
Kernel Transformer Networks for Compact Spherical Convolution

Yu-Chuan Su

The University of Texas at Austin

Kristen Grauman

Facebook AI Research

The University of Texas at Austin

Abstract

Ideally, 360◦ imagery could inherit the convolutional

neural networks (CNNs) already trained with great suc-

cess on perspective projection images. However, exist-

ing methods to transfer CNNs from perspective to spheri-

cal images introduce significant computational costs and/or

degradations in accuracy. We present the Kernel Trans-

former Network (KTN) to efficiently transfer convolution

kernels from perspective images to the equirectangular pro-

jection of 360◦ images. Given a source CNN for perspective

images as input, the KTN produces a function parameter-

ized by a polar angle and kernel as output. Given a novel

360◦ image, that function in turn can compute convolutions

for arbitrary layers and kernels as would the source CNN

on the corresponding tangent plane projections. Distinct

from all existing methods, KTNs allow model transfer: the

same model can be applied to different source CNNs with

the same base architecture. KTNs successfully preserve the

source CNN’s accuracy, while offering transferability, scal-

ability to typical image resolutions, and, in many cases, a

substantially lower memory footprint.

1. Introduction

The 360◦ camera is an increasingly popular technology

gadget. As a result, the amount of 360◦ data is increasing

rapidly. For example, users uploaded more than a million

360◦ videos to Facebook in less than 3 years [1]. Because

almost any application depends on semantic visual features,

this rising trend prompts an unprecedented need for visual

recognition algorithms on 360◦ images.

Today’s wildly successful recognition CNNs are the re-

sult of tremendous data curation and annotation effort [2, 7,

9,13,15,19], but they all assume perspective projection im-

agery. How can they be repurposed for 360◦ data? Existing

methods often take an off-the-shelf model trained on per-

spective images and either 1) apply it repeatedly to multiple

perspective projections of the 360◦ image [4,17,18,20] or 2)

apply it once to a single equirectangular projection [11,12].

See Fig. 1(A,B). These two strategies, however, have severe

limitations. The first is expensive because it has to project

360◦ image

fΩ1

fΩ2

()

()
(C) Proposed KTN

(A) Apply directly

(B) Apply on tangent planes

Figure 1: Our goal is to transfer CNNs trained on planar

images to 360◦ images. Common approaches either (A) ap-

ply CNNs directly on the equirectangular projection of a

360◦ image or (B) project the content to tangent planes and

apply the models on the tangent planes. In contrast, Kernel

Transformer Network (KTN) adapts the kernels in CNNs to

account for the distortion in 360◦ images.

the image and apply the recognition model repeatedly. The

second is inaccurate because the visual content is distorted

in equirectangular projection.

To overcome these challenges, recent work designs CNN

models specifically for spherical data [5, 6, 8, 16, 21]. How-

ever, these approaches either introduce significant memory

overhead or reduce the accuracy of the model. These short-

comings limit the applicability of the models to real-world

data and applications. Furthermore, all of them require

retraining to handle a new recognition task, which incurs

a significant overhead for learning recognition models on

360◦ imagery.

In light of these shortcomings, we propose the Kernel

Transformer Network (KTN). Instead of learning a new

CNN on 360◦ images for a specific task, KTN learns a func-

tion that takes a kernel in the source CNN as input and trans-

forms it to be applicable to a 360◦ image in its equirectan-

gular projection. See Fig. 1 (C). The function accounts for

the distortion in 360◦ images, returning different transfor-

mations depending on both the polar angle θ and the source

kernel. The model is trained to reproduce the outputs of the

1 11

source CNN on the perspective projection for each tangent

plane on an arbitrary 360◦ image. Hence, KTN learns to be-

have similarly to the source CNN while avoiding repeated

projection of the image.

Key highlights of the proposed KTN are its transferabil-

ity and compactness—both of which owe to our function-

based design. Once trained for a base architecture, the same

KTN can transfer multiple source CNNs to 360◦ images.

For example, having trained a KTN for VGG [15] on Ima-

geNet classification, we can transfer the same KTN to run

a VGG-based Pascal object detector on 360◦ panoramas.

This is possible because the KTN takes the source CNN as

input rather than embed the CNN kernels into its own pa-

rameters (unlike [5, 6, 8, 16, 21]). Furthermore, since the

KTN factorizes source kernels from transformations, it is

implementable with a lightweight network (e.g., increasing

the footprint of a VGG network by only 25%). Finally, KTN

is much more data efficient compared with other Spherical

CNN methods [5, 6, 8, 21], because it does not require any

annotated 360◦ images for training and is more accurate.

2. Approach

In this section, we first introduce the KTN module,

which can replace the ordinary convolution operation in

vanilla CNNs. We then describe the architecture and ob-

jective function of KTN.

2.1. KTN for Spherical Convolution

Our KTN can be considered as an generalization of or-

dinary convolutions in CNNs. In the convolution layers of

vanilla CNNs, the same kernel is applied to the entire in-

put feature map to generate the output feature map. The

assumption underlying the convolution operation is that the

feature patterns, i.e., the kernels, are translation invariant

and should remain the same over the entire feature map.

This assumption, however, does not hold in 360◦ images. A

360◦ image is defined by the visual content projected on the

sphere centered at the camera’s optical center. To represent

the image in digital format, the sphere has to be unwrapped

into a 2D pixel array, e.g., with equirectangular projection

or cubemaps. Because all sphere-to-plane projections in-

troduce distortion, the feature patterns are not translation

invariant in the pixel space, and ordinary CNNs trained for

perspective images do not perform well on 360◦ images.

To overcome this challenge, we propose the Kernel

Transformer Network, which can generate kernels that ac-

count for the distortion. Assume an input feature map

I ∈ R
H×W×C and a source kernel K ∈ R

k×k×C defined

in undistorted images (i.e., perspective projection). Instead

of applying the source kernel directly

F [x, y] = Σi,jK[i, j] ∗ I[x− i, y − j], (1)

we learn the KTN (f) that generates different kernels for

different distortions:

KΩ = f(K,Ω) (2)

F [x, y] = Σi,jKΩ[i, j] ∗ I[x− i, y − j] (3)

where the distortion is parameterized by Ω. Because the dis-

tortion in 360◦ images is location dependent, we can define

Ω as a function on the sphere

Ω = g(θ, φ), (4)

where θ and φ are the polar and azimuthal angle in spheri-

cal coordinates, respectively. Given the KTNs and the new

definition of convolution, our approach permits applying an

ordinary CNN to 360◦ images by replacing the convolution

operation in Eq. 1 with Eq. 3.

KTNs make it possible to take a CNN trained for some

target task (recognition, detection, segmentation, etc.) on

ordinary perspective images and apply it directly to 360

panoramas. Critically, KTNs do so without using any an-

notated 360◦ images. Furthermore, because the information

required to solve the target task is encoded in the source ker-

nel, which is fed into the KTN as an input rather than part

of the model, the same KTN can be applied to another CNN

having the same base architecture but trained for a different

target task. For example, we could train the KTN according

to a VGG network trained for ImageNet classification, then

apply the same KTN to transfer a VGG network trained for

Pascal object detection; with the same KTN, both tasks can

be translated to 360◦ images.

2.2. KTN Architecture

In this work, we consider 360◦ images that are un-

wrapped into 2D rectangular images using equirectangular

projection. Equirectangular projection is the most popular

format for 360◦ images and is part of the 360◦ video com-

pression standard [3]. The main benefit of equirectangu-

lar projection for KTNs is that the distortion depends only

on the polar angle. Because the polar angle has an one-to-

one correspondence with the image row (y=θH/π) in the

equirectangular projection pixel space, the distortion can be

parameterized easily using Ω = g(θ, φ) = y.

The architecture for KTN is in Fig. 2. We use a Residual

Network [10]-like architecture. For both the residual and

shortcut branches, we first apply a row dependent projec-

tion on the kernels. The projection consists of h projection

matrices Pi, for i ∈ [1, h], where h is the number of rows

in the 360◦ image. The row dependent projection helps to

generate different kernels at different polar angle θ. The

residual branch then applies depthwise separable convolu-

tion twice. We use depthwise separable convolution to re-

duce the model size. The output kernel is then applied to

a 360◦ feature map as in Eq. 3. Note that while the KTN

can be applied to different kernels, the structure of a KTN

depends on Pi, which is determined by the receptive field

of the source kernel. Therefore, we need one KTN for each

layer of a source CNN.

12

360◦ Image

θ

Equirectangular Projection

K

⊕

Kθ

θ

θ

Channel-wise
Projection

Depth-wise
Convolution

1x1 Convolution

Figure 2: KTN consists of row dependent projections and

depth separable convolution blocks. It takes a source ker-

nel K and θ as input and generates an output kernel KΩ.

KΩ is then applied to the 360◦ image in its equirectangular

projection at row y=θH/π.

2.3. KTN Objective and Training Process

Having introduced the KTN module and how to apply it

for CNNs on 360◦ images, we now describe the KTN ob-

jective function and training process. The goal of the KTN

is to adapt the source kernel to the 360◦ domain. Therefore,

we train the model to reproduce the outputs of the source

kernels. Let F l ∈ R
H×W×Cl

and F l+1 ∈ R
H×W×Cl+1

be the feature maps generated by the l-th and (l+1)-th layer

of a source CNN respectively. Our goal is to minimize the

difference between the feature map generated by the source

kernels Kl and that generated by the KTN module:

L = ∥F l+1 − f l(Kl,Ω) ∗ F l∥2 (5)

for any 360◦ image. Note that during training the feature

maps F l are not generated by applying the source CNN di-

rectly on the equirectangular projection of the 360◦ images.

Instead, for each point (x, y) in the 360◦ image, we project

the image content to the tangent plane of the sphere at

(θ, φ) = (
π × y

H
,
2π × x

W
) (6)

and apply the source CNN on the tangent plane. This en-

sures that the target training values are accurately computed

on undistorted image content.

The objective function depends only on the source CNN

and does not require any annotated data for training. In fact,

it does not require image data specific to the target task, be-

cause the loss is defined over all 360◦ images. For example,

in experiments we train a KTN on YouTube video frames

and then apply it for a Pascal object detection task. Our

goal is to fully reproduce the behavior of the source kernel.

Therefore, even if the training images do not contain the

same objects, scenes, etc. as are seen in the target task, the

KTN should still minimize the loss in Eq. 5.

3. Experiments

We evaluate KTN on multiple datasets and source CNNs.

Datasets Our experiments make use of both unannotated

360◦ videos and 360◦ images with annotation.

Spherical MNIST is constructed from the MNIST dataset

by back projecting the digits into equirectangular projec-

tion with 160×80 resolution. Classification accuracy on the

360◦-ified test set is used as the evaluation metric.

Pano2Vid is a real world 360◦ video dataset [18]. We

sample frames from non-overlapping videos for training

and testing, and the frames are resized to 640×320 reso-

lution. The models are trained to reproduce the convolution

outputs of the source model, so no labels are required for

training. The root-mean-square error (RMSE) of the final

convolution outputs is used as the evaluation metric.

Pascal VOC 2007 is a perspective image dataset with ob-

ject annotations. We backproject the object bounding boxes

to equirectangular projection with 640×320 resolution. We

evaluate the accuracy of the detector network on the valida-

tion set. This dataset is used for evaluation only.

Source Models For Spherical MNIST, we train the source

CNN on the MNIST training set. The model consists of

three convolution layers followed by one fully connected

layer. For Pano2Vid and Pascal VOC, we take off-the-shelf

Faster R-CNN [14] models with VGG architecture [15] as

the source model. The Faster R-CNN is trained on Pascal

VOC if not mentioned specifically.

Baselines We compare to the following existing methods:

• S2CNN [5]—We train S2CNN using the authors’ im-

plementation. Input resolution is reduced to 64×64 for

Pano2Vid and Pascal VOC due to memory limits.

• SPHERICAL CNN [8]—We train SPHERICAL CNN us-

ing the authors’ implementation. Input resolution is re-

duced to 80×80 for Pano2Vid and Pascal VOC due to

memory limits.

• SPHERICAL U-NET [21]—We use the spherical convo-

lution layer in Spherical U-Net to replace ordinary con-

volution in CNN. Input resolution is reduced to 160×80
for Pano2Vid and Pascal VOC due to memory limits.

• SPHERENET [6]—We implement SPHERENET using

row dependent projection.1 We derive the weights of the

projection matrices using the feature projection operation

and train the source kernels.

• SPHCONV [16]—We use the authors’ implementation.

• PROJECTED—Similar to SPHERENET, except that it uses

the source kernels without training.

For all methods, the number of layers and kernels are the

same as the source model. Note that the resolution reduc-

tions specified above were necessary to even run those base-

1The authors’ code and data were not available.

13

Table 1: Model accuracy.

MNIST Pano2Vid Pascal VOC

(Acc.") (RMSE #) (Acc.")

S2 CNN [5] 95.79 2.37 4.32

SPHERICAL CNN [8] 97.48 2.36 6.06

SPHERICAL U-NET [21] 98.43 2.54 24.98

SPHERENET [6] 87.20 2.46 46.68

SPHCONV [16] 98.72 1.50 63.54

PROJECTED 10.70 4.24 6.15

KTN 97.94 1.53 69.48

Figure 3: KTN object detection examples on Pano2Vid.

line models on the non-MNIST datasets, even with state-of-

the-art GPUs. The fact that KTN scales to higher resolu-

tions is precisely one of its technical advantages.

3.1. Model Accuracy

Table 1 summarizes the methods’ accuracy on all three

360◦ datasets. KTN performs on par with the best base-

line method (SPHCONV) on Spherical MNIST. Further-

more, KTN and SPHCONV perform significantly better

than the other baselines on the high resolution datasets, i.e.,

Pano2Vid and Pascal VOC. The result verifies that KTN can

transfer the source kernels to the entire sphere by learning

to reproduce the feature maps, and it can match the accu-

racy of existing models trained with annotated 360◦ images.

Note that the performance of PROJECTED and SPHERENET

suggests that the transformation f cannot be modeled by a

tangent plane-to-sphere projection. The accuracy of using

a projection only transformation is significantly worse than

KTN even if the model has a much larger number of learn-

able parameters (i.e. SPHERENET).

Fig. 3 shows example outputs of KTN with a Faster R-

CNN source model. The detector successfully detects ob-

jects despite the distortion. On the other hand, KTN can fail

when a very close object cannot be captured in the field-of-

view of perspective images.

3.2. Transferability

Next, we evaluate the transferability of KTN across dif-

ferent source models on Pano2Vid. In particular, we eval-

uate whether KTNs trained with a COCO trained Faster

R-CNN can be applied to a Pascal VOC trained Faster R-

CNN (both using VGG architecture) and vice versa. We

18� 36� 54� 72� 90�0

2

4

R
M

S
E

Pascal VOC

KTN KTN-Transfer Projected

18� 36� 54� 72� 90�0

1

2

3

4
COCO

Figure 4: Model transferability. The title indicates the

source CNN being tested.

102 103 104
0

20

40

60

80

Size (MB)

A
cc

u
ra

cy

S2CNN [5]

SPHERICAL CNN [8]

SPHERENET [6]

SPHERICAL U-NET [21]

SPHCONV [16]

PROJECTED

KTN (Ours)

Figure 5: Model size vs. accuracy for VGG.

denote KTN trained on a different source CNN than it is

being tested on as KTN-TRANSFER and KTN otherwise.

Fig. 4 shows the results. The accuracy of KTN and

KTN-TRANSFER are almost identical. The results demon-

strate that KTN indeed learns a task-independent transfor-

mation and can be applied to different source models with

the same base architecture. None of the existing mod-

els [5,6,8,16,21] are equipped to perform this kind of trans-

fer, because they learn fixed kernels for a specific task.

3.3. Model Size

Finally, we compare the model size of KTN versus the

baseline methods. In particular, we measure the size for the

convolution layers in the VGG architecture. Fig. 5 shows

the results. The model size of KTN is only 25% (14MB)

larger than the source model. At the same time, KTN

achieves a much better accuracy compared with all the mod-

els that have a comparable size. Compared with SPHCONV,

KTN not only achieves a higher accuracy but is also orders

of magnitude smaller.

4. Conclusion

We propose the Kernel Transformer Network for trans-

fering CNNs from perspective images to 360◦ images. KTN

learns a function that transforms a kernel to account for the

distortion in the equirectangular projection of 360◦ images.

The same KTN model can transfer to multiple source CNNs

with the same architecture. Our results show KTN outper-

forms existing methods while providing superior scalability

and transferability.

Acknowledgement. We thank Carlos Esteves for the help

on SPHERICAL CNN experiments. This research is sup-

ported in part by NSF IIS-1514118, an AWS gift, a Google

PhD Fellowship, and a Google Faculty Research Award.

14

