo Dropout, which ac-

tivates Dropout [11] at inference time to approximate the

behavior of a Bayesian Neural Network. This method sam-

ples the network multiple times and produces a distribution

of outputs, from which uncertainty can then be estimated.

This method can be applied without modification to the net-

work, but requires training with Dropout. It has been shown

to perform well, but is very expensive to compute: multiple

forward passes must be performed (Gal et al. [5] recom-

mend 100) to produce the estimate.

NN-Distance (NND) [8]: This approach is perhaps the

closest to our own work. The authors propose to use the

feature space of the penultimate layer to calculate the Eu-

clidean distance between an example and its nearest neigh-

bors in the training set. Intuitively, if this distance is high,

then the example is an outlier and the prediction is less con-

fident. They report high performance, but only if the net-

work is retrained with an additional loss term specifically

geared towards their score. While NND only needs one for-

ward pass, it has to store a representation of the training data

and perform k-Nearest-Neighbor search on it. With vari-

ous optimizations, time and memory requirements are much

lower than for MCD, but still higher than for our method, as

we discuss in Section 4.

3. Semantic embeddings for safety

We now present our approach for detecting mispredic-

tions. We first discuss how to construct semantic embed-

dings from a symbolic knowledge base, then describe how

to perform simple error detection, and finally introduce the

concept of semantic distance, which is a general-purpose

confidence score that is directly derived from the provided

domain knowledge.

3.1. Design of the embedding space

Let F = {f1, . . . , fm} ∈ R
m×n denote the features

of a data set, where m is the number of examples and

n the number of features provided by a feature extractor

(e.g. the last hidden layer of a neural network). Then

S = {s1, . . . , sm} ∈ R
m×k is the corresponding semantic

embedding of the examples, where each example is repre-

sented by a k-dimensional attribute vector. We refer to this

as the semantic space.

How does one know which attributes to choose for this

space? Technically any form of embedding can be used, but

for the sake of simplicity we limit ourselves to DAP, with

attributes generated from a knowledge base K. Formally,

given the class labels Y , K provides a mapping Y → S
that can be used to generate semantic annotations SY from

the ground truth of an annotated data set.

The simplest way to design such a knowledge base is to

manually define attributes that intuitively make sense to a

human, so that they can later be used to explain the pre-

dicted label. For example, if our goal is to create an embed-

ding for traffic sign classification, we might define attribute

groups such as color, shape, pictogram, etc., one-hot encode

them, and then concatenate everything into a single vector

(see Figure 1). The goal is not to achieve a perfect layout of

the embedding space, but to have it contain attributes that

intuitively make sense to a human. Section 4 contains a

description of the knowledge base that we use in our exper-

iments.

3.2. Projection method

Similar to the design of the embedding space, the choice

of projection method is not critical for showcasing our ap-

proach. We therefore use the Semantic Autoencoder (SAE)

[6] technique, which is applied to the last hidden layer of

the network and learns a linear projection from it into the

attribute space. This method is simple, fast and has recently

shown remarkable performance on the Zero-Shot Learning

task.

SAE learns a projection matrix W , so that S = W ×
F . As an additional constraint, the same matrix is used to

project back into feature space: F̂ = WT × S. W is then

obtained by minimizing the reconstruction error ||F − F̂ ||2.

The resulting matrix W is essentially a linear classifier, but

the added constraint has been shown to drastically improve

the quality of the semantic representation [6].

To create the embedding for an existing classifier, one

can simply reuse the original training data and extract fea-

tures and semantic annotations from it. Now that both

Ftrain and SYtrain
are provided, W can be efficiently cal-

culated with the Bartels-Stewart algorithm. This is very fast

and, as we show in Section 4, can be applied to large data

sets in a matter of seconds.

Figure 2. Examples of mispredictions. The classifier wrongly pre-

dicts ”no overtaking” instead of ”end of no overtaking”. However,

our embedding shows that the features recognized by the network

are not consistent with the knowledge base: after projection, the

semantic vector for this prediction states ”round, red, crossed out,

cars, no number”, which is not a valid configuration. This is de-

tected as an error, and the prediction discarded. The color attribute

in the semantic vector also hints at the likely cause: Chromatic

aberration may have excited neurons that respond to red.

3.3. Detecting errors

For any input, given the feature vector f and projection

W , we receive the attribute vector spred = Wf . We also

have a set of valid configurations Sproto = {s1, . . . , sc},

each of which is the prototype of a class label in the seman-

tic space (provided by the knowledge base, with c being the

number of classes). To check for an error, we merely need

to compare spred to all elements in Sproto.

The concept of prototypes is certainly not new. Typi-

cally, they are used for classification tasks and are created

directly from the input (training) data [10]. Our prototypes

however are not created from examples, but purely from

knowledge about the classes. In this way, we invert the idea:

our semantic space is an embedding of labels, not of exam-

ples.

The easiest way to detect an error is to use argmax on

each individual attribute group and then do a binary com-

parison. See Figure 2, where an invalid prediction is recog-

nized, as the example spred /∈ Sproto. This is a strong in-

dicator that the feature extractor has performed poorly, and

therefore the prediction given by the original classifier is

unlikely to be correct.

In this way, the semantic embedding forms an error-

detecting code with human-readable explanations. This in

itself is already useful, as it performs a much-desired ”san-

ity check”, but it also provides a lead as to where the feature

extractor might have a specific weakness.

3.4. Semantic distance as a confidence score

Binarizing the attributes is useful, but it incurs a great

loss of information. Instead of clamping the values of spred,

hoping to hit a valid attribute configuration, we can simply

measure the distance to the prototype of the predicted class

in the embedding space.

Let y be the class label originally predicted by the clas-

sifier. Then sy ∈ Sproto is the prototype attribute configu-

ration for this class, as obtained from the knowledge base.

We can now compare spred and sy with a distance metric of

our choice. Since the attribute vectors are not normalized,

we use cosine similarity to formulate the following seman-

tic distance score:

d = 1− cos(θ) = 1−
spred ◦ sy

||spred|| ||sy||

Hence, d is the rotational error between a prediction and

the class label in the semantic space. This allows us to use d
as a general-purpose confidence score: 0 is a perfect match

and 1 indicates orthogonality. By introducing a threshold ǫ,
we can formulate a selective classification system that finds

and discards predictions with high semantic distance, i.e.

for which d > ǫ. Now we can directly evaluate our method

against existing confidence scores.

4. Experiments

We apply our method to a neural network classifier on

the GTSRB data set [12]. First, we show an example of how

typical mispredictions can be detected, discarded and ex-

plained with semantic attributes. We then proceed to bench-

mark our semantic distance score against two recently pro-

posed confidence scores, Monte-Carlo Dropout (MCD) and

NN-Distance (NND), on the task of selective classification.

4.1. Setup

Data set: Our method can be applied to any classifier,

but we cannot choose an arbitrary data set. In its current

form, our approach depends on domain knowledge which

is provided by a knowledge base of semantic attributes. It

would be difficult to formulate sensible attributes for classes

of MNIST or CIFAR, on which most confidence scores have

been benchmarked so far. This is a drawback which we aim

to address in future work (see Section 5).

Instead, we choose to evaluate our method on the Ger-

man Traffic Sign Recognition Benchmark (GTSRB) [12].

This data seems to be a natural fit: Semantic attributes can

be easily formulated, and traffic sign classification is a good

example of a safety-critical application. The GTSRB has 43

different classes and consists of 39209 training and 12630

test images.

Knowledge base: In order to describe the semantic at-

tributes of a broad range of traffic signs, we create a knowl-

edge base of five multi-valued attribute groups:

• Shape (5): round, triangular, ...

• Color (4): red, blue, ...

• Crossed out (2): yes, no

• Pictogram (29): none, number, children, frost, ...

• Number (9): none, 20, 30, ...

Each traffic sign has exactly one value for each attribute

group, i.e. values are mutually exclusive and the zero vector

is avoided. In this way, a ”speed limit 60” sign is defined

by ”round, red, not crossed out, number, 60”. The resulting

semantic space is of dimensionality k = 49.

Classifier: As the GTSRB benchmark is a rather simple

task, we can use a reasonably small model to demonstrate

our concept. Our network consists of 3 blocks of 2 convolu-

tional layers each, one fully-connected layer and an output

layer with softmax. We train with Dropout after each block

and after the fully-connected layer. After training, the clas-

sifier achieves 99.27% accuracy on the test set, i.e. there are

roughly 100 mispredictions.

Semantic Embedding: We apply SAE to the last hidden

layer of the classifier. Using the knowledge base, we gener-

ate ground truth semantic annotations for all examples, and

then optimize the SAE equation over the entire training set

to obtain the projection. SAE has a regularizing parameter

λ, for which we have found 0.1 to work well.

4.2. Interpreting mispredictions

To display the individual attributes of a prediction, we

can simply split the predicted semantic vector spred into its

individual attribute groups and perform argmax on each

group. This can be used for error detection, but it may also

give us valuable hints about what may have been the cause

for misprediction.

Consider Figure 2: we curiously find that the classifier

sometimes confuses ”no overtaking” with ”end of no over-

taking” signs. A glance at the semantic vector reveals the

likely cause: for both examples, the semantic vector shows

”red” as the dominant attribute in the ”color” group. This

means that, somewhere inside the classifier, those neurons

that are trained to react to red traffic signs have high acti-

vations. And indeed, we find that the images feature red

chromatic aberration, an effect that seems to be mostly ab-

sent from the training set.

In this way, the embedding has helped us identify a

weakness in the classifier that could be remedied, for ex-

ample by implementing data augmentation strategies. In

any case, since the semantic vector does not correspond to a

valid class prototype, the error is detected and the prediction

can be safely discarded.

4.3. Confidence scores

We now benchmark our proposed semantic distance

score against MCD and NND on the task of selective clas-

sification.

MCD: [5]: Since our network is trained with Dropout,

we can simply activate it at inference time. For each exam-

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Softmax, AUC=0.92
NN-Distance, AUC=0.93
Monte-Carlo Dropout, AUC=0.98
Ours, AUC=0.97

Figure 3. ROC curves for several confidence scores. The goal is to

achieve a high true positive rate, while at the same time keeping

false positives low. Our proposed semantic distance score is simi-

lar in performance to MCD, while requiring only one forward pass

to compute. Softmax fails to reach 1.0 as it reports the maximum

confidence value for a range of misclassifications.

ple in the test set, we run 100 forward passes and estimate

uncertainty from the output variance.

NND [8]: We extract the features of the penultimate

layer for the entire training set. At inference time, we cal-

culate NND with all training examples. The authors rec-

ommend various schemes to retrain the classifier in order

to increase the performance of their method, but we refrain

from this, as we are strictly interested in a plug-and-play

scenario, where no modification is necessary.

Selective classification: Distance scores and uncertainty

estimates generally approach zero as confidence increases.

Therefore, we can define a threshold ǫ, above which an ex-

ample is rejected. In other words, this is a detection task

where every correct prediction should have high confidence,

and mispredictions should be detected via the threshold.

As is commonly done for detectors, we use ROC curves

that balance true positives against false positives at a mov-

ing ǫ. We then use the area under this curve (AUC, higher

is better) to directly compare all methods.

Results: Figure 3 shows the result of our evaluation. The

most effective method is MCD and our proposed semantic

distance is in second place, having only slightly lower AUC.

This means that we do not outperform the state of the art,

but almost match it with a method that is both more inter-

pretable and significantly faster.

NND exhibits slightly lower performance. We are aware

that the authors suggest various strategies to retrain the clas-

sifier before performing detection, and that the setting we

consider does not allow this – therefore our experiment does

not play to their strengths. Nevertheless, it shows that sim-

ply performing out-of-distribution detection in the feature

space of a hidden layer may not be an optimal strategy when

used out-of-the-box. We do note however that retraining a

network to improve the layout of a feature space is con-

ceptually close to engineering an embedding. This connec-

tion seems interesting, and we aim to investigate it in future

work.

Finally, Figure 3 also shows a confidence score obtained

from Softmax. It performs very well at first but then fails

to detect the last remaining mispredictions. This is in line

with prior work – Softmax has a tendency to report perfect

scores (1.0) for classifications in which the model actually

has high uncertainty [1, 5].

Runtime considerations: The strongest method, MCD,

is also the slowest. Running 100 forward passes for a sin-

gle prediction may incur prohibitive costs for many appli-

cations. NND requires only one forward pass, but needs to

compare the features of an input against a large number of

data points in the training set (the authors recommend all

of them). K-nearest-neighbor search can be heavily opti-

mized, but still requires significantly more calculation than

our method: The semantic distance can be obtained by per-

forming a single dot product with the prototype of the pre-

dicted class.

5. Conclusion

We have shown how Semantic Embeddings can be ap-

plied to Neural Networks for the purpose of interpretability

and safety. These representations are generated from expert

domain knowledge, offer insight into the nature of mispre-

dictions and allow for automated detection of errors. We

have also proposed a new confidence score that measures

semantic distance in the space of such an embedding and

that can be used in much of the same way as an uncertainty

estimate.

In a simple proof of concept, we have shown that this

score achieves very good performance on a selective clas-

sification task, while being significantly easier to compute

than other confidence measures. Our score does not re-

quire modification of the original network and is thus easily

implemented whenever a knowledge base of semantic at-

tributes is available.

Our approach has one drawback: in its current form, it

requires a manually defined knowledge base. The prob-

lem could be approached in two ways: symbolic knowledge

could be acquired and transformed from existing large-scale

knowledge bases (e.g. CYC). Alternatively, one could au-

tomatically learn the semantics of the embedding from data

– this is also the direction on which the field of zero-shot

learning is currently focused. We expect this to improve

performance, but at the same time degrade interpretabil-

ity. It should be interesting to investigate closer the nature

of this trade-off, and to identify the deciding factors that

lead to good embeddings, strong interpretability and high-

quality confidence scores.

Overall, we have shown that semantic embeddings can

be applied to safety-critical applications in a way that is

both simple and powerful, and we believe that this com-

bination holds much promise for the future.

Acknowledgements

This research has been supported by the Bavarian Min-

istry of Economic Affairs, Regional Development and En-

ergy as part of the fortiss project ”Dependable AI”.

References

[1] A. Bendale and T. E. Boult. Towards open set deep net-

works. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition, CVPR’16, pages

1563–1572, 2016. 2, 5

[2] Y. Bengio, A. Courville, and P. Vincent. Representation

learning: A review and new perspectives. IEEE Trans. Pat-

tern Anal. Mach. Intell., 35(8):1798–1828, Aug. 2013. 1

[3] L. P. Cordella, C. De Stefano, F. Tortorella, and M. Vento.

A method for improving classification reliability of multi-

layer perceptrons. IEEE Transactions on Neural Networks,

6(5):1140–1147, 1995. 2

[4] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Sym-

bolic knowledge extraction from trained neural networks: A

sound approach. Artif. Intell., 125(1-2):155–207, Jan. 2001.

2

[5] Y. Gal and Z. Ghahramani. Dropout as a bayesian approx-

imation: Representing model uncertainty in deep learning.

In Proceedings of the 33rd International Conference on Ma-

chine Learning, ICML’16, pages 1050–1059, 2016. 1, 2, 4,

5

[6] E. Kodirov, T. Xiang, and S. Gong. Semantic autoencoder

for zero-shot learning. In Proceedings of the 2017 IEEE

Conference on Computer Vision and Pattern Recognition,

CVPR’17, pages 4447–4456, 2017. 3

[7] C. Lampert, H. Nickisch, and S. Harmeling. Learning to de-

tect unseen object classes by between-class attribute transfer.

In Proceedings of the 2009 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR’09, pages 951–958,

2009. 2

[8] A. Mandelbaum and D. Weinshall. Distance-based confi-

dence score for neural network classifiers. arXiv preprint

arXiv:1709.09844, 2017. 2, 5

[9] M. Palatucci, D. Pomerleau, G. Hinton, and T. M. Mitchell.

Zero-shot learning with semantic output codes. In Proceed-

ings of the 22nd International Conference on Neural In-

formation Processing Systems, NIPS’09, pages 1410–1418,

2009. 1, 2

[10] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks

for few-shot learning. In Neural Information Processing Sys-

tems, NIPS’17, 2017. 3

[11] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. R. Salakhutdinov. Dropout: a simple way to prevent neu-

ral networks from overfitting. Journal of Machine Learning

Research, 15:1929–1958, 2014. 2

[12] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs.

computer: Benchmarking machine learning algorithms for

traffic sign recognition. Neural networks : the official journal

of the International Neural Network Society, 32:323–32, 02

2012. 4

[13] G. G. Towell and J. W. Shavlik. Knowledge-based artificial

neural networks. Artif. Intell., 70(1-2):119–165, Oct. 1994.

2

[14] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata. Zero-shot

learning - a comprehensive evaluation of the good, the bad

and the ugly. IEEE Transactions on Pattern Analysis and

Machine Intelligence, PP, 2017. 2

