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Abstract

Training a deep neural network is a non-trivial task. Not

only the tuning of hyperparameters, but also the gathering

and selection of training data, the design of the loss func-

tion, and the construction of training schedules is important

to get the most out of a model. In this study, we perform a

set of experiments all related to these issues. The model

for which different training strategies are investigated is the

recently presented SDC descriptor network (stacked dilated

convolution). It is used to describe images on pixel-level for

dense matching tasks. Our work analyzes SDC in more de-

tail, validates some best practices for training deep neural

networks, and provides insights into training with multiple

domain data.

1. Introduction

Nowadays, advances in computer vision are dominated

by deep learning approaches. The impressive success on

various topics and tasks for all kinds of applications cat-

alyzes ever more research in this field. Though a principled

way for learnable representations, classifiers, and regres-

sors is endorsed, our current understanding of deep neu-

ral networks lacks behind. Networks are often handled as

black boxes due to the stochastic and iterative nature of

back-propagation, the un-interpretable interior of deep and

wide architectures, and the increasing number of hyper-

parameters.

These facts lead to a conflict for complex, yet safety-

critical applications like autonomous driving. On the one

hand, most recent achievements for core components of

self-driving cars, like perception or action planning, are

enabled by deep learning. On the other hand, the robust-

ness and reliability of these components remain unexplored

which introduces high risk since neither the probability nor

the possible maximum harm of wrong decisions is known.

As a result, we need networks that are more inter-

pretable, more robust (however robustness can be defined),

and less self-confident (i.e. providing a measure of cer-

tainty).

Moreover, part of the success of deep learning is driven

by the availability of data. Astonishing results are often

obtained only by increasing the amount of training data,

using deeper architectures, and thus requiring even more

data. Along with that, the computational effort for train-

ing increases likewise, introducing another limiting factor.

While, in principle, there is nothing wrong with using more

data, one has to keep in mind that data (labeled or unla-

beled) is differently scarce for different domains and appli-

cations. Thus, a working model for one domain might not

be transferable to another. Further, an advanced usage of

only very few data is essential to limit the expensive efforts

for annotation. As a conclusion, the available data should

be used as efficient as possible to train more accurate and

robust models in less time.

In this study, we will focus less on the selection of the

architecture, but instead use an existing, shallow model that

incorporates an understanding of the given problem into its

design [27]. Rather, we will investigate effects of training

procedures and data in the hope to derive some heuristics

that can guide others when training deep neural networks.

Our use case is embedded in the context of environmen-

tal perception for automotive applications. In detail, the

network under consideration is the recently presented SDC

network [27] that was designed for image description to aid

dense matching tasks, like in optical flow or stereo disparity

estimation. Matching is a mid-level computer vision task

that can be used to reconstruct geometry and estimate mo-

tions and therefore it builds the foundation for high-level

perception and planning tasks which are required for ad-

vanced driver assistance systems and autonomous vehicles.

The rest of the paper is structured as follows. In Sec-

tion 2, we describe some related work and introduce the

relevant data sets for our experiments. The SDC feature

description network that we use in our study is explained

in Section 3 along with some deeper analysis. Our experi-

ments are presented in Section 4. We summarize our results

in Section 5.
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Table 1: Characteristics of different data sets.

Data Set Task
Number of

Sequences

Frames per

Sequence

Image

Size [MP]

Color

Space

Synthetic

Real

Automotive

Context

KITTI [20] sf 200 1 0.46 RGB R yes

FlyingThings3D [19] sf 2239 10 0.52 RGB S no

Driving [19] sf 1 800 0.52 RGB S yes

Sintel [3] mix 23 46 0.45 RGB S no

HD1K [16] of 35 30 2.8 Gray R yes

Middlebury Flow [2] of 8 1 0.25 RGB both no

Middlebury Stereo [22] st 15 1 1.1 - 17.4 RGB R no

ETH3D [23] st 16 1 0.31 / 0.46 Gray R no

2. Background

Related Work. The importance of training data and

schedules for end-to-end optical flow estimation was in-

vestigated in [18, 28]. In [18], the usability of synthetic

data for transfer learning (in the form of pre-training + fine-

tuning) was investigated. The authors conducted a series

of experiments about lighting, data augmentation, displace-

ment statistics, simulation of realistic noise when generat-

ing synthetic images, hyperparameter tuning, and the im-

portance of the order when training with multiple data sets.

The model under review was FlowNet [7, 14]. Advanced

training strategies for PWCNet [29] were presented in [28].

Here, the focus was to adjust the training process to im-

prove generalization of the network for the Robust Vision

Challenge1.

The work in this paper conducts a similar empirical study

with focus on training strategies for deep neural networks.

Contrary to the previous work, our model of interest is a

generic feature description network that is not restricted to

the optical flow problem.

Matching Tasks. SDC [27] was presented as a generic

feature descriptor that can be used for any dense match-

ing task, e.g. stereo, optical flow, or scene flow matching.

Finding image correspondences for these problems is re-

lated to different image pairs. For optical flow (of ), im-

ages are matched in the temporal domain, taken with the

same camera. For stereo matching (st), we have two dis-

tinct rectified cameras that capture images simultaneously.

A combination of both (mix) is possible if a data set pro-

vides ground truth for optical flow and stereo disparity. If

the annotations further provide a measure for the change of

depth, image correspondences between stereo cameras over

time (cross, (cr)) can be established. A data set that con-

tains labels for st, of, and cr is capable of training full scene

flow (sf ) matching. In Section 4, we will show that these

matching tasks have quite different characteristics.

1www.robustvision.net

Data Sets. As mentioned in the introduction, data is of ut-

most importance for training. Increasing effort is spent on

capturing, labeling, or generation of large data sets for dif-

ferent domains to enable training of deeper and larger mod-

els. Generalization to unseen samples – and even more to

unseen domains – remains a challenging problem for neu-

ral networks. Yet, a tendency to overcome this issue by

extensive use of more and diverse data is evident in recent

publications [1, 29].

For many applications it is hard, tedious, or impossible

to collect labeled training data (e.g. optical flow) even con-

sidering manual annotation. Therefore, synthetic data sets

are often used for training followed by fine-tuning on the

target domain to transfer what was learned. Advantages of

synthetic data generation include large scale and dense, ex-

act ground truth annotations. However, image appearance

(even if photo-realistic) might not fit the realistic data, thus

increasing the problems of generalization, overfitting, and

domain adaption.

One synthetic data set, that is relevant for our work, is

FlyingThings3D (FT3D) [19] since it is, besideds KITTI

[8, 20], the only other data set providing full scene flow

labels. Especially the Driving subset of FT3D is relevant,

because it simulates a traffic scenario. MPI Sintel [3] is

also quite large and provides optical flow and stereo labels,

making it a possible candidate for deep training.

Among realistic data sets, KITTI [20] is the natural

choice since it provides scene flow ground truth (though

sparse) in an automotive context. The data of HD1K [16]

is also captured from a stereo camera mounted on a driv-

ing vehicle, but it provides only annotations for optical flow

correspondences. The original SDC network was addition-

ally trained on the other data sets that are part of the Robust

Vision Challenge1 for stereo and optical flow (Middlebury

(MB) [22, 2] and ETH3D [23]). However, the latter three

are not suitable for training because they are very limited in

size. An overview of all these data sets is given in Table 1.



Figure 1: The architecture of the SDC feature descriptor network [27].

3. SDC Features

Network Architecture. The SDC network for feature de-

scription [27] was recently published and demonstrated

superior performance over heuristic descriptors like SIFT

[17] when applied in state-of-the-art matching algorithms

(ELAS [9], SGM [12], CPM [13], FlowFields++ [25], and

SceneFlowFields [26]). SDC was further shown to be more

accurate and robust in patch matching compared to other

feature networks. Its properties and the presented experi-

ments make SDC a good candidate for generic feature com-

putation in all kinds of architectures and applications.

The SDC network uses the concept of stacked dilated

convolutions which is motivated by the observation, that

dilated convolution is equivalent to regular convolution on

sub-sampled input data. Therefore, concatenating the out-

put of parallel dilated convolutions is producing a multi-

scale feature representation of the input.

The proposed architecture of [27] consists of five such

stacked dilated convolution layers, each with 4 parallel con-

volutions with 5×5 kernels and dilation rates d = 1, 2, 3, 4.

This setup yields a receptive field of 81 pixels with a dense

feature prediction for every input pixel. The complete struc-

ture of the SDC network is visualized in Figure 1.

Training. The original SDC model was trained with a

mixture of data from KITTI [20], Sintel [3], HD1K [16],

Middlebury (MB) [22, 2], and ETH3D [23]. The ratio of

used training patches was 0.5, 0.175, 0.175, 0.05/0.025,

and 0.075 respectively, which is in accordance to the vari-

ance and scale of the labeled data of each data set as

shown in Table 1. The optimizer in [27] is ADAM [15]

with a progressive learning rate decay (cf. Figure 6). In

[27], a triplet training strategy was applied, where a ref-

erence image patch along with the corresponding and a

non-corresponding patch are sampled randomly. SDC was

Dilation: 1

Dilation: 2

Dilation: 3

Dilation: 4

Figure 2: Convolution kernels for the first SDC layer of the

SDC feature network [27]. The color gives the respective

sensitivity to the RGB color channels of the input images.

trained with batches of 32 triplets for 1 million iterations

with a thresholded hinge embedding loss [1].

Feature Analysis. The original training strategy is used

for our deeper analysis of SDC features. First, we visualize

the learned kernels of the first SDC layer (see Figure 2). The



(a) Input Image

(b) Channel 26

(c) Channel 53

(d) Channel 66

(e) Channel 103

Figure 3: Some SDC feature channels for the given input

image.

first learned filters with a dilation rate of 1 show a high sim-

ilarity to two-dimensional second order Gaussian kernels.

For higher dilation rates, the kernels become less intuitive.

There are also some filters that respond to a certain color.

Next, we present some of the normalized filter responses

of the last SDC layer, i.e. the final feature representation,

for an exemplary image in Figure 3. Different channels for

coarse and fine structures can be identified clearly. One spe-

cial observation is, that one feature channel dominates the

representation, i.e. all values are 1, the maximum. Further

experiments showed that this dimension is the same for all

investigated images on all data sets. Also interesting is the

fact that more than one third of all dimensions does not con-

tribute to the description significantly, i.e. the features for

these channels are all very close to zero for all data sets.

The amount of ”dead channels” decreases for increasing di-

lation rates (conv5-1: 18, conv5-2: 16, conv5-3: 12, conv5-

4: 7). However, the remaining channels (not 0 and not 1)

are all equally important for description according to their

variance.
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Figure 4: Misclassified triplets from the KITTI test split for

the original SDC network.

Failure Cases. We evaluate SDC [27] on a test set of

patch triplets. A triplet is considered as misclassified, if

the feature distance of the corresponding image patches

is smaller than the feature distance of non-corresponding

patches (cf. Section 4). Some representative, misclassified

triplets from the KITTI test set are depicted in Figure 4. The

failure cases can be clustered into the following categories

where one triplet can belong to multiple classes: Vegetation

(34 %), dynamic objects (29 %), occlusions (18 %), bound-

ary regions (16 %), homogeneous patches (14 %). While

homogeneous, untextured and occluded regions can only be

matched with a wider receptive field (i.e. changing the ar-

chitecture to consider more context knowledge), the issues

of dynamic foreground objects and vegetation can be tack-

led by changing the training schedule as done in the next

sections. The only reliable way to handle image boundaries

is to ignore them during feature computation and matching.

4. Empirical Study

The experiments within this section are split into two

groups. First, we investigate how training can be improved
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Figure 5: Comparison of different training setups.

in general. The second part focuses more on data and top-

ics related to training on multiple domains. Unless stated

otherwise in our experiments, a single data set model is al-

ways trained on all available image pairs (e.g. KITTI uses

all three image pairs of the scene flow). As major evaluation

criterion, the triplet accuracy is used. That is the percent-

age of properly distinguished patch triplets (corresponding

feature distance is smaller than non-corresponding feature

distance).

4.1. Improved SDC Training

Hard Mining. Hard mining is a well documented tech-

nique to speed up training and increase the accuracy es-

pecially for difficult samples [24]. It is also helpful when

training with imbalanced data [6]. The idea is to ignore

samples with a sufficiently accurate prediction during train-

ing and focus more on samples with less accurate or wrong

predictions. In our case, we implement offline hard mining

by ignoring triplets with zero loss, i.e. positive distance is
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Figure 6: Monotonic decreasing learning rate schedule and

two versions for learning rate disruption.

below a threshold and the negative distance is higher than

the margin (cf. the thresholded hinge embedding loss in

[27]). The expected behavior of training with hard mining

is threefold. First of all, we expect higher (average) losses

since zero losses are neglected. Secondly, training should

be speeded up because higher losses lead to higher gradients

in more relevant directions. Lastly, the predictions for diffi-

cult samples should be more accurate. Figure 5a shows the

validation accuracy during training with and without hard

mining. Not only is the training much faster, it also reaches

a higher final accuracy.

Region Sampling. Foreground objects on KITTI are one

of the identified failure categories. In [27], the authors ar-

gue that this is due to the under-representation of dynamic

foreground in the KITTI data set (only about 15 % of the

available ground truth). Apart from hard mining, we can

tackle this issue by manually balancing different image re-

gions during patch sampling. Since ground truth object seg-

mentation is available for KITTI training images, we can

sample our reference patches for training equally often from

foreground objects and static background regions. A com-

parison between balanced sampling and uniform random

sampling is presented in Figure 5b by plotting the valida-

tion accuracy during training on KITTI optical flow data for

different image regions (foreground (fg) / background (bg)

/ all). It is evident in this diagram that balanced sampling

leads to very early over-fitting in foreground regions, thus

hindering convergence of the model. As a result, not even

the foreground regions are similarly well described as with

uniform random sampling.

Initialization. The high-dimensional, highly non-linear

and non-convex functional together with a stochastic iter-



Table 2: Cross evaluation for different domains represented by different data sets. For each evaluation set, the best model

trained with a different data set is given in bold.

P
P
P

P
P
P

PP
Train

Eval KITTI FT3D Driving Sintel HD1K MB ETH3D

sf mix cr fl st sf mix cr fl st sf mix cr fl st mix fl st fl fl st st

KITTI [20] 97.2 97.7 97.8 97.9 96.2 91.4 91.5 90.1 93.5 90.1 68.6 70.7 64.5 66.7 75.7 90.0 89.3 90.7 98.5 98.8 90.3 95.5

FT3D [19] 73.9 76.5 74.6 76.9 73.3 95.1 95.5 93.7 96.7 94.4 57.4 60.8 51.7 51.8 71.5 95.3 92.7 95.3 97.5 96.8 82.2 96.7

Driving [19] 89.3 90.8 86.7 89.6 90.6 89.9 90.0 89.1 92.0 88.5 75.2 75.8 74.2 74.6 76.7 88.7 89.0 88.7 97.0 99.2 85.9 92.7

Sintel [3] 93.5 94.6 92.3 95.2 92.9 92.7 92.8 91.6 94.2 91.8 59.8 62.7 55.2 55.6 70.8 92.3 92.7 93.0 97.2 99.5 91.4 94.2

HD1K [16] 91.0 92.0 90.6 92.8 90.8 91.6 91.7 90.7 93.7 90.3 66.2 68.2 64.0 67.0 69.7 88.7 88.0 88.0 99.5 99.0 89.3 95.9

ative optimization technique makes neural networks sen-

sitive to initialization. Depending on the activation func-

tion, [11, 10] propose random initialization that considers

the scale of the previous layer. Orthogonal initialization

[21] was proposed for the use in linear fully-connected lay-

ers. The authors could also demonstrate positive effects

with networks that use non-linear activation and convolu-

tional layers. We compare a state-of-the-art variance scal-

ing initializer [10] with orthogonal initialization [21] for the

SDC Network in Figure 5c. Even for the shallow, fully-

convolutional SDC Network with ELU activation [5], or-

thogonal initialization speeds up the training by about a fac-

tor of 2. The final accuracy is also slightly higher.

Learning Rate Disruption. Initialization is important for

stochastic processes and so is the learning rate for the opti-

mizer. Progressively (either in steps or continuous) decreas-

ing learning rates are a best practice to enable convergence

to local optima. However, with monotonically decreasing

learning rates, the optimizer can not escape local optima. A

measure to encounter this is learning rate disruption, as used

e.g. in [28]. The idea is to disrupt the learning rate sched-

ule by increasing the learning rate significantly (e.g. to the

initial value) and then continue with the progressive learn-

ing rate decay. This way, the optimizer can escape from a

local optimum (though not necessarily in favor of a better

optimum). We have experimented with this concept when

training the SDC network. Figure 6 shows three alternate

learning rate schedules. The original monotonic decrease

used in [27] and two variants of learning rate disruption with

different periods for recovery. We could observe some signs

of overfitting right after the disruption. However, the net-

work did recover quickly but without any significant sign of

changing the local optima (neither in a positive nor negative

way).

4.2. Multi Domain Training

Domain Similarity. As approximation of the similarity of

domains, we train mono-domain networks on a single data

set and cross-evaluate them on all data sets. Table 2 shows

the evaluation matrix for all trained models on all data sets.

We do not train models on the Middlebury (MB) data sets

[22, 2] or ETH3D [23] because of their small size. For the

other data sets, we train with the union of all available im-

age correspondences (the three scene flow image pairs for

KITTI, FT3D, and Driving, and optical flow and stereo cor-

respondences for Sintel). Training all combinations of data

sets and tasks would be infeasible.

We observe that domain transfer is not necessarily sym-

metric. More over, the matching task (i.e. the type of im-

age correspondences) has influence on the matching perfor-

mance. Matching on the Driving data set is particularly dif-

ficult. On HD1K [16], matching is extremely simple. Prob-

ably because the ground truth does not contain any dynamic

objects. Performance for all models is similarly high for

the Middlebury Flow data [2]. Most likely because the dis-

placements are very small. A model trained on Sintel [3]

shows high compatibility with many diverse data sets.

Our overall observation is that domain similarity for

matching is mostly defined by the displacement character-

istics and camera hardware, and less by the scenario or re-

alism of the data. The Driving data set for example shows

a big discrepancy to KITTI in the cross-evaluation, though

both contain traffic scenarios. Reversely, Sintel shares nei-

ther the realism nor the automotive setting with KITTI, but

still demonstrates high compatibility. This observation is in

accordance with the results in [18] on displacement statis-

tics for optical flow. We can further confirm this by an ad-

ditional experiment. The Driving data set comes with two

different focal lengths (15 and 35 mm). The two subsets do

not differ in anything else. Performing a cross-evaluation

with models trained on KITTI and both versions of Driv-

ing, there is a significant loss in domain similarity when

switching to the 35 mm focal length, which is also further

away from the KITTI camera parameters. Moreover, trans-

fer between Driving with different focal length does also

not work very well.

Color. Two questions of interest regarding color spaces

are 1.) Which color space provides good generalization

properties? and 2.) Does color influence domain adaption?

We investigate the first question by training a model on one

data set with two different color spaces (RGB and YUV)

and evaluating them on the other data sets (each in the re-

spective color space). In our experiments, there is no clear

sign that one of the two color spaces should be preferred

over the other in terms of generalization. Both models per-

form similarly on all test data sets. There is also no sign



that YUV or RGB color promote the training process. To

answer the second question, we train two models on KITTI,

one with the original RGB color and one with gray scale

converted images to match the color space of HD1K. Intu-

itively, one would assume the gray scale model to perform

better when evaluated on a gray scale data set like HD1K.

Contrary, the result of our experiment showed that the color

model achieves a higher accuracy on HD1K data compared

to the gray scale model. However, when swapping training

and evaluation data, a model trained on HD1K performed

better on KITTI if the images were converted to gray scale.

Scale. In a similar fashion, the influence of scale spaces

was studied. HD1K images have much higher resolution

compared to KITTI (cf. Table 1), thus the receptive field of

the SDC network (81 × 81 pixels) covers a much smaller

part of the visible scene; even more so because the field of

view (FOV) of the camera device is smaller (69 ◦ instead

of 90 ◦). Again, the assumption is that shifting the scale

for the training domain towards the scale of the target do-

main, would improve the transfer. Once more, in contrast

to our expectation, a model trained on down-scaled HD1K

data did not perform better on KITTI compared to a model

trained on full resolution images. Here, the inverse experi-

ment (KITTI model evaluated on full resolution and down

scaled HD1K data) indicates also that images should not be

scaled to achieve better domain transfer. This might be due

to artifacts introduced by the scaling.

Nonetheless, scale is important for detection and match-

ing. The SDC network is specifically designed to deal with

varying scales through the use of parallel convolutions with

different dilation rates [27]. Table 3 shows some baseline

descriptors, the original SDC network, and a multi-scale

model, all evaluated on multiple scales of the KITTI data.

The heuristic descriptors (SIFT [17], DAISY [30], BRIEF

[4]) show an almost quadratic loss in performance when im-

age size decreases, even if they are supposed to be scale

invariant. For increased image scale, they perform better.

Presumably because smaller patches show fewer deforma-

tions, or other variations between images. The implicit

multi-scale design of SDC performs extremely well on dif-

ferent scales, with only a small drop in accuracy. For SDC,

the performance drops also when the input is upsampled.

This is not surprising since the dilation rates can only sim-

ulate smaller scales. A model explicitly trained on multi-

scale data amplifies the scale invariance even more, show-

ing almost no degradation of the accuracy when the scale

changes.

Normalization. Standardization of the input is useful to

remove any bias from the data and to scale features into

equal range, making them equally important for training. A

common practice is to remove the mean pixel value and to

Table 3: Multi-scale behavior for different descriptors.

Descriptor ×2 Original ×0.5 ×0.25

Multi-scale 96.60 97.30 96.85 96.60

SDC [27] 94.55 97.25 96.70 93.90

BRIEF [4] 95.00 94.00 90.50 82.15

DAISY [30] 92.80 91.25 88.15 80.80

SIFT [17] 93.90 89.90 81.95 73.65

scale them so that all channels have unit variance. Surpris-

ingly, standardization is not crucial to train the SDC net-

work. A model trained on normalized images performs as

well as a model trained on the original image data.

Anyway, normalization might also be useful to boost

transfer learning by adjusting the pixel distribution to bet-

ter fit the target domain. This, of course, is only possible

if imagery for the target is available at training time. When

training on a single domain, experiments showed that nei-

ther normalization nor a distribution shift help to better gen-

eralize to unseen domains. Yet, when training with a mix-

ture of data (as done in the original SDC network), stan-

dardization for each training data set separately improves

the performance on unseen domains if the test data is also

standardized according to its own statistics. For training

on multiple domains, a unified normalization based on the

pixel distribution of the entire data works also very well and

is favorable if a single, unified model for different domains

is required.

5. Conclusion

SDC is a neural network architecture with favorable

properties for feature description. The implicit multi-scale

design, emulated by parallel dilated convolutions, leads

to superior matching performance and great invariance to

changes of scale. The analysis of the network and its feature

representation brought insights on the weaknesses of SDC

features which motivated our adjustments of the training

schedule. Proper weight initialization and hard mining in

the loss computation improved the accuracy and speeded up

training by a factor of about 4. More balanced region sam-

pling during generation of training data or learning rate dis-

ruption could not improve the networks performance. The

evaluation of similarity for different domains gave useful

directions to improve the process of domain adaption and

the training on multiple data sets. We did also investigate

the influence of color, scale, and normalization. The ex-

cellent scale invariance of SDC was boosted even more by

dedicated multi-scale training. For future work, we are in-

terested in improving feature description to make use of all

feature dimensions and to explicitly model a measure of un-

certainty or matching likelihood of image points.
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